Achieving Success in CNC Woodworking

Developing a Successful Cutting Direction Strategy

There are a number of factors that can affect the machining practices of wood in woodworking. One that comes up a lot for certain hardwoods is the cutting direction, specifically in relation to the grain pattern of the wood. Wood is an anisotropic material. This means that different material properties are exhibited in different cutting directions. In terms of lumber, there are different structural grades of wood related to grain orientation. If the average direction of the cellulose fibers are parallel to the sides of the piece of lumber, then the grains are said to be straight. Any deviation from this parallel line and the board is considered to be “cross-grain”. Figure 1 below depicts a mostly straight grain board with arrows indicating the different axes. Each of these axes exhibits different sets of mechanical properties. Because of these differences, one must be conscious of the tool path in woodworking and minimize the amount of cutting forces placed on the cutter in order to maximize its tool life.

straight grain wood board with woodworking axes
Figure 1: Mostly straight grain board with arrows indicating different axes

Cutting perpendicular to the grain is known as cutting “across the grain” in woodworking. In Figure 1 above, this would be considered cutting in the radial or tangential direction. Cutting parallel to the grain is known as cutting “along the grain” (longitudinally in terms of Figure 1). The closer you are to cutting at 90° to the grain of the wood in any direction, the larger the cutting force will be. For example, a tool with its center axis parallel to the tangential direction and a tool path along the longitudinal direction would have less wear than a tool with the same center axis but moving in the radial direction. The second type of tool orientation is cutting across more grain boundaries and therefore yields greater cutting forces. However, you must be careful when cutting along the grain as this can cause tear-outs and lead to a poor surface finish.

The Proper Formation of Wood Chips With CNC Woodworking

When cutting wood parallel to the grain, there are three basic types of chips that are formed. When cutting perpendicular to the grain, the chip types generally fall into these same 3 categories, but with much more variability due to the wide range in wood properties with respect to the grain direction.

Type 1 Chips

Type 1 chips are formed when wood splits ahead of the cutting edge through cleavage until failure in bending occurs as a cantilever beam. A large force perpendicular to the shear plane is produced, causing the wood ahead of the cutting edge to split, forming this tiny cantilever beam. When the upward force finally exceeds the strength of this tiny beam, it breaks off.  These types of chips cause comparatively little wear compared to types 2 and 3, as the material is splitting before coming in contact with the pointed edge. End mills with either extremely high rake or very low rake angles often produce type 1 chips. This is especially true when machining against grain slopes that are greater than 25°. Woods with moisture content less than 8%form discontinuous chips and are at a higher risk of tear-out.

Type 2 Chips

Type 2 chips are the most desirable of the three types in terms of surface finish. They are a result of material failure along a diagonal shear plane, extending from the cutting edge to the workpiece surface. Type 2 chips form when there is a proper balance between the properties of the wood, cutting parameters, and cutter geometry. Woods with a moisture content between 8% and 20%have a much higher chance of forming continuous type 2 chips while leaving a good surface finish.

Type 3 Chips

The last type of chip forms when the rake angle of a cutter is much too low. In this scenario, the cutting force is almost parallel to the direction of travel. This causes a soft material, such as wood, to be crushed rather than sheared away, leaving a poor surface finish. Generally, the surface left behind looks like tiny bundles of wood elements, a surface defect commonly known as “fuzzy grain.” This type of chip occurs more frequently in softwoods as the crushing situation is compounded in low-density woods.

types of wood chips in woodworking
Figure 2: Different types of wooden chips

Extending Tool Life When Woodworking

Speeds & Feeds Rules of Thumb

There are several different categories of tool wear that occur when cnc woodworking. General rules of machining still apply as RPM has the greatest influence on wear rate. Over-feeding can increase tool wear exponentially and also cause tool breakage. As with most machining operations, a balance between these two is essential. If you are looking to increase your productivity by increasing your speed, you must increase your feed proportionally in order to maintain a balance that keeps the tool properly engaged in the material.

Proper Management of Heat

When cutting tools are exposed to high heat, they begin to wear even faster, due to corrosion. The cobalt binder within most carbide tools on the market begins to oxidize and break free of the cutting edge. This sets off a chain reaction, as when the binder is removed, the tungsten carbide breaks away, too. Different species of wood and types of engineered wood have different corrosive behaviors at high temperatures. This is the most consistent type of wear that is observed when machining MDF or particleboard. The wear is due to the chlorine and sulfate salts found in adhesives as this accelerates high-temperature corrosion.  As with aluminum, when the silica content of a wood increases, so too does its corrosiveness.

Generally, increased tool wear is observed in wood with high moisture content. This trait is due to the increased electro-chemical wear caused by the extractives in wood., Moisture content in wood includes substances such as resins, sugars, oils, starches, alkaloids, and tannins in the presence of water. These molecules react with the metallic constitutes of the cutting tool and can dull the cutting edge. Carbide is more resistant to this type of wear compared to high-speed steel.

Best Coatings for Extended Tool Life in Wood

If you want a longer-lasting tool that will maintain its sharp cutting edge (and who doesn’t), you may want to consider an Amorphous Diamond coating. This is an extremely abrasive resistant coating meant for non-ferrous operations in which the temperature of the cutting zone does not exceed 750 °F. This coating type is one of Harvey Tool’s thinnest coatings, therefore minimizing the risk of any edge rounding and maximizing this edge’s durability.

Avoiding Common Woodworking Mishaps

Tear Out

Tear out, sometimes called chipped grain or splintering, is when a chunk of the wood material being machined tears away from the main workpiece and leaves an unappealing defect where it used to be. This is one of the most common defects when machining wood products. There are many different reasons that tear out occurs. Material characteristics are something to be considered. Tear out is more likely to occur if the grain orientation is less than 20°relative to the tool path, the moisture content of the wood is too low, or the density of the wood is too low. Figure 4 shows the grain orientation angle relative to the tool path. In terms of machining parameters, it can also occur if either the chip load, depth of cut, or rake angle is too high.

woodworking grain in relation to tool path
Figure 4: Example of grain orientation angle relative to the tool path

Fuzzy Grain Finish

Fuzzy grain looks like small clumps of wood attached to the newly machined face and occurs when the wood fibers are not severed properly. Low rake or dull cutting tools indent fibers until they tear out from their natural pattern inside, causing type 3 chips to form, resulting in a poor finish. This can be exacerbated by a low feed or depth of cut as the tool is not properly engaged and is plowing material rather than shearing it properly. Softer woods with smaller and lesser amounts of grains are more susceptible to this type of defect. Juvenile wood is known to be particularly liable for fuzzy grain because of its high moisture content.

fuzzy grain wood finish
Figure 5: Example of a fuzzy grain finish

Burn Marks

Burn Marks are a defect that is particularly significant in the case of machining wood, as it is not generally a concern when machining other materials. Dwelling in a spot for too long, not engaging enough of the end mill in a cut, or using dull tools creates an excessive amount of heat through friction, which leaves burn marks. Some woods (such as maple or cherry) are more susceptible to burn marks, therefore tool paths for these types should be programmed sensibly. If you are having a lot of trouble with burn marks in a particular operation, you may want to try spraying the end mill with a commercial lubricant or paste wax. Be careful not to use too much as the excess moisture can cause warping. Increasing your tool engagement or decreasing RPM may also combat burn marks.

burn marks from wood cutter
Figure 6: Example of burn marks

Chip Marks

Chip marks are shallow compressions in the surface of the wood that have been sprayed or pressed into the surface. These defects can swell with an increase in moisture content, worsening the finish even more. This type of blemish is generally caused by poor chip evacuation and can usually be fixed by applying air blast coolant to the cutting region during the operation.

Raised Grain

Raised grain, another common defect of woods, is when one or more portions of the workpiece are slightly lower than the rest. This blemish is particularly a problem when machining softer woods with dull tools as the fibers will tear and deform rather than be cleanly sheared away. This effect is intensified when machining with slow feeds and the wood has a high moisture content. Variations in swelling and shrinking between damaged and undamaged sections of wood exacerbate this flaw. It’s for this reason that raised grain is a common sight on weather-beaten woods. Work holding devices that are set too tight also have a chance of causing raised grain.

Differentiating Harvey Tool Wood Cutting & Plastic Cutting End Mills

Woodworking Upcut End Mill
Harvey Tool Upcut End Mill For Wood

https://www.harveytool.com/products/material-specific-end-mills/woodMachinists oftentimes use Plastic Cutting End Mills for woodworking, as this tool has very similar internal geometries to that of an End Mill for Wood. Both tools have large flute valleys and sharp cutting edges, advantageous for the machining of both plastic and wood. The main difference between the Harvey Tool plastic cutters and the woodcutters is the wedge angle (a combination of the primary relief and rake angle). The woodcutter line has a lower rake but still has a high relief angle to maintain the sharpness of the cutting edge. The lower rake is designed to not be as “grabby” as the plastic cutters can be when woodworking. It was meant to shear wood and leave a quality surface finish by not causing tear-out.

Harvey Tool’s offering of End Mills for Wood includes both upcut and downcut options. The upcut option is designed for milling natural and engineered woods, featuring a 2-flute style and a wedge angle engineered for shearing wood fiber materials without causing tear out or leaving a fuzzy grain finish. The downcut offering is optimized for milling natural and engineered woods and helps prevent lifting on vacuum tables.

For more help on achieving a successful machining operation, or more information on Harvey Tool’s offering of End Mills for Wood, please contact Harvey Tool’s team of engineers at 800-645-5609.

When to and Not to Use Drop Hole Allowance

Dovetail Cutters are cutting tools that create a trapezoidal-type shape, or a dovetail groove, in a part. Due to the form of these tools, special considerations need to be made in order to achieve long tool life and superior results. This is particularly true when machining O-ring grooves, as this operation requires the tool to drop into the part to begin cutting. Using an appropriate tool entry method, specifically understanding when drop hole allowance is (and is not) needed, is important to keep common dovetail mishaps from occurring.

What is a Drop-Hole?

When designing parts featuring O-ring grooves, the consideration of drop-hole allowance is a pivotal first step. A drop-hole is an off-center hole milled during the roughing/slotting operation. This feature allows for a significantly larger, more rigid tool to be used. This is because the cutter no longer has to fit into the slot, but into a hole with a diameter larger than its cutter diameter.

drop hole allowance

Why consider adding a Drop-Hole?

When compared to tools without drop-hole allowance, tools with drop-hole allowance have a much larger neck diameter-to-cutter diameter ratio. This makes the drop-hole tools far stronger, permitting the tool to take heavy radial depths of cut and fewer step-overs. Using a drop-hole will allow the use of the stronger tool, which will increase production rate and improve tool life.

Machining Operation with Drop-Hole Allowance

drop hole allowance

A maximum of 4 radial passes per side are needed.

When Not to Drop Hole

Drop-holes are sometimes not permitted in a design due to the added stress concentration point it leaves. Common examples for where a drop-hole would not be allowed include:

  • In high pressure applications
  • In seals requiring a high reliability
  • Where dangerous or hazardous fluids are being used

The issue with drop-hole allowance is that the additional clearance used for tool entry can create a weak spot in the seal, which can then become compromised under certain conditions. Ultimately, drop-hole allowance requires approval from the customer to ensure the application allows for it.

Machining Operation Without Drop-Hole Allowance

drop hole allowance

A maximum of 20 radial passes per side are needed.

Drop-Hole Placement

When adding a drop-hole to your part, it is important to ensure that the feature is placed correctly to maximize seal integrity. Per the below figure, the drop-hole should be placed off center of the groove, ensuring that only one side of the groove is affected.

drop hole allowance

It is also necessary to ensure that drop-hole features are put on the correct side of the groove. Since O-rings are used as a seal between pressures, it is important to have the drop-hole bordering the high pressure zone. As pressure moves from high to low, the O-ring will be forced into the fully supported side, allowing for a proper seal (See image below).

drop hole allowance

Using Tool Libraries in Autodesk HSM & Fusion 360

The days of modeling your tools in CAM are coming to an end. Harvey Performance Company has partnered with Autodesk to provide comprehensive Harvey Tool and Helical Solutions tool libraries to Fusion 360 and Autodesk HSM users. Now, users can access 3D models of every Harvey and Helical tool with a quick download and a few simple clicks. Keep reading to learn how to download these libraries, find the tool you are looking for, how to think about speeds and feeds for these libraries, and more.

Downloading Tool Libraries

On the Autodesk HSM Tools page, you will find Harvey Tool and Helical Solutions tool libraries. Clicking either of the previous links will bring you to that brand’s tool libraries. Right now, all of the two brands more than 27,000 tools are supported in the tool libraries.

Once on the page, there will be a download option for both Fusion and HSM. Select which software you are currently using to be prompted with a download for the correct file format.

From there, you will need to import the tool libraries from your Downloads folder into Fusion 360 or HSM. These tool libraries can be imported into your “Local” or “Cloud” libraries in Fusion 360, depending on where you would like them to appear. For HSM, simply import the HSMLIB file you have downloaded as you would any other tool library.

Curt Chan, Autodesk MFG Marketing Manager, takes a deeper dive into the process behind downloading, importing, and using CAM tool libraries to Fusion in the instructional video below.

For HSM users, jump to the 2:45 mark in this video from Autodesk’s Lars Christensen, who explains how to download and import these libraries into Autodesk HSM.


Selecting a Tool

Once you have downloaded and imported your tool libraries, selecting a specific tool or group of tools can be done in several ways.

Searching by Tool Number

To search by tool number, simply enter the tool number into the search bar at the top of your tool library window. For example, if you are looking for Helical Tool EDP 00015, enter “00015” into the search bar and the results will narrow to show only that tool.

Fusion 360 Tool Libraries

In the default display settings for Fusion 360, the tool number is not displayed in the table of results, where you will find the tool name, flute count, cutter diameter, and other important information. If you would like to add the tool number to this list of available data, you can right click on the top menu bar where it says “Name” and select “Product ID” from the drop down menu. This will add the tool number (ex. 00015) to the list of information readily available to you in the table.

Harvey Tool Tool Libraries

Searching by Keyword

To search by a keyword, simply input the keyword into the search bar at the top of the tool library window. For example, if you are looking for metric tooling, you can search “metric” to filter by tools matching that keyword. This is helpful when searching for Specialty Profile tools which are not supported by the current profile filters, like the Harvey Tool Double Angle Shank Cutters seen in the example below.

Fusion 360 Tool Libraries

Searching by Tool Type

To search by tool type, click the “Type” button in the top menu of your tool library window. From there, you will be able to segment the tools by their profile. For example, if you only wanted to see Harvey Tool ball nose end mills, choose “Ball” and your tool results will filter accordingly.

CAM Tool Libraries

As more specialty profiles are added, these filters will allow you to filter by profiles such as chamfer, dovetail, drill, threadmill, and more. However, some specialty profile tools do not currently have a supported tool type. These tools show as “form tools” and are easier to find by searching by tool number or name. For example, there is not currently a profile filter for “Double Angle Shank Cutters” so you will not be able to sort by that profile. Instead, type “Double Angle Shank Cutter” into the search bar (see “Searching by Keyword”) to filter by that tool type.

Searching by Tool Dimensions

To search by tool dimensions, click the “Dimensions” button in the top menu of your tool library window. From there, you will be able to filter tools by your desired dimensions, including cutter diameter, flute count, overall length, radius, and flute length (also known as length of cut). For example, if you wanted to see Helical 3 flute end mills in a 0.5 inch diameter, you would check off the boxes next to “Diameter” and “Flute Count” and enter the values you are looking for. From there, the tool results will filter based on the selections you have made.

CAM Tool Libraries

Using Specialty Profile Tools

Due to the differences in naming conventions between manufacturers, some Harvey Tool/Helical specialty profile tools will not appear exactly as you think in Fusion 360/HSM. However, each tool does contain a description with the exact name of the tool. For example, Harvey Tool Drill/End Mills display in Fusion 360 as Spot Drills, but the description field will call them out as Drill/End Mill tools, as you can see below.

Below is a chart that will help you match up Harvey Tool/Helical tool names with the current Fusion 360 tool names.

Tool NameFusion 360 Name
Back Chamfer CutterDovetail Mill
Chamfer CuttersChamfer Mill
Corner Rounding End Mill – UnflaredRadius Mill
Dovetail CutterDovetail Mill
Drill/End MillSpot Drill
Engraving Cutter/Marking Cutter – Tip RadiusTapered Mill
Engraving Cutter – Tipped Off & PointedChamfer Mill
Keyseat CutterSlot Mill
Runner CutterTapered Mill
Undercutting End MillLollipop Mill
All Other Specialty ProfilesForm Mill

Speeds and Feeds

To ensure the best possible machining results, we have decided not to pre-populate speeds and feeds information into our tool libraries. Instead, we encourage machinists to access the speeds and feeds resources that we offer to dial accurate running parameters based on their material, application, and machine capabilities.

Harvey Tool Speeds & Feeds

To access speeds and feeds information for your Harvey Tool product, head to http://www.harveytool.com/cms/SpeedsFeeds_228.aspx to find speeds and feeds libraries for every tool.

If you are looking for tool specific speeds and feeds information, you will need to access the tool’s “Tech Info” page. You can reach these pages by clicking any of the hyperlinked tool numbers across all of our product tables. From there, simply click “Speeds & Feeds” to access the speeds and feeds PDF for that specific tool.

If you have further questions about speeds and feeds, please reach out to our Technical Support team. They can be reached Monday-Friday from 8 AM to 7 PM EST at 800-645-5609, or by email at [email protected].

Helical Solutions Speeds & Feeds

To access speeds and feeds information for your Helical Solutions end mills, we recommend using our Machining Advisor Pro application. Machining Advisor Pro (MAP) generates specialized machining parameters by pairing the unique geometries of your Helical Solutions end mill with your exact tool path, material, and machine setup. MAP is available free of charge as a web-based desktop app, or as a downloadable application on the App Store for iOS and Google Play.

machining advisor pro

To learn more about Machining Advisor Pro and get started today, visit www.machiningadvisorpro.com. If you have any questions about MAP, please reach out to us at [email protected].

If you have further questions about speeds and feeds, please reach out to our Technical Support team. They can be reached Monday-Friday from 8 AM to 7 PM EST at 866-543-5422, or by email at [email protected].


For additional questions or help using tool libraries, please send an email to [email protected]. If you would like to request a Harvey Performance Company tool library be added to your CAM package, please fill out the form here and let us know! We will be sure to notify you when your CAM package has available tool libraries.

Get to Know Machining Advisor Pro

Machining Advisor Pro (MAP) is a tool to quickly, seamlessly, and accurately deliver recommended running parameters to machinists using Helical Solutions end mills. This download-free and mobile-friendly application takes into account a user’s machine, tool path, set-up, and material to offer tailored, specific speeds and feed parameters to the tools they are using.

How to Begin With Machining Advisor Pro

This section will provide a detailed breakdown of Machining Advisor Pro, moving along step-by-step throughout the entire process of determining your tailored running parameters.

Register Quickly on Desktop or Mobile

To begin with Machining Advisor Pro, start by accessing its web page on the Harvey Performance Company website, or use the mobile version by downloading the application from the App Store or Google Play.

Whether you are using Machining Advisor Pro from the web or your mobile device, machinists must first create an account. The registration process will only need to be done once before you will be able to log into Machining Advisor Pro on both the mobile and web applications immediately.

machining advisor pro

Simply Activate Your Account

The final step in the registration process is to activate your account. To do this, simply click the activation link in the email that was sent to the email address used when registering. If you do not see the email in your inbox, we recommend checking your spam folders or company email filters. From here, you’re able to begin using MAP.

Using Machining Advisor Pro

A user’s experience will be different depending on whether they’re using the web or mobile application. For instance, after logging in, users on the web application will view a single page that contains the Tool, Material, Operation, Machine, Parameter, and Recommendation sections.

machining advisor pro

On the mobile application, however, the “Input Specs” section is immediately visible. This is a summary of the Tool, Material, Operation, and Machine sections that allow a user to review and access any section. Return to this screen at any point by clicking on the gear icon in the bottom left of the screen.

machining advisor pro

Identify Your Helical Tool

To get started generating your running parameters, specify the Helical Solutions tool that you are using. This can be done by entering the tool number into the “Tool #” input field (highlighted in red below). As you type the tool number, MAP will filter through Helical’s 4,800-plus tools to begin identifying the specific tool you are looking for.

machining advisor pro

Once the tool is selected, the “Tool Details” section will populate the information that is specific to the chosen tool. This information will include the type of tool chosen, its unit of measure, profile, and other key dimensional attributes.

Select the Material You’re Working In

Once your tool information is imported, the material you’re working in will need to be specified. To access this screen on the mobile application, either swipe your screen to the left or click on the “Material” tab seen at the bottom of the screen. You will move from screen to screen across each step in the mobile application by using the same method.

In this section, there are more than 300 specific material grades and conditions available to users. The first dropdown menu will allow you to specify the material you are working in. Then, you can choose the subgroup of that material that is most applicable to your application. In some cases, you will also need to choose a material condition. For example, you can select from “T4” or “T6” condition for 6061 Aluminum.

Machining Advisor Pro provides optimized feeds and speeds that are specific to your application, so it is important that the condition of your material is selected.

Pick an Operation

The next section of MAP allows the user to define their specific operation. In this section, you will define the tool path strategy that will be used in this application. This can be done by either selecting the tool path from the dropdown menu or clicking on “Tool Path Info” for a visual breakdown and more information on each available toolpath.

Tailor Parameters to Your Machine’s Capabilities

The final section on mobile, and the fourth web section, is the machine section. This is where a user can define the attributes of the machine that you are using. This will include the Max RPM, Max IPM, Spindle, Holder, and work holding security. Running Parameters will adjust based on your responses.

Access Machining Advisor Pro Parameters

Once the Tool, Material, Operation, and Machine sections are populated there will be enough information to generate the initial parameters, speed, and feed. To access these on the mobile app, either swipe left when on the machine tab or tap on the “Output” tab on the bottom menu.

Please note that these are only initial values. Machining Advisor Pro gives you the ability to alter the stick out, axial depth of cut, and radial depth of cut to match the specific application. These changes can either be made by entering the exact numeric value, the % of cutter diameter, or by altering the slider bars. You are now able to lock RDOC or ADOC while adjusting the other depth of cut, allowing for more customization when developing parameters.

machining advisor pro

The parameters section also offers a visual representation of the portion of the tool that will be engaged with the materials as well as the Tool Engagement Angle.

MAP’s Recommendations

At this point, you can now review the recommended feeds and speeds that Machining Advisor Pro suggests based on the information you have input. These optimized running parameters can then be further refined by altering the speed and feed percentages.

machining advisor pro recommendation

Machining Advisor Pro recommendations can be saved by clicking on the PDF button that is found in the recommendation section on both the web and mobile platforms. This will automatically generate a PDF of the recommendations, allowing you to print, email, or share with others.

Machining Advisor Pro Summarized

The final section, exclusive to the mobile application, is the “Summary” section. To access this section, first tap on the checkmark icon in the bottom menu. This will open a section that is similar to the “Input Specs” section, which will give you a summary of the total parameter outputs. If anything needs to change, you can easily jump to each output item by tapping on the section you need to adjust.

machining advisor pro mobile

This is also where you would go to reset the application to clear all of the inputs and start a new setup. On the web version, this button is found in the upper right-hand corner and looks like a “refresh” icon on a web browser.

Contact Us

For the mobile application, we have implemented an in-app messaging service. This was done to give the user a tool to easily communicate any question they have about the application from within the app. It allows the user to not only send messages, but to also include screenshots of what they are seeing! This can be accessed by clicking on the “Contact Us” option in the same hamburger menu that the Logout and Help & Tips are found.

Click this link to sign up today!

Contouring Considerations

What is Contouring?

Contouring a part means creating a fine finish on an irregular or uneven surface. Dissimilar to finishing a flat or even part, cnc contouring involves the finishing of a rounded, curved, or otherwise uniquely shaped part.

CNC Contouring & 5-Axis Machining

5-axis machines are particularly suitable for contouring applications. Because contouring involves the finishing of an intricate or unique part, the multiple axes of movement in play with 5-axis Machining allow for the tool to access tough-to-reach areas, as well as follow intricate tool paths.

Recent  Advances

Advanced CAM software can now write the G-Code (the step-by-step program needed to create a finished part) for a machinists application, which has drastically simplified contouring applications. Simply, rather than spend several hours writing the code for an application, the software now handles this step. Despite these advances, most young machinists are still required to write their own G-Codes early on in their careers to gain valuable familiarity with the machines and their abilities. CAM software, for many, is a luxury earned with time.

Benefits of Advanced CAM Software

Increased Time Savings
Because contouring requires very specific tooling movements and rapidly changing cutting parameters, ridding machinists of the burden of writing their own complex code can save valuable prep time and reduce machining downtime.

Reduced Cycle Times
Generated G-Codes can cut several minutes off of a cycle time by removing redundancies within the application. Rather than contouring an area of the part that does not require it, or has been machined already, the CAM Software locates the very specific areas that require machining time and attention to maximize efficiency.

Improved Consistency
CAM Programs that are packaged with CAD Software such as SolidWorks are typically the best in terms of consistency and ability to handle complex designs. While the CAD Software helps a machinist generate the part, the CAM Program tells a machine how to make it.

Proper Tips

Utilize Proper Cut Depths

Prior to running a contouring operation, an initial roughing cut is taken to remove material in steps on the Z-axis so to leave a limited amount of material for the final contouring pass. In this step, it’s pivotal to leave the right amount of material for contouring — too much material for the contouring pass can result in poor surface finish or a damaged part or tool, while too little material can lead to prolonged cycle time, decreased productivity and a sub par end result.

CNC Contouring planes

The contouring application should remove from .010″ to 25% of the tool’s cutter diameter. During contouring, it’s possible for the feeds to decrease while speeds increases, leading to a much smoother finish. It is also important to keep in mind that throughout the finishing cut, the amount of engagement between the tool’s cutting edge and the part will vary regularly – even within a single pass.

Use Best Suited Tooling

Ideal tool selection for contouring operations begins by choosing the proper profile of the tool. A large radius or ball profile is very often used for this operation because it does not leave as much evidence of a tool path. Rather, they effectively smooth the material along the face of the part. Undercutting End Mills, also known as lollipop cutters, have spherical ball profiles that make them excellent choices for contouring applications. Harvey Tool’s 300° Reduced Shank Undercutting End Mill, for example, features a high flute count to benefit part finish for light cut depths, while maintaining the ability to reach tough areas of the front or back side of a part.

CNC Contouring ball end mill

Fact-Check G-Code

While advanced CAM Software will create the G-Code for an application, saving a machinist valuable time and money, accuracy of this code is still vitally important to the overall outcome of the final product. Machinists must look for issues such as wrong tool call out, rapids that come too close to the material, or even offsets that need correcting. Failure to look G-Code over prior to beginning machining can result in catastrophic machine failure and hundreds of thousands of dollars worth of damage.

Inserting an M01 – or a notation to the machine in the G-Code to stop and await machinist approval before moving on to the next step – can help a machinist to ensure that everything is approved with a next phase of an operation, or if any redundancy is set to occur, prior to continuation.

Contouring Summarized

CNC contouring is most often used in 5-axis machines as a finishing operation for uniquely shaped or intricate parts. After an initial roughing pass, the contouring operation – done most often with Undercutting End Mills or Ball End Mills, removes anywhere from .010″ to 25% of the cutter diameter in material from the part to ensure proper part specifications are met and a fine finish is achieved. During contouring, cut only at recommended depths, ensure that G-Code is correct, and use tooling best suited for this operation.

The Advances of Multiaxis Machining

CNC Machine Growth

As the manufacturing industry has developed, so too have the capabilities of machining centers. CNC Machines are constantly being improved and optimized to better handle the requirements of new applications. Perhaps the most important way these machines have improved over time is in the multiple axes of direction they can move, as well as orientation. For instance, a traditional 3-axis machine allows for movement and cutting in three directions, while a 2.5-axis machine can move in three directions but only cut in two. The possible number of axes for a multiaxis machine varies from 4 to 9, depending on the situation. This is assuming that no additional sub-systems are installed to the setup that would provide additional movement. The configuration of a multiaxis machine is dependent on the customer’s operation and the machine manufacturer.

Multiaxis Machining

With this continuous innovation has come the popularity of multiaxis machines – or CNC machines that can perform more than three axes of movement (greater than just the three linear axes X, Y, and Z). Additional axes usually include three rotary axes, as well as movement abilities of the table holding the part or spindle in place. Machines today can move up to 9 axes of direction.

https://www.instagram.com/p/BdssKBsg0Sa/

Multiaxis machines provide several major improvements over CNC machines that only support 3 axes of movement. These benefits include:

  • Increasing part accuracy/consistency by decreasing the number of manual adjustments that need to be made.
  • Reducing the amount of human labor needed as there are fewer manual operations to perform.
  • Improving surface finish as the tool can be moved tangentially across the part surface.
  • Allowing for highly complex parts to be made in a single setup, saving time and cost.

9-Axis Machine Centers

The basic 9-axis naming convention consists of three sets of three axes.

multiaxis machining

Set One

The first set is the X, Y, and Z linear axes, where the Z axis is in line with the machine’s spindle, and the X and Y axes are parallel to the surface of the table. This is based on a vertical machining center. For a horizontal machining center, the Z axis would be aligned with the spindle.

Set Two

The second set of axes is the A, B, and C rotary axes, which rotate around the X, Y, and Z axes, respectively. These axes allow for the spindle to be oriented at different angles and in different positions, which enables tools to create more features, thereby decreasing the number of tool changes and maximizing efficiency.

Set Three

The third set of axes is the U, V, and W axes, which are secondary linear axes that are parallel to the X, Y, and Z axes, respectively. While these axes are parallel to the X, Y, and Z axes, they are managed by separate commands. The U axis is common in a lathe machine. This axis allows the cutting tool to move perpendicular to the machine’s spindle, enabling the machined diameter to be adjusted during the machining process.

The Growing Industry of Multiaxis Machining

In summary, as the manufacturing industry has grown, so too have the abilities of CNC Machines. Today, tooling can move across nine different axes, allowing for the machining of more intricate, precise, and delicate parts. Additionally, this development has worked to improve shop efficiency by minimizing manual labor and creating a more perfect final product.

Introducing Machining Advisor Pro

ROWLEY, MA (February 1, 2018) – Harvey Performance Company is proud to announce the release of Machining Advisor Pro (MAP), a tool designed to quickly, seamlessly, and accurately deliver recommended running parameters to machinists using Helical Solutions end mills. This web-based tool works within the capability of a machinists’ machine, tool, and set-up to offer tailored, specific speeds and feed parameters.

MAP is the new and improved version of the Helical Milling Advisor. In style, simplicity, and ease of access, Machining Advisor Pro delivers what the previous tool lacked. Harvey Performance Company engineers have worked for several months to develop a better product – a unique tool that the machining industry could fully rely on.

Machining Advisor Pro (MAP) Highlights

  • New and improved interface for stylistic simplicity and user interaction
  • Works within the capability of a machine, tool, and set-up
  • Optimized for Helical Solutions end mills
  • Provides a PDF summary of recommended parameters to print or save for later use

“This type of tool has the potential to change our customers’ way of life,” said Harvey Performance Company Senior Vice President of Sales Jerry Gleisner. “Our first goal has long been to make our customers more profitable. Feeling confident in your machining parameters, and getting those parameters quickly, is paramount for shop success.”

To get started, please visit www.machiningadvisorpro.com.

http://www.helicaltool.com/cms/MachiningAdvisorPro_415.aspx

Introduction to High Efficiency Milling

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear I Intro to Trochoidal Milling


High Efficiency Milling (HEM) is a strategy that is rapidly gaining popularity in the metalworking industry. Most CAM packages now offer modules to generate HEM toolpaths, each with their own proprietary name. In these packages, HEM can also be known as Dynamic Milling or High Efficiency Machining, among others. HEM can result in profound shop efficiency, extended tool life, greater performance, and cost savings. High performance end mills designed to achieve higher speeds and feeds will help machinists to reap the full benefits of this popular machining method.

High Efficiency Milling Defined

HEM is a milling technique for roughing that utilizes a lower Radial Depth of Cut (RDOC) and a higher Axial Depth of Cut (ADOC). This spreads wear evenly across the cutting edge, dissipates heat, and reduces the chance of tool failure.

This strategy differs from traditional or conventional milling, which typically calls for a higher RDOC and lower ADOC. Traditional milling causes heat concentrations in one small portion of the cutting tool, expediting the tool wear process. Further, while Traditional Milling call for more axial passes, HEM toolpaths use more passes radially.

For more information on optimizing Depth of Cut in relation to HEM, see Diving into Depth of Cut: Peripheral, Slotting & HEM Approaches.

High Efficiency Milling

Built-In CAM Applications

Machining technology has been advancing with the development of faster, more powerful machines. In order to keep up, many CAM applications have developed built-in features for HEM toolpaths, including Trochoidal Milling, a method of machining used to create a slot wider than the cutting tool’s cutting diameter.

HEM is largely based on the theory surrounding Radial Chip Thinning, or the phenomenon that occurs with varying RDOC, and relates to the chip thickness and feed per tooth. HEM adjusts parameters to maintain a constant load on the tool through the entire roughing operation, resulting in more aggressive material removal rates (MRR). In this way, HEM differs from other high performance toolpaths, which involve different methods for achieving significant MRR.

Click Here to learn More About The Efficiency-Boosting Power of High Efficiency Milling

Virtually any CNC machine can perform HEM – the key is a fast CNC controller. When converting from a regular program to HEM, about 20 lines of HEM code will be written for every line of regular code. A fast processor is needed to look ahead for the code, and keep up with the operation. In addition, advanced CAM software that intelligently manages tool load by adjusting the IPT and RDOC is also needed.

High Efficiency Milling Case Studies

The following example shows the result a machinist had when using a Helical Solutions HEV-5 tool to perform an HEM operation in 17-4PH stainless steel. While performing HEM, this ½” diameter, 5-flute end mill engaged the part just 12% radially, but 100% axially. This machinist was able to reduce tool wear and was able to complete 40 parts with a single tool, versus only 15 with a traditional roughing toolpath.

traditional roughing vs HEM comparison

The effect of HEM on a roughing application can also be seen in the case study below. While machining 6061 aluminum with Helical’s H45AL-C-3, a 1/2″, 3-flute rougher, this machinist was able to finish a part in 3 minutes, versus 11 minutes with a traditional roughing toolpath. One tool was able to make 900 parts with HEM, a boost of more than 150% over the traditional method.

traditional roughing vs HEM comparison

Importance of Tooling to HEM

Generally speaking, HEM is a matter of running the tool – not the tool itself. Virtually every tool can perform HEM, but using tooling built to withstand the rigors of HEM will result in greater success. While you can run a marathon in any type of shoes, you’d likely get the best results and performance from running shoes.

HEM is often regarded as a machining method for larger diameter tooling because of the aggressive MRR of the operation and the fragility of tooling under 1/8” in size. However, miniature tooling can be used to achieve HEM, too.

Using miniature tooling for HEM can create additional challenges that must be understood prior to beginning your operation.

Best Tools for HEM:

  • High flute count for increased MRR.
  • Large core diameter for added strength.
  • Tool coating optimized for the workpiece material for increased lubricity.
  • Variable Pitch/Variable Helix design for reduced harmonics.

Key Takeaways

HEM is a machining operation which continues to grow in popularity in shops worldwide. A milling technique for roughing that utilizes a lower RDOC and higher ADOC than traditional milling, HEM distributes wear evenly across the cutting edge of a tool, reducing heat concentrations and slowing the rate of tool wear. This is especially true in tooling best suited to promote the benefits of HEM.

High Speed Machining vs. HEM

The following is just one of several blog posts relevant to High Efficiency Milling and High Speed Machining. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

Introduction to High Efficiency Milling I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear I Intro to Trochoidal Milling


Advancements in the metalworking industry have led to new, innovative ways of increasing productivity. One of the most popular ways of doing so (creating many new buzzwords in the process) has been the discovery of new, high-productivity toolpaths. Terms like trochoidal milling, high speed machining, adaptive milling, feed milling, and High Efficiency Milling are a handful of the names given to these cutting-edge techniques.

With multiple techniques being described with somewhat similar terms, there is some confusion as to what each is referring to. High Efficiency Milling (HEM) and High Speed Machining (HSM) are two commonly used terms and techniques that can often be confused with one another. Both describe techniques that lead to increased material removal rates and boosted productivity.  However, the similarities largely stop there.

High Speed Machining

High speed machining is often used as an umbrella term for all high productivity machining methods including HEM. However, HEM and HSM are unique, separate machining styles. HSM encompasses a technique that results in higher production rates while using a much different approach to depth of cut and speeds and feeds. While certain HEM parameters are constantly changing, HSM uses constant values for the key parameters. A very high spindle speed paired with much lighter axial depths of cut results in a much higher allowable feed rate. This is also often referred to as feed milling. Depths of cut involve a very low axial and high radial components. The method in general is often thought of as z-axis slice machining, where the tool will step down a fixed amount, machine all it can, then step down the next fixed amount and continue the cycle.

High speed machining techniques can also be applied to contoured surfaces using a ball profile or corner radius tool. In these situations, the tool is not used in one plane at a time, and will follow the 3 dimensional curved surfaces of a part. This is extremely effective for using one tool to bring a block of material down to a final (or close to final) shape using high resultant material removal rates paired with the ability to create virtually any shape.

High Efficiency Milling

HEM has evolved from a philosophy that takes advantage of the maximum amount of work that a tool can perform. Considerations for chip thinning and feed rate adjustment are used so that each cutting edge of a tool takes a consistent chip thickness with each rotation, even at varying radial depths of cut and while interpolating around curves. This allows machinists the opportunity to utilize a radial depth of cut that more effectively uses the full potential of a given tool. Utilizing the entire available length of cut allows tool wear to be spread over a greater area, prolonging tool life and lowering production costs. Effectively, HEM uses the depths associated with a traditional finishing operation but boosts speeds and feeds, resulting in much higher material removal rates (MRR). This technique is typically used for hogging out large volumes of material in roughing and pocketing applications.

In short, HEM is somewhat similar to an accelerated finishing operation in regards to depth of cut, while HSM is more of a high feed contouring operation. Both can achieve increased MRR and higher productivity when compared to traditional methods. While HSM can be seen as an umbrella term for all high efficiency paths, HEM has grown in popularity to a point where it can be classified on its own. Classifying each separately takes a bit of clarification, showing they each have power in certain situations.

Check out the video below to see HEM in action!

https://www.instagram.com/p/BV7voCVB4Ah/?taken-by=helicaltools

Most Common Methods of Tool Entry

Tool entry is pivotal to machining success, as it’s one of the most punishing operations for a cutter. Entering a part in a way that’s not ideal for the tool or operation could lead to a damaged part or exhausted shop resources. Below, we’ll explore the most common part entry methods, as well as tips for how to perform them successfully.


Pre-Drilled Hole

Pre-drilling a hole to full pocket depth (and 5-10% larger than the end mill diameter) is the safest practice of dropping your end mill into a pocket. This method ensures the least amount of end work abuse and premature tool wear.

tool entry predrill


Helical Interpolation

Helical Interpolation is a very common and safe practice of tool entry with ferrous materials. Employing corner radius end mills during this operation will decrease tool wear and lessen corner breakdown. With this method, use a programmed helix diameter of greater than 110-120% of the cutter diameter.

helical interpolation


Ramping-In

This type of operation can be very successful, but institutes many different torsional forces the cutter must withstand. A strong core is key for this method, as is room for proper chip evacuation. Using tools with a corner radius, which strengthen its cutting portion, will help.

ramping

Suggested Starting Ramp Angles:

Hard/Ferrous Materials: 1°-3°

Soft/Non-Ferrous Materials: 3°-10°

For more information on this popular tool entry method, see Ramping to Success.


Arcing

This method of tool entry is similar to ramping in both method and benefit. However, while ramping enters the part from the top, arcing does so from the side. The end mill follows a curved tool path, or arc, when milling, this gradually increasing the load on the tool as it enters the part. Additionally, the load put on the tool decreases as it exits the part, helping to avoid shock loading and tool breakage.

arching with end mill


Straight Plunge

This is a common, yet often problematic method of entering a part. A straight plunge into a part can easily lead to tool breakage. If opting for this machining method, however, certain criteria must be met for best chances of machining success. The tool must be center cutting, as end milling incorporates a flat entry point making chip evacuation extremely difficult. Drill bits are intended for straight plunging, however, and should be used for this type of operation.

tool entry


Straight Tool Entry

Straight entry into the part takes a toll on the cutter, as does a straight plunge. Until the cutter is fully engaged, the feed rate upon entry is recommended to be reduced by at least 50% during this operation.

tool entry


Roll-In Tool Entry

Rolling into the cut ensures a cutter to work its way to full engagement and naturally acquire proper chip thickness. The feed rate in this scenario should be reduced by 50%.

tool entry