Optimizing Material Removal Rates

 What is the Material Removal Rate?

Material Removal Rate (MRR), otherwise known as Metal Removal Rate, is the measurement for how much material is removed from a part in a given period of time. Every shop aims to create more parts in a shorter period of time, or to maximize money made while also minimizing money spent. One of the first places these machinists turn is to MRR, which encompasses Radial Depth of Cut (RDOC), Axial Depth of Cut (ADOC), and Inches Per Minute (IPM). If you’re aiming to boost your shop’s efficiency, increasing your MRR even minimally can result in big gains.

Calculating MRR

The calculation for Material Removal Rate is RDOC x ADOC x Feed Rate. As an example, if your RDOC is .500″, your ADOC is .100″ and your Feed Rate is 41.5 inches per minute, you’d calculate MRR the following way:

MRR = .500″ x .100″ x 41.5 in/min = 2.08 cubic inches per minute.

Optimizing Efficiency

A machinists’ depth of cut strategy is directly related to the Material Removal Rate. Using the proper RDOC and ADOC combination can boost MRR rates, shaving minutes off of cycle times and opening the door for greater production. Utilizing the right approach for your tool can also result in prolonged tool life, minimizing the rate of normal tool wear. Combining the ideal feed rate with your ADOC and RDOC to run at your tool’s “sweet spot” can pay immediate and long term dividends for machine shops.

The following chart illustrates how a 1/2″, 5-flute tool will perform in Steel when varying ADOC and RDOC parameters are used. You can see that by varying the ADOC and RDOC, a higher feed rate is achievable, and thus, a higher MRR. In this case, pairing a high ADOC, low RDOC approach with an increased feed rate was most beneficial. This method has become known as High Efficiency Milling.

Axial Depth of Cut Radial Depth of Cut Feed Rate Material Removal Rate
 .125″  .200″ 19.5 IPM  .488 in.³/min.
.250″ .150″ 26.2 IPM .983 in.³/min.
.500″ .100″ 41.5 IPM 2.08 in.³/min.
.750″ .050″ 89.2 IPM 3.35 in.³/min.
1.00″ .025″ 193 IPM 4.83 in.³/min.

High Efficiency Milling

High Efficiency Milling (HEM) is a milling technique for roughing that utilizes a lower RDOC and a higher ADOC strategy. This spreads wear evenly across the cutting edge, dissipates heat, and reduces the chance of tool failure. This results in a greater ability to increase your MRR, while maintaining and even prolonging tool life versus traditional machining methods.

High Efficiency Milling

The following video provides an excellent look into the efficiency-boosting power of HEM operations. By following the MRR calculation, we can see that @jcast.cnc will have experienced 40.6 cu.in.³ MRR.

MRR = .145″ x .800″ x 350 in./min. = 40.6 in.³/min.

Obviously, with higher MRR’s, chip evacuation becomes vitally important as more chips are evacuated in a shorter period of time. Utilizing a tool best suited for the operation – in terms of quality and flute count – will help to alleviate the additional workload. Additionally, a tool coating optimized for your workpiece material can significantly help with chip packing. Further, compressed air or coolant can help to properly remove chips from the tool and workpiece.

In conclusion, optimizing workplace efficiency is vital to sustained success and continued growth in every business. This is especially true in machine shops, as even a very minor adjustment in operating processes can result in a massive boost in company revenue. Proper machining methods will boost MRR, minimize cycle times, prolong tool life, and maximize shop output.

What You Need to Know About Coolant for CNC Machining

Coolant in purpose is widely understood – it’s used to temper high temperatures common during machining, and aid in chip evacuation. However, there are several types and styles, each with its own benefits and drawbacks. Knowing which coolant – or if any – is appropriate for your job can help to boost your shop’s profitability, capability, and overall machining performance.

Coolant or Lubricant Purpose

Coolant and lubricant are terms used interchangeably, though not all coolants are lubricants. Compressed air, for example, has no lubricating purpose but works only as a cooling option. Direct coolants – those which make physical contact with a part – can be compressed air, water, oil, synthetics, or semi-synthetics. When directed to the cutting action of a tool, these can help to fend off high temperatures that could lead to melting, warping, discoloration, or tool failure. Additionally, coolant can help evacuate chips from a part, preventing chip recutting and aiding in part finish.

Coolant can be expensive, however, and wasteful if not necessary. Understanding the amount of coolant needed for your job can help your shop’s efficiency.

Types of Coolant Delivery

Coolant is delivered in several different forms – both in properties and pressure. The most common forms include air, mist, flood coolant, high pressure, and Minimum Quantity Lubricant (MQL). Choosing the wrong pressure can lead to part or tool damage, whereas choosing the wrong amount can lead to exhausted shop resources.

Air: Cools and clears chips, but has no lubricity purpose. Air coolant does not cool as efficiently as water or oil-based coolants. For more sensitive materials, air coolant is often preferred over types that come in direct contact with the part. This is true with many plastics, where thermal shock – or rapid expansion and contraction of a part – can occur if direct coolant is applied.

Mist: This type of low pressure coolant is sufficient for instances where chip evacuation and heat are not major concerns. Because the pressure applied is not great in a mist, the part and tool do not undergo additional stresses.

Flood: This low pressure method creates lubricity and flushes chips from a part to avoid chip recutting, a common and tool damaging occurrence.

High Pressure: Similar to flood coolant, but delivered in greater than 1,000 psi. This is a great option for chip removal and evacuation, as it blasts the chips away from the part. While this method will effectively cool a part immediately, the pressure can be high enough to break miniature diameter tooling. This method is used often in deep pocket or drilling operations, and can be delivered via coolant through tooling, or coolant grooves built into the tool itself. Harvey Tool offers Coolant Through Drills and Coolant Through Threadmills.

Minimum Quantity Lubricant (MQL): Every machine shop focuses on how to gain a competitive advantage – to spend less, make more, and boost shop efficiency. That’s why many shops are opting for MQL, along with its obvious environmental benefits. Using only the necessary amount of coolant will dramatically reduce costs and wasted material. This type of lubricant is applied as an aerosol, or an extremely fine mist, to provide just enough coolant to perform a given operation effectively.

To see all of these coolant styles in action, check out the video below from our partners at CimQuest.

In Conclusion

Coolant is all-too-often overlooked as a major component of a machining operation. The type of coolant or lubricant, and the pressure at which it’s applied, is vital to both machining success and optimum shop efficiency. Coolant can be applied as compressed air, mist, in a flooding property, or as high pressure. Certain machines also are MQL able, meaning they can effectively restrict the amount of coolant being applied to the very amount necessary to avoid being wasteful.

3 Steps to Shutting Up Tool Chatter

Cutting tools undergo a great deal of force during the machining process, which cause vibrations – also known as chatter or harmonics. Avoiding these vibrations entirely is not possible, though minimizing them is pivotal for machining success. Vibrations become damaging when proper machining steps are not followed. This leads to strong, part-ruining chatter. In these situations, parts have what is known as “chatter marks,” or clear vibration marks along the surface of a part. Tools can experience an increased rate of wear due to excess vibration.

Tool Chatter can be kept at bay by following three simple, yet often overlooked steps:

1. Select the Right Tool for Your Job

It seems elementary, but selecting the best tool for your application can be confusing. With so many different geometric styles for tooling – overall length, length of cut, reach, number of flutes – it can sometimes be difficult to narrow down one specific tool for your job. Oftentimes, machinists opt for general purpose tooling that can perform a variety of operations, overlooking the option that’s optimized for one material and job.

Opting for Material Specific Tooling is helpful, as each material has different needs. For example, steels are machined differently than aluminum materials. Everything from the chip size, to chip evacuation, is different. Variable Helix or Variable Pitch designs help to minimize chatter by reducing harmonics, which are caused by the cutting edge having repeated contact with the workpiece. In order to reduce harmonics, the time intervals between flute contact with the workpiece are varied.

Overall length is another important factor to consider when deciding on a tool for your job. The more overhang, or length the tool hangs from the spindle, the less secure the spindle-to-tool connection is, and the more vibration. Ensuring that your tool is only as long as needed for your operation is important to minimizing chatter and harmonics. If machining deep within a part, opt for reached tooling or an extended reach tool holder to help solidify the connection.

2. Ensure a Secure Connection

When it comes to secure tool holding approaches, both the tool shank and the collet are important. A loose tool, unsurprisingly, has more ability to move, or vibrate, during machining. With this in mind, Helical offers Shank Configurations to help the connection including the ToughGRIP Shank, which replaces a smooth, mirror-like surface with a rougher, coarser one for increased friction. Helical is also a licensee of the HAIMER Safe-Lock™, added grooves on the shank of a tool that work opposite of the spindle rotation, securely fastening the tool in place.

Machinists must also know the different types of collets available to them to identify if a better solution might be necessary. For example, Hydraulic Tool Holders or Shrink Fit Tool Holders promote a stronger connection than a Mechanical Spindle Tightening method.

For more information, see Key Tool Holding Considerations

3. Choose a Chatter Minimizing Strategy

How a tool is run can mean the difference between stellar job results and a ruined part. This includes both the parameters a tool is run at, as well as the direction by which it rotates – either a Conventional Milling or a Climb Milling technique.

Conventional Milling

In this method, the chip width starts from zero and increases gradually, causing more heat to diffuse into the workpiece. This can lead to work hardening, creating more headaches for a machinist.

tool chatter

Climb Milling

Most modern machine shops will use a climb milling technique, or when the chip width starts at its maximum and decreases during the cut. Climb Milling will offer a more consistent cut than traditional methods, and puts less stress on the tool. Think of it like weight lifting – doing the heavy lifting will be easiest at the beginning of your workout. Similarly, a cut in which the thickest chip is removed first helps the tool maintain its strength. Because the chip cutting process is more swift, vibrations are minimized.

decrease tool chatter

For more information, see Climb Milling Vs. Conventional Milling

In Conclusion

Vibrations are unavoidable during the machining process, but minimizing them can mean the difference between successful machining and scrapped parts. Following three simple rules can help to keep your chatter and harmonics under control, including: Selecting the right tool, ensuring a secure machine-tool connection, and using it in a climb milling strategy. Both Harvey Tool and Helical Solutions have tools that can help, including shank modifications and Variable Helix or Variable Pitch end mills.

Speeds and Feeds 101

Understanding Speeds and Feed Rates

NOTE: This article covers speeds and feed rates for milling tools, as opposed to turning tools.

Before using a cutting tool, it is necessary to understand tool cutting speeds and feed rates, more often referred to as “speeds and feeds.” Speeds and feeds are the cutting variables used in every milling operation and vary for each tool based on cutter diameter, operation, material, etc. Understanding the right speeds and feeds for your tool and operation before you start machining is critical.

It is first necessary to define each of these factors. Cutting speed, also referred to as surface speed, is the difference in speed between the tool and the workpiece, expressed in units of distance over time known as SFM (surface feet per minute). SFM is based on the various properties of the given material. Speed, referred to as Rotations Per Minute (RPM) is based off of the SFM and the cutting tool’s diameter.

While speeds and feeds are common terms used in the programming of the cutter, the ideal running parameters are also influenced by other variables. The speed of the cutter is used in the calculation of the cutter’s feed rate, measured in Inches Per Minute (IPM). The other part of the equation is the chip load. It is important to note that chip load per tooth and chip load per tool are different:

speeds and feeds formula

 

  • Chip load per tooth is the appropriate amount of material that one cutting edge of the tool should remove in a single revolution. This is measured in Inches Per Tooth (IPT).
  • Chip load per tool is the appropriate amount of material removed by all cutting edges on a tool in a single revolution. This is measured in Inches Per Revolution (IPR).

A chip load that is too large can pack up chips in the cutter, causing poor chip evacuation and eventual breakage. A chip load that is too small can cause rubbing, chatter, deflection, and a poor overall cutting action.

Material Removal Rate

Material Removal Rate (MRR), while not part of the cutting tool’s program, is a helpful way to calculate a tool’s efficiency. MRR takes into account two very important running parameters: Axial Depth of Cut (ADOC), or the distance a tool engages a workpiece along its centerline, and Radial Depth of Cut (RDOC), or the distance a tool is stepping over into a workpiece.

The tool’s depth of cuts and the rate at which it is cutting can be used to calculate how many cubic inches per minute (in3/min) are being removed from a workpiece. This equation is extremely useful for comparing cutting tools and examining how cycle times can be improved.

speeds and feeds

Speeds and Feeds In Practice

While many of the cutting parameters are set by the tool and workpiece material, the depths of cut taken also affect the feed rate of the tool. The depths of cuts are dictated by the operation being performed – this is often broken down into slotting, roughing, and finishing, though there are many other more specific types of operations.

Many tooling manufacturers provide useful speeds and feeds charts calculated specifically for their products. For example, Harvey Tool provides the following chart for a 1/8” diameter end mill, tool #50308. A customer can find the SFM for the material on the left, in this case 304 stainless steel. The chip load (per tooth) can be found by intersecting the tool diameter on the top with the material and operations (based on axial and radial depth of cut), highlighted in the image below.

The following table calculates the speeds and feeds for this tool and material for each operation, based on the chart above:

speeds and feeds

Other Important Considerations

Each operation recommends a unique chip load per the depths of cut. This results in various feed rates depending on the operation. Since the SFM is based on the material, it remains constant for each operation.

Spindle Speed Cap

As shown above, the cutter speed (RPM) is defined by the SFM (based on material) and the cutter diameter. With miniature tooling and/or certain materials the speed calculation sometimes yields an unrealistic spindle speed. For example, a .047” cutter in 6061 aluminum (SFM 1,000) would return a speed of ~81,000 RPM. Since this speed is only attainable with high speed air spindles, the full SFM of 1,000 may not be achievable. In a case like this, it is recommended that the tool is run at the machine’s max speed (that the machinist is comfortable with) and that the appropriate chip load for the diameter is maintained. This produces optimal parameters based on the machine’s top speed.

Effective Cutter Diameter

On angled tools the cutter diameter changes along the LOC. For example, Helical tool #07001, a flat-ended chamfer cutter with helical flutes, has a tip diameter of .060” and a major/shank diameter of .250”. In a scenario where it was being used to create a 60° edge break, the actual cutting action would happen somewhere between the tip and major/shank diameters. To compensate, the equation below can be used to find the average diameter along the chamfer.

Using this calculation, the effective cutter diameter is .155”, which would be used for all Speeds and Feeds calculations.

Non-linear Path

Feed rates assume a linear motion. However, there are cases in which the path takes an arc, such as in a pocket corner or a circular interpolation. Just as increasing the DOC increases the angle of engagement on a tool, so does taking a nonlinear path. For an internal corner, more of the tool is engaged and, for an external corner, less is engaged. The feed rate must be appropriately compensated for the added or lessened engagement on the tool.

non-linear path

This adjustment is even more important for circular interpolation. Take, for example, a threading application involving a cutter making a circular motion about a pre-drilled hole or boss. For internal adjustment, the feed rate must be lowered to account for the additional engagement. For external adjustment, the feed rate must be increased due to less tool engagement.

adjusted internal feed

Take this example, in which a Harvey Tool threadmill #70094, with a .370” cutter diameter, is machining a 9/16-18 internal thread in 17-4 stainless steel. The calculated speed is 2,064 RPM and the linear feed is 8.3 IPM. The thread diameter of a 9/16 thread is .562”, which is used for the inner and outer diameter in both adjustments. After plugging these values into the equations below, the adjusted internal feed becomes 2.8 IMP, while the external feed becomes 13.8 IPM.

adjusted external feed

Click here for the full example.

Conclusion

These calculations are useful guidelines for running a cutting tool optimally in various applications and materials. However, the tool manufacturer’s recommended parameters are the best place to start for initial numbers. After that, it is up to the machinist’s eyes, ears, and experience to help determine the best running parameters, which will vary by set-up, tool, machine, and material.

Click the following links for more information about running parameters for Harvey Tool and Helical products.

Reducing Tool Runout

Tool runout is a given in any machine shop, and can never be 100% avoided. Thus, it is important to establish an acceptable level of runout for any project, and stay within that range to optimize productivity and prolong tool life. Smaller runout levels are always better, but choice of machine and tool holder, stick-out, tool reach, and many other factors all have an influence on the amount of runout in every setup.

Defining Tool Runout

Tool runout is the measurement of how far a cutting tool, holder, or spindle rotates off of its true axis. This can be seen in low quality end mills where the cutting diameter is true to size when measured while stationary, but measures above tolerance while rotating.

The first step to minimizing runout is understanding what individual factors cause runout in every machine setup. Runout is seen in the accuracy of every cutting tool, collet, tool holder, and spindle. Every added connection between a machine and the workpiece it is cutting will introduce a higher level of runout. Each increase can add to the total runout further and further. Steps should be taken with every piece of tooling and equipment to minimize runout for best performance, increased tool life, and quality finished products.

Measuring Runout

Determining the runout of your system is the first step towards finding how to combat it. Runout is measured using an indicator that measures the variation of a tool’s diameter as it rotates. This is done with either a dial/probe indicator or a laser measuring device. While most dial indicators are both portable and easy to use, they are not as accurate as the available laser indicators, and can also make a runout measurement worse by pushing on a tool. This is mostly a concern for miniature and micro-tooling, where lasers should be strictly used due to the tool’s fragile nature.  Most end mill manufacturers recommend using a laser runout indicator in place of a dial indicator wherever possible.

Z-Mike Laser

Z-Mike laser measurement devices are common instruments used to measure levels of tool runout.

Runout should be measured at the point where a tool will be cutting, typically at the end of the tools, or along a portion of the length of cut. A dial indicator may not be plausible in these instances due to the inconsistent shape of a tool’s flutes. Laser measuring devices offer another advantage due to this fact.

High Quality Tools

The amount of runout in each component of a system, as-manufactured, often has a significant impact on the total runout of a given setup. Cutting tools all have a restriction on maximum runout allowed when manufactured, and some can have allowances of .0002” or less. This is often the value that should be strived for in a complete system as well. For miniature tooling down to .001” diameter, this measurement will have to be held to an even smaller value. As the ratio of tool runout to tool diameter becomes larger, threats of tool failure increase. As stated earlier, starting with a tool that has minimal runout is pivotal in keeping the total runout of a system to a minimum. This is runout that cannot be avoided.

Precision Tool Holders

The next step to minimizing runout is ensuring that you are using a high quality, precision tool holder. These often come in the form of shrink-fit, or press-fit tool holders offering accurate and precise tool rotation.  Uniform pressure around the entire circumference of a shank is essential for reducing runout. Set screw based holders should be avoided, as they push the tool off-center with their uneven holding pressure.  Collet-based tool holders also often introduce an extra amount of runout due to their additional components. Each added connection in a tool holding system allows more methods of runout to appear. Shrink-fit and press-fit tool holders are inherently better at minimizing runout due to their fewer components.

tool runout

Included in your tool holding considerations should be machine tool cleanliness. Often, chips can become lodged in the spindle, and cause an obstruction between two high-precision surfaces in the system. Ensuring that your tool holder and spindle are clean and free of chips and debris is paramount when setting up for every job.

Shank Modifications

Apart from equipment itself, many other factors can contribute to an increasing amount of tool runout. These can include how long a tool is, how rigid a machine setup is, and how far a tool is hanging out of its holder.  Shank modifications, along with their methods of tool holding can have a large impact. Often thought of as an older, obsolete technology, Weldon flats are found guilty of adding large amounts of runout in many shops. While many shops still use Weldon flats to ensure a secure grip on their tools, having a set screw pushing a tool to one side can push it off center, yielding very high levels of runout. Haimer Safe Lock™ is another option increasing in popularity that is a much higher performance holding technology. The Safe-Lock™ system is designed with the same tolerances as shrink fit and other high precision tool holders. It is able to minimize runout, while firmly holding a tool in place with no chance of pull-out.

haimer safe lock

The Haimer Safe-Lock™ system is one option to greatly reduce tool runout.

Runout will never be completely eliminated from a machining system. However, steps can (and should) be taken to keep it to a minimum using every method possible. Keeping a tool running true will extend tool life, increase performance, and ultimately save your shop time and money. Runout is a common concern in the metalworking industry, but it is often overlooked when it could be main issue causing part rejections and unacceptable results. Every piece of a machine tool plays a part in the resultant runout, and none should be overlooked.

How To Avoid 4 Major Types of Tool Wear

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

Introduction to High Efficiency Milling I High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I Intro to Trochoidal Milling


Defining Tool Wear

Tool wear is the breakdown and gradual failure of a cutting tool due to regular operation. Every tool will experience tool wear at some point in its life. Excessive wear will show inconsistencies and have unwanted effects on your workpiece, so it is important to avoid tool wear in order to achieve optimal end mill performance. Tool wear can also lead to failure, which in turn can lead to serious damage, rework, and scrapped parts.

tool wear

An example of a tool with no wear

tool wear

An example of a tool with excessive wear

To prolong tool life, identifying and mitigating the various signs of tool wear is key. Both thermal and mechanical stresses cause tool wear, with heat and abrasion being the major culprits. Learning how to identify the most common types of tool wear and what causes them can help machinists remedy issues quickly and extend tool longevity.


Abrasive Wear

The wear land is a pattern of uniform abrasion on the cutting edge of the tool, caused by mechanical abrasion from the workpiece. This dulls the cutting edge of a tool, and can even alter dimensions such as the tool diameter. At higher speeds, excessive heat becomes more of an issue, causing more damage to the cutting edge, especially when an appropriate tool coating is not used.

tool wear

If the wear land becomes excessive or causes premature tool failure, reducing the cutting speed and optimizing coolant usage can help. High Efficiency Milling (HEM) toolpaths can help reduce wear by spreading the work done by the tool over its entire length of cut. This prevents localized wear and will prolong tool life by using the entire cutting edge available.


Chipping

Chipping can be easily identified by a nicked or flaked edge on the cutting tool, or by examining the surface finish of a part. A poor surface finish can often indicate that a tool has experienced some sort of chipping, which can lead to eventual catastrophic tool failure if it is not caught.

tool wear

Chipping is typically caused by excessive loads and shock-loading during operation, but it can also be caused by thermal cracking, another type of tool wear which is explored in further detail below. To counter chipping, ensure the milling operation is completely free of vibration and chatter. Taking a look at the speeds and feeds can also help. Interrupted cuts and repeated part entry can also have a negative impact on a tool. Reducing feed rates for these situations can mitigate the risk of chipping.


Thermal Cracking

Thermal cracking is often identified by cracks in the tool perpendicular to the cutting edge. Cracks form slowly, but they can lead to both chipping and premature tool failure.

tool wear

Thermal cracking, as its name suggests, is caused by extreme temperature fluctuations during milling. Adding a proper coating to an end mill is beneficial in providing heat resistance and reduced abrasion on a tool. HEM toolpaths provide excellent protection against thermal cracking, as these toolpaths spread the heat across the cutting edge of the tool, reducing the overall temperature and preventing serious fluctuations in heat.


Fracture

Fracture is the complete loss of tool usage due to sudden breakage, often as a result of improper speeds and feeds, an incorrect coating, or an inappropriate depth of cut. Tool holder issues or loose work holding can also cause a fracture, as can inconsistencies in workpiece material properties.

tool wear

Photo courtesy of @cubanana___ on Instagram

Adjusting the speeds, feeds, and depth of cut and checking the setup for rigidity will help to reduce fracturing. Optimizing coolant usage can also be helpful to avoid hot spots in materials which can dull a cutting edge and cause a fracture. HEM toolpaths prevent fracture by offering a more consistent load on a tool. Shock loading is reduced, causing less stress on a tool, which lessens the likelihood of breakage and increases tool life.


It is important to monitor tools and keep them in good, working condition to avoid downtime and save money. Wear is caused by both thermal and mechanical forces, which can be mitigated by running with appropriate running parameters and HEM toolpaths to spread wear over the entire length of cut. While every tool will eventually experience some sort of tool wear, the effects can be delayed by paying close attention to speeds and feeds and depth of cut. Preemptive action should be taken to correct issues before they cause complete tool failure.  

Ball Nose Milling Strategy Guide

Ball Nose Milling Without a Tilt Angle

Ball nose end mills are ideal for machining 3-dimensional contour shapes typically found in the mold and die industry, the manufacturing of turbine blades, and fulfilling general part radius requirements. To properly employ a ball nose end mill (with no tilt angle) and gain the optimal tool life and part finish, follow the 2-step process below (see Figure 1).

ball nose

Step One: Calculate Your Effective Cutting Diameter

A ball nose end mill’s Effective Cutting Diameter (Deff) differs from its actual cutting diameter when utilizing an Axial Depth of Cut (ADOC) that is less than the full radius of the ball. Calculating the effective cutting diameter can be done using the chart below that represents some common tool diameters and ADOC combinations or by using the traditional calculation (see Figure 2).

ball nose

ball nose

Step Two: Calculate Your Compensated Speed

Given the new effective cutting diameter a “Compensated Speed” will need to be calculated. If you are using less than the cutter diameter, then its likely your RPM’s will need to be adjusted upward (see Figure 3).

ball nose

KEY
ADOC = Axial Depth of Cut
D = Cutting Diameter
Deff = Effective Cutting Diameter
R = Tool Radius (Dia./2)
RDOC = Radial Depth of Cut
SFM = Surface Feet per Minute
Sc = Compensated Speed


Ball Nose Milling With a Tilt Angle

If possible, it is highly recommended to use ball nose end mills on an incline (ß) to avoid a “0” SFM condition at the center of the tool, thus increasing tool life and part finish (Figure 4). For ball nose optimization (and in addition to tilting the tool), it is highly recommended to feed the tool in the direction of the incline and utilize a climb milling technique.

ball nose

To properly employ a ball nose end mill with a tool angle and gain the most optimal tool life and part finish, follow the 2-step process below.

Step One: Calculate Your Effective Cutting Diameter

The chart below that represents some common effective cutting diameters and ADOCs at a 15º tilt angle. Otherwise, the traditional calculation below may be used (see Figure 5).

ball nose

ball nose

Step Two: Calculate Your Compensated Speed

Given the new effective cutting diameter a compensated speed will need to be calculated. If you are using less than the cutter diameter, then its likely your RPM’s will need to be adjusted upward (see Figure 6).

ball nose

KEY
Deff = Effective Cutting Diameter
SFM = Mfg Recommended Surface Feet per Minute
Sc = Compensated Speed

How to Become a Machinist

Machining is one of the fastest growing occupations in the US, with thousands of open positions listed all across various job boards and websites. Because graduating students are more likely to head to college than join the trades, there is currently a major shortage in the workforce for machinists. As the “Baby Boomer” generation inches closer to retirement, this shortage will only continue to grow. According to American Machinist, nearly 70% of the current machinist workforce is over the age of 45, which means there is a great need for younger workers over the next two decades. The Bureau of Labor Statistics (BLS) is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly an exciting time to start thinking about the available career opportunities in the machining industry.

Getting Started

One of the best things about becoming a machinist is that there is a fairly low barrier to entry level positions. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a 1-2 year apprenticeship. This path generally does not require any experience past a high school education, but prospective machinists are encouraged to take math classes including geometry and trigonometry, and participate in metalworking, drafting, and blueprint reading classes if possible. Chris Metayer, a CNC Operator with Helical Solutions, took this same route to begin his career. “I didn’t know anything about machining when I started, but I trained side by side with other employees. I am a hands-on learner, so it was a perfect learning experience for me.” said Metayer. In the end, most of an entry-level machinists’ learning will be done hands-on in the machine shop while getting paid to learn the craft.

machinist

Others may take a two-year machining-based program at a community college or technical school, where they can learn more advanced skills like Computer Numerical Control (CNC) Machining and Computer Aided Design (CAD) or Computer Aided Manufacturing (CAM) programming.  They would then enter the workforce following the completion of an associate’s degree. These machinists tend to earn higher salaries and are more apt to advance to a management role, but they will also need to pay for the costs of their continued education and will still require some hands-on training before they can jump into their new positions. However, there are added benefits to continuing your education. Jake Barnes, another member of the CNC team at Helical, earned his associates degree in Integrated Manufacturing Technology at Southern Maine Community College, and has worked in various departments since joining Helical. Jake started as a manual grinder, then moved to inspection before landing with the CNC team. “I personally recommend going to a trade school” said Barnes, “You will get exposure to many different classes, which opens up new career opportunities across the industry.”

Some machinists who want to work in more advanced industries like aerospace or tech may attend a four-year college and take advanced courses in calculus, physics, and engineering. All of these options are widely accepted in the machining community, so it is more a matter of personal preference and an individual’s specific situation that determine which path to take.

Location Matters

While there are open jobs for machinists all over the country, there are certainly a few areas that would be considered machinist “hot spots.” These areas of the country have increased job openings in the industry and often pay better wages, since machining skills are in higher demand. The Great Lakes Region (Michigan, Ohio, Illinois, Indiana, Upstate New York, Pennsylvania), and the Southeast (The Carolinas, Louisiana, Georgia, Alabama, Mississippi) are great places to look for work, with over 150,000 currently employed machinists. Most of the work in the Great Lakes Region is dominated by the automotive industry, especially in Michigan. In the Southeast US, there has been a recent influx of manufacturing jobs after plants owned by Apple, Boeing, General Electric, Haier, and LeNovo all opened in the area. In fact, Mississippi offers the highest annual salaries for machinists of any state in the country.

Texas, California, and Washington (especially Seattle) are also hot spots for machining jobs. The west coast holds some of the world’s largest aerospace manufacturing plants, so these areas have plenty of job opportunities for machining and manufacturing.

Salary Expectations

A career as a machinist can be rewarding and fun, especially when it comes to working with different materials and creating amazing and intricate parts. But in the end, compensation matters as well. What is often misunderstood most about this industry is that the salary range for machinists is above the national median.

The Bureau of Labor Statistics (BLS) reported in 2016 that those in the workforce with a high school diploma earned an annual median salary of $36,000, while those with an associate’s degree earned $42,000 across all occupations. The BLS also reported the median salaries for machinists in 2016, with median earnings at $43,200, across all levels of education.

The top 10% of machinists earn over $62,500, and depending on what projects they work on, those wages can go even higher. For example, someone working in the aerospace industry or tech industry can expect to make a higher salary as a machinist, but will likely need to have a more extensive education, which can get costly. Experience also matters, as salaries are likely to increase as machinists get more years under their belts. However, many entry level machinist jobs require little to no educational cost and no experience, so the return on investment can be very high once hired into the industry.

Machinist Career Paths

There are quite a few career paths that a machinist can take once they begin working on their craft. Some machinists will work their way up the shop ladder, going from an entry level CNC operator, to a full-on CNC machinist, and possibly finding themselves in a shop management position at some point in their careers. Others may transition away from machining and begin to work with CAD/CAM or CNC Programming applications, working with the machinists on the floor to program and troubleshoot the machines and design new parts to be created. Many machinists also move into careers in inspection, quality control, or production planning, which can be an excellent way to move up the corporate ladder.

machinist

Working in Inspection is a possible career path for a machinist.

Those who do earn an associate’s degree in a machining-based program should consider a path in engineering. The experiences learned as a machinist translate well to this field, and having an associate’s degree allows for the flexibility of going back to school to finish up a Bachelor’s degree in mechanical engineering. For those who may be unable to go to school full-time, there are many online and part-time courses available. These courses make it possible to work full-time or part-time to advance your skills and attain hands-on experience while earning a degree. Both Barnes and Matayer talked about heading back to school to complete an engineering program at some point, taking advantage of the Harvey Performance Company tuition reimbursement program to advance their education and careers.

The skills learned as a machinist also lay a foundation for becoming an entrepreneur or starting a business. Some machinists will open their own machine shops, manufacturing outsourced parts from other companies, while others will take their skills and create a unique product to fulfill a need they identify in the market.

Do Your Research

As the manufacturing industry continues to grow in America, the shortage of machinists in the workforce will become an incredible source of opportunity for our youth. Breaking into the industry now can set young machinists up for great career opportunities. The skills learned as a machinist also translate well to many different jobs, especially in manufacturing and engineering.

machinist

However, not every machine shop should be treated equal. Potential machinists will want to research shops in their area to find the right fit. As Matayer puts it, “Finding the right shop matters. You want to find a place with newer equipment, great benefits, and clean air in a safe environment.” Poor air quality or unsafe working conditions can directly affect a machinist’s long-term health, so doing the proper research before accepting a position can prevent any serious issues.

If you are curious and want to learn more, reach out to your local trade school or college, talk to a machinist, check out some online forums, and read about the profession. You should also check out the machinist community on Instagram, which is full of amazing customer projects, helpful tips and tricks, and videos that will give you a better idea of what is possible in this field! Machinists are always more than happy to share their experiences, but the biggest thing you can do is try. Get out there, start creating, and see where it takes you – the possibilities are endless!

Climb Milling vs. Conventional Milling

There are two distinct ways to cut materials when milling: Conventional Milling (Up) and Climb Milling (Down). The difference between these two techniques is the relationship of the rotation of the cutter to the direction of feed. In Conventional Milling, the cutter rotates against the direction of the feed. During Climb Milling, the cutter rotates with the feed.

Conventional Milling is the traditional approach when cutting because the backlash, or the play between the lead screw and the nut in the machine table, is eliminated (Figure 1). Recently, however, Climb Milling has been recognized as the preferred way to approach a workpiece since most machines today compensate for backlash or have a backlash eliminator.

 


Key Conventional and Climb Milling Properties:

Conventional Milling (Figure 2)

  • Chip width starts from zero and increases which causes more heat to diffuse into the workpiece and produces work hardening
  • Tool rubs more at the beginning of the cut causing faster tool wear and decreases tool life
  • Chips are carried upward by the tooth and fall in front of cutter creating a marred finish and re-cutting of chips
  • Upwards forces created in horizontal milling* tend to lift the workpiece, more intricate and expansive work holdings are needed to lessen the lift created*

climb milling

 

Climb Milling (Figure 3)

  • Chip width starts from maximum and decreases so heat generated will more likely transfer to the chip
  • Creates cleaner shear plane which causes the tool to rub less and increases tool life
  • Chips are removed behind the cutter which reduces the chance of recutting
  • Downwards forces in horizontal milling is created that helps hold the workpiece down, less complex work holdings are need when coupled with these forces
  • Horizontal milling is when the center line of the tool is parallel to the work piece

climb milling


When to Choose Conventional or Climb Milling

Climb Milling is generally the best way to machine parts today since it reduces the load from the cutting edge, leaves a better surface finish, and improves tool life. During Conventional Milling, the cutter tends to dig into the workpiece and may cause the part to be cut out of tolerance.

However, though Climb Milling is the preferred way to machine parts, there are times when Conventional Milling is the necessary milling style. One such example is if your machine does not counteract backlash. In this case, Conventional Milling should be implemented. In addition, this style should also be utilized on casting, forgings or when the part is case hardened (since the cut begins under the surface of the material).

 

 

How To Avoid Common Part Finish Problems

Finishing cuts are used to complete a part, achieving its final dimensions within tolerance and its required surface finish. Most often an aesthetic demand and frequently a print specification, surface finish can lead to a scrapped part if requirements are not met. Meeting finish requirements in-machine has become a major point of improvement in manufacturing, as avoiding hand-finishing can significantly reduce costs and cycle times.