Achieving Success in CNC Woodworking

Developing a Successful Cutting Direction Strategy

There are a number of factors that can affect the machining practices of wood in woodworking. One that comes up a lot for certain hardwoods is the cutting direction, specifically in relation to the grain pattern of the wood. Wood is an anisotropic material. This means that different material properties are exhibited in different cutting directions. In terms of lumber, there are different structural grades of wood related to grain orientation. If the average direction of the cellulose fibers are parallel to the sides of the piece of lumber, then the grains are said to be straight. Any deviation from this parallel line and the board is considered to be “cross-grain”. Figure 1 below depicts a mostly straight grain board with arrows indicating the different axes. Each of these axes exhibits different sets of mechanical properties. Because of these differences, one must be conscious of the tool path in woodworking and minimize the amount of cutting forces placed on the cutter in order to maximize its tool life.

straight grain wood board with woodworking axes
Figure 1: Mostly straight grain board with arrows indicating different axes

Cutting perpendicular to the grain is known as cutting “across the grain” in woodworking. In Figure 1 above, this would be considered cutting in the radial or tangential direction. Cutting parallel to the grain is known as cutting “along the grain” (longitudinally in terms of Figure 1). The closer you are to cutting at 90° to the grain of the wood in any direction, the larger the cutting force will be. For example, a tool with its center axis parallel to the tangential direction and a tool path along the longitudinal direction would have less wear than a tool with the same center axis but moving in the radial direction. The second type of tool orientation is cutting across more grain boundaries and therefore yields greater cutting forces. However, you must be careful when cutting along the grain as this can cause tear-outs and lead to a poor surface finish.

The Proper Formation of Wood Chips With CNC Woodworking

When cutting wood parallel to the grain, there are three basic types of chips that are formed. When cutting perpendicular to the grain, the chip types generally fall into these same 3 categories, but with much more variability due to the wide range in wood properties with respect to the grain direction.

Type 1 Chips

Type 1 chips are formed when wood splits ahead of the cutting edge through cleavage until failure in bending occurs as a cantilever beam. A large force perpendicular to the shear plane is produced, causing the wood ahead of the cutting edge to split, forming this tiny cantilever beam. When the upward force finally exceeds the strength of this tiny beam, it breaks off.  These types of chips cause comparatively little wear compared to types 2 and 3, as the material is splitting before coming in contact with the pointed edge. End mills with either extremely high rake or very low rake angles often produce type 1 chips. This is especially true when machining against grain slopes that are greater than 25°. Woods with moisture content less than 8%form discontinuous chips and are at a higher risk of tear-out.

Type 2 Chips

Type 2 chips are the most desirable of the three types in terms of surface finish. They are a result of material failure along a diagonal shear plane, extending from the cutting edge to the workpiece surface. Type 2 chips form when there is a proper balance between the properties of the wood, cutting parameters, and cutter geometry. Woods with a moisture content between 8% and 20%have a much higher chance of forming continuous type 2 chips while leaving a good surface finish.

Type 3 Chips

The last type of chip forms when the rake angle of a cutter is much too low. In this scenario, the cutting force is almost parallel to the direction of travel. This causes a soft material, such as wood, to be crushed rather than sheared away, leaving a poor surface finish. Generally, the surface left behind looks like tiny bundles of wood elements, a surface defect commonly known as “fuzzy grain.” This type of chip occurs more frequently in softwoods as the crushing situation is compounded in low-density woods.

types of wood chips in woodworking
Figure 2: Different types of wooden chips

Extending Tool Life When Woodworking

Speeds & Feeds Rules of Thumb

There are several different categories of tool wear that occur when cnc woodworking. General rules of machining still apply as RPM has the greatest influence on wear rate. Over-feeding can increase tool wear exponentially and also cause tool breakage. As with most machining operations, a balance between these two is essential. If you are looking to increase your productivity by increasing your speed, you must increase your feed proportionally in order to maintain a balance that keeps the tool properly engaged in the material.

Proper Management of Heat

When cutting tools are exposed to high heat, they begin to wear even faster, due to corrosion. The cobalt binder within most carbide tools on the market begins to oxidize and break free of the cutting edge. This sets off a chain reaction, as when the binder is removed, the tungsten carbide breaks away, too. Different species of wood and types of engineered wood have different corrosive behaviors at high temperatures. This is the most consistent type of wear that is observed when machining MDF or particleboard. The wear is due to the chlorine and sulfate salts found in adhesives as this accelerates high-temperature corrosion.  As with aluminum, when the silica content of a wood increases, so too does its corrosiveness.

Generally, increased tool wear is observed in wood with high moisture content. This trait is due to the increased electro-chemical wear caused by the extractives in wood., Moisture content in wood includes substances such as resins, sugars, oils, starches, alkaloids, and tannins in the presence of water. These molecules react with the metallic constitutes of the cutting tool and can dull the cutting edge. Carbide is more resistant to this type of wear compared to high-speed steel.

Best Coatings for Extended Tool Life in Wood

If you want a longer-lasting tool that will maintain its sharp cutting edge (and who doesn’t), you may want to consider an Amorphous Diamond coating. This is an extremely abrasive resistant coating meant for non-ferrous operations in which the temperature of the cutting zone does not exceed 750 °F. This coating type is one of Harvey Tool’s thinnest coatings, therefore minimizing the risk of any edge rounding and maximizing this edge’s durability.

Avoiding Common Woodworking Mishaps

Tear Out

Tear out, sometimes called chipped grain or splintering, is when a chunk of the wood material being machined tears away from the main workpiece and leaves an unappealing defect where it used to be. This is one of the most common defects when machining wood products. There are many different reasons that tear out occurs. Material characteristics are something to be considered. Tear out is more likely to occur if the grain orientation is less than 20°relative to the tool path, the moisture content of the wood is too low, or the density of the wood is too low. Figure 4 shows the grain orientation angle relative to the tool path. In terms of machining parameters, it can also occur if either the chip load, depth of cut, or rake angle is too high.

woodworking grain in relation to tool path
Figure 4: Example of grain orientation angle relative to the tool path

Fuzzy Grain Finish

Fuzzy grain looks like small clumps of wood attached to the newly machined face and occurs when the wood fibers are not severed properly. Low rake or dull cutting tools indent fibers until they tear out from their natural pattern inside, causing type 3 chips to form, resulting in a poor finish. This can be exacerbated by a low feed or depth of cut as the tool is not properly engaged and is plowing material rather than shearing it properly. Softer woods with smaller and lesser amounts of grains are more susceptible to this type of defect. Juvenile wood is known to be particularly liable for fuzzy grain because of its high moisture content.

fuzzy grain wood finish
Figure 5: Example of a fuzzy grain finish

Burn Marks

Burn Marks are a defect that is particularly significant in the case of machining wood, as it is not generally a concern when machining other materials. Dwelling in a spot for too long, not engaging enough of the end mill in a cut, or using dull tools creates an excessive amount of heat through friction, which leaves burn marks. Some woods (such as maple or cherry) are more susceptible to burn marks, therefore tool paths for these types should be programmed sensibly. If you are having a lot of trouble with burn marks in a particular operation, you may want to try spraying the end mill with a commercial lubricant or paste wax. Be careful not to use too much as the excess moisture can cause warping. Increasing your tool engagement or decreasing RPM may also combat burn marks.

burn marks from wood cutter
Figure 6: Example of burn marks

Chip Marks

Chip marks are shallow compressions in the surface of the wood that have been sprayed or pressed into the surface. These defects can swell with an increase in moisture content, worsening the finish even more. This type of blemish is generally caused by poor chip evacuation and can usually be fixed by applying air blast coolant to the cutting region during the operation.

Raised Grain

Raised grain, another common defect of woods, is when one or more portions of the workpiece are slightly lower than the rest. This blemish is particularly a problem when machining softer woods with dull tools as the fibers will tear and deform rather than be cleanly sheared away. This effect is intensified when machining with slow feeds and the wood has a high moisture content. Variations in swelling and shrinking between damaged and undamaged sections of wood exacerbate this flaw. It’s for this reason that raised grain is a common sight on weather-beaten woods. Work holding devices that are set too tight also have a chance of causing raised grain.

Differentiating Harvey Tool Wood Cutting & Plastic Cutting End Mills

Machinists oftentimes use Plastic Cutting End Mills for woodworking, as this tool has very similar internal geometries to that of an End Mill for Wood. Both tools have large flute valleys and sharp cutting edges, advantageous for the machining of both plastic and wood. The main difference between the Harvey Tool plastic cutters and the woodcutters is the wedge angle (a combination of the primary relief and rake angle). The woodcutter line has a lower rake but still has a high relief angle to maintain the sharpness of the cutting edge. The lower rake is designed to not be as “grabby” as the plastic cutters can be when woodworking. It was meant to shear wood and leave a quality surface finish by not causing tear-out.

Harvey Tool’s offering of End Mills for Wood includes both upcut and downcut options. The upcut option is designed for milling natural and engineered woods, featuring a 2-flute style and a wedge angle engineered for shearing wood fiber materials without causing tear out or leaving a fuzzy grain finish. The downcut offering is optimized for milling natural and engineered woods and helps prevent lifting on vacuum tables.

For more help on achieving a successful machining operation, or more information on Harvey Tool’s offering of End Mills for Wood, please contact Harvey Tool’s team of engineers at 800-645-5609.

Understanding Wood Properties for CNC Woodworking Projects

Machinists oftentimes confuse wood for being an “easy to machine material” during CNC Woodworking because of how much softer the material is than metal. In some sense this is true, as you can program wood cutting parameters in CNC Woodworking with much higher feed rates compared to that of most metals. On the other hand, however, wood has many unique properties that need to be accounted for in order to optimize the cutting process for maximum efficiency.

Types of Wood for CNC Woodworking

There are 3 main categories of wood for woodworking: hardwood, softwood and engineered wood.


The textbook definition of a hardwood tree is an angiosperm, more commonly referred to as a broadleaf tree. A few examples would be oak, birch, and maple trees. These types of trees are often used for making high quality furniture, decks, flooring, and construction components.


A softwood is a coniferous tree, sometimes known as a gymnosperm. These are typically less dense than hardwoods and are therefore associated with being easier to machine. Do not let the name fool you: some soft woods are harder than some hardwoods. Harvey Tool’s Speeds and Feeds Charts for its offering of Material Specific End Mills for Wood are categorized by Janka hardness for this exact reason. Janka hardness is a modified hardness scale with a test specifically designed for classifying types of wood.

Softwood is used to make furniture, but can also be used for doors, window panes, and paper products. A couple of examples are pine and cedar trees. Table 1 lists 20 common woods with their Janka hardness.

Common Name:Janka Imperial Hardness:
Buckeye, Yellow350
Willow, Black360
Pine, Sugar380
Cottonwood, Eastern430
Chesnut, American540
Pine, Red560
Douglas-Fir, Interior North600
Birch, Gray760
Ash, Black850
Cedar, Eastern Red900
Cherry, American Black950
Walnut, Black1010
Beech, American1300
Oak, White1360
Maple, Sugar1450
Cherry, Brazilian2350
Rosewood, Indian3170
Table 1: Janka Hardness of Common Woods

Engineered Woods

Engineered wood, or composite wood, is any type of wood fiber, particle, or strand material held together with an adhesive or binding agent. Although some of these materials are easier to machine than solid woods, the adhesive holding the material together can be extremely abrasive. This can cause premature tool wear and create difficulties when cnc woodworking. It’s important to note that some types of engineered woods are more difficult to machine than others, specifically those with a higher amount of binding material. These types should be programmed with less aggressive speeds and feeds. For example, medium density fiberboard (MDF) if more difficult to machine than plywood, but much easier to machine than phenolic.

stack of medium density fiberboard pieces for cnc woodworking
Figure 1: Example of Medium Density Fiberboard

Properties of Wood

Grain Size

Technically speaking, wood can be considered a natural composite material as it consists of strong and flexible cellulose fibers held together by a stiffer glue-like matrix composed of lignin and hemicellulose. If you think in terms of construction, the cellulose fibers would be the steel rebar, and the concrete would be the lignin and hemicellulose. Wood with large cellulose fibers are considered to be coarse-grained (oak and ash). Woods that have smaller and fewer fibers are considered fine-grained (pine and maple). Softwoods tend to be fine-grained and are therefore stereotyped as being easier to machine since they do not have as many strong fibers to shear. It’s important to note that not all hardwood trees are coarse grained and not all softwood trees are fine-grained.

diagram of natural wood fibers for cnc woodworking
Figure 2: Simplified diagram of fibers that constitute natural wood. The cellulose fibers run vertically in this depiction.

Moisture Content (MC)

Moisture content (MC) is one of the most important variables to consider when machining wood. An extremely common problem with building anything with wood is its tendency to warp. Moisture variability in the air inevitably affects the moisture content within the wood. Any change in moisture content (whether an increase or a decrease) will disturb the shape of the workpiece. This is why one must take into account what type of moisture a product will be exposed to in its final resting place.

Equilibrium Moisture Content (EMC)

Equilibrium moisture content (EMC) occurs when wood has reached a balance point in its moisture content. Interior EMC values across the United States average at about 8%, with exterior values averaging around 12%. These values vary around the country due to the differences in temperature and humidity. For example, the southeastern United States have an average interior EMC of 11% while the southwest averages about 6% (excluding the coastal region). It’s important to consider what region and application the final product is going to encounter so that the wood with the correct moisture content can be selected before machining. Most species of flat-grain wood will change size 1% for every 4% change in MC. The direction of warping depends on the grain orientation.

United States map showing average regional indoor EMC
Figure 4: Average regional indoor EMC

Generally, power requirements for an operation rise with increasing moisture content, mainly because of the surge in density. Density of wood increases with rising MC. The additional power may be necessary to push a heavier chip out of the cutting zone during CNC Woodworking. It’s worth noting that, like synthetic polymers, wood is a viscoelastic material that absorbs energy as it becomes wetter. The proportional limit of its mechanical properties intensifies as MC increases.

When machining some types of wood, cutting region temperature will surge with increasing MC, but in other species it will decline. Be safe and avoid rapid tool wear by decreasing SFM when machining a wood with a moisture content above 10%. Harvey Tool Speeds and Feeds Charts suggest a decrease of 30 per MC percentage point. As always, though, it depends on the type of wood being machined and the type of operation being performed.

Temperature change is not the only reason higher moisture content is associated with rapid tool wear. Moisture within wood isn’t just associated with water, but also with resins, sugars, oils, starches, alkaloids, and tannin present within the water. These substances react particularly well with high speed steel, and to a lesser degree with carbide.

Knots and Their Effect on CNC Woodworking

A knot is a portion of a branch or limb that has become incorporated in the trunk of a tree. The influence of knots on the mechanical properties of wood is due to the interruption of continuity and change in direction of wood fibers associated with it. These properties are lower in this portion of the wood because the fibers around the knot are distorted and lead to stress concentrations. “Checking” (cracking due to shrinking) often occurs around knots during drying. Hardness and strength perpendicular to the grain are exceptions to generally lower mechanical properties. Because of these last two exceptions, woodworking machining parameters should be reduced when encountering a knotted portion of the workpiece to avoid shock loading.

typical natural wood knot in hardwood
Figure 5: Photo of a typical knot

Titanium Machining Cost Savings With Helical Solutions

When the manufacturing team at Geospace Technologies was looking for better tool life and improved performance on a Titanium CNC milling job, they turned to Harvey Performance Company and local Application Engineer Mike Kanigowski to dial in some Helical Solutions End Mills. With Mike’s help, Geospace Technologies, led by Lead Mill Programmer Tranquilino Sosa, achieved massive success and extensive titanium machining cost savings, which led them to completely shift their tooling repertoire to Helical’s high-performance end mills in their shop.

Struggling with Tool Life

Prior to switching to Helical, Geospace Technologies was experiencing trouble with tool life on a job that required both roughing and finishing toolpaths on a Titanium (Ti-6AL-4V) part. For their roughing pass, Geospace was using a competitor’s 4 flute, 3/8” diameter end mill with a 30° helix angle and TiALN coating. In traditional roughing toolpaths, this tool was running at 1,750 RPM with a 10 IPM feed rate. The tool would take four step downs, three with an axial depth of cut of .200”, and a final pass at .100” for a total depth of .700”.

When finishing, the team used a 1/2” version of the same competitor tool, running at 900 RPM with an 8 IPM feed rate. This would take two passes, one at .400” deep and the last down to the bottom of the part at .700”.

geospace technologies fadal VMC 4020

With this strategy and tooling, the team was creating high-quality parts at a cycle time of 15 minutes and 22 seconds per part, but were only seeing the roughing tool last for 60 parts on average, and the finishing tool for around 120 parts. This was causing tool costs to be higher than they would like, and costing the team precious time with frequent tool changes.

Sosa had seen some of the success that other shops were having with Titanium milling using Helical Solutions end mills, and so they reached out to Kanigowski to see how Helical could help them lower their cost per part while achieving an even better finish.

Dialing in Tool Selection

When Mike got in touch with the team at Geospace, he knew there were some immediate benefits to changing the toolpaths used in this job. Using their ESPRIT software, the team was able to dial in a new program using high efficiency milling (HEM) toolpaths through ESPRIT’s “Profit Milling” technology.

With HEM toolpaths in place, Geospace was going to need new high performance tools to take full advantage of the programming adjustments. After much testing and evaluating several options from Helical’s extensive line of end mills for Titanium, Geospace settled on two solid tools.

Helical offers many different options for Titanium milling in HEM toolpaths. During testing, the team at Geospace decided on Helical EDP 59424, a 3/8” diameter, 7 flute, corner radius end mill. This tool features variable pitch geometry and offset chipbreakers for optimal chip evacuation, reduced harmonics, and minimized tool pressure, as well as Helical’s Aplus coating for high temperature resistance, decreased wear, and improved tool life.

7 flute chipbreaker
7 Flute Chipbeaker Tools Fresh Off the Grinder

When looking at the finishing toolpath, Geospace decided on Helical EDP 82566, a 3/8”, 6 flute, square end mill from Helical’s well known HEV-6 product line. This tool featured a variable pitch design to help mitigate chatter and leave a superior finish. While Helical also offers several tools for finishing toolpaths in Titanium, during testing this tool provided Geospace with the best finish for their specific part geometry.

Helical Solutions HEV-6
Example of a Tool from Helical Solutions HEV-6 Tooling Line

Experiencing the “Helical Difference”

With the new tools in place, Sosa’s team reached out to Helical for help dialing in speeds and feeds. The Helical tech team was able to get them set up on Machining Advisor Pro, an advanced speeds and feeds calculator developed by the experts behind Helical Solutions tooling. With this “miracle worker” application in their arsenal, the team was able to easily dial in their new tools for their specific material grade, depth of cut, and machine setup.  

The team saw immediate positive results and cost-savings on this job. They were able to increase their roughing toolpaths to 4,500 RPM and 157 IPM. The finishing path remained largely the same, but resulted in a much improved final part. In total, cycle time dropped from 15 minutes and 22 seconds per part to 12 minutes and 17 seconds per part, which was great, but the improvement in tool life was where Sosa was most impressed.

Geospace technologies employee inspecting titanium end mills

With the new Helical end mill in the shop, Geospace was able to run both tools for 580 parts with very minimal wear on the tool. This was a nearly 1000% improvement in tool life for their roughing passes and a 483% improvement in tool life for the finishing operation. In total, one roughing tool was able to last more than 42 hours in the cut before needing to be replaced.

Eliminating the need for a tool change every 60 parts was also a significant time-saver. Constant tool changes were causing serious machine downtime, which was eliminated with the longer tool life experienced with the Helical end mills. What seems like a minor inconvenience will truly add up to dozens of hours in saved time over the course of a few months for Sosa’s team.

titanium machining tool wear
A Closeup of the 7 Flute Chipbreaker After 42 Hours In The Cut

Geospace was thrilled with the results they saw on this Titanium job, as they had never experienced long tool life in Titanium with any other competitor brand. Sosa and his team are excited to continue using Helical Solutions product across all of their other jobs going forward and to continue working with Kanigowski and the Helical tech team on dialing in tool selection and speeds and feeds on future projects.

Please see below for a head-to-head breakdown of the Helical end mills’ performance in terms of total costs and productivity gained versus that of the competitor. These numbers are measured per 1,000 parts, taking into account tooling costs, tool change time, labor costs, running parameters, and cycle times.

titanium machining cost savings

Hardenability of Steel

Many types of steel have a beneficial response to a method of heat treatment known as quenching. One of the most important criteria in the selection process of a workpiece material is hardenability. Hardenability describes how deep a metal can be hardened upon quenching from high temperature, and can also be referred to as the depth of hardening.

Steel At Microscopic Scale:

The first level of classification of steels at a microscopic level is their crystal structure, the way in which atoms are arranged in space. Body-Centered Cubic (BCC) and Face Centered Cubic (FCC) configurations are examples of metallic crystal structures. Examples of BCC and FCC crystal structures can be seen below in Figure 1. Keep in mind that the images in Figure 1 are meant to display atomic position and that the distance between the atoms is exaggerated.

depiction of BBC and FCC crystal structures in steel
Figure 1: Example of a BCC crystal structure (left) and FCC crystal structure (right)

The next level of classification is a phase. A phase is a uniform portion of a material that has the same physical and chemical properties. Steel has 3 different phases:

  1. Austenite: Face-Centered cubic iron; also iron and steel alloys that have the FCC crystal structure.
  2. Ferrite: Body-centered cubic iron and steel alloys that have a BCC crystal structure.
  3. Cementite: Iron carbide (Fe3C)

The final level of classification discussed in this article is the microstructure. The three phases seen above can be combined to form different microstructures of steel. Examples of these microstructures and their general mechanical properties are shown below:

  • Martensite: the hardest and strongest microstructure, yet the most brittle
  • Pearlite: Hard, strong, and ductile but not particularly tough
  • Bainite: has desirable strength-ductility combination, harder than pearlite but not as hard as martensite

Hardening at Microscopic Scale:

The hardenability of steel is a function of the carbon content of the material, other alloying elements, and the grain size of the austenite. Austenite is a gamma phase iron and at high temperatures its atomic structure undergoes a transition from a BCC configuration to an FCC configuration.

High hardenability refers to the ability of the alloy to produce a high martensite percentage throughout the body of the material upon quenching. Hardened steels are created by rapidly quenching the material from a high temperature. This involves a rapid transition from a state of 100% austenite to a high percentage of martensite. If the steel is more than 0.15% carbon, the martensite becomes a highly strained body-centered cubic form and is supersaturated with carbon. The carbon effectively shuts down most slip planes within the microstructure, creating a very hard and brittle material. If the quenching rate is not fast enough, carbon will diffuse out of the austenitic phase. The steel then becomes pearlite, bainite, or if kept hot long enough, ferrite. None of the microstructures just stated have the same strength as martensite after tempering and are generally seen as unfavorable for most applications.

The successful heat treatment of a steel depends on three factors:

  1. The size and shape of the specimen
  2. The composition of the steel
  3. The method of quenching

1. The size and shape of the specimen

During the quenching process, heat must be transferred to the surface of the specimen before it can be dissipated into the quenching medium. Consequently, the rate at which the interior of the specimen cools is dependent on its surface area to volume ratio. The larger the ratio, the more rapid the specimen will cool and therefore the deeper the hardening effect. For example, a 3-inch cylindrical bar with a 1-inch diameter will have a higher hardenability than a 3-inch bar with a 1.5-inch diameter. Because of this effect, parts with more corners and edges are more amendable to hardening by quenching than regular and rounded shapes. Figure 2 is a sample time-temperature transformation (TTT) diagram of the cooling curves of an oil-quenched 95 mm bar. The surface will transform into 100% martensite while the core will contain some bainite and thus have a lower hardness.

graph of sample time temperature transformation
Figure 2: Sample time temperature transformation (TTT) diagram also known as an isothermal transformation diagram

2.  The composition of the steel

It’s important to remember that different alloys of steel contain different elemental compositions. The ratio of these elements relative to the amount of iron within the steel yield a wide variety of mechanical properties. Increasing the carbon content makes steel harder and stronger but less ductile. The predominant alloying element of stainless steels in chromium, which gives the metal its strong resistance to corrosion. Since humans have been tinkering with the composition of steel for over a millennium, the number of combinations is endless.

Because there are so many combinations that yield so many different mechanical properties, standardized tests are used to help categorize different types of steel. A common test for hardenability is the Jominy Test, shown in Figure 3 below. During this test a standard block of material is heated until it is 100% austenite. The block is then quickly moved to an apparatus where it is water quenched. The surface, or the area in contact with the water, is immediately cooled and the rate of cooling drops as a function of distance from the surface. A flat is then ground onto the block along the length of the sample. The hardness at various points is measured along this flat. This data is then plotted in a hardenability chart with hardness as the y-axis and distance as the x-axis.

diagram of Jominy end quench specimen for hardened steel
Figure 3: Diagram of a Jominy end quench specimen mounted during quenching (left) and post hardness testing (right)

Hardenability curves are constructed from the results of Jominy Tests. Examples of a few steel alloy curves are shown in Figure 4. With a diminishing cooling rate (steeper drop in hardness over a short distance), more time is allowed for carbon diffusion and the formation of a greater proportion of softer pearlite. This means less martensite and a lower hardenability. A material that retains higher hardness values over relatively long distances is considered highly hardenable. Also, the greater the difference in hardness between the two ends, the lower the hardenability. It is typical of hardenability curves that as the distance from the quenched end increases, the cooling rate decreases. 1040 steel initially has the same hardness as both 4140 and 4340 but cools extremely quickly over the length of the sample. 4140 and 4340 steel cool at a more gradual rate and therefore have a higher hardenability. 4340 has a less extreme rate of coolness relative to 4140 and thus has the highest hardenability of the trio.

chart of hardenability for 4140, 1040, and 4340 steel
Figure 4: Hardenability charts for 4140, 1040 and 4340 steels

Hardenability curves are dependent on carbon content. A greater percentage of carbon present in steel will increase its hardness. It should be noted that all three alloys in Figure 4 contain the same amount of carbon (0.40% C).  Carbon is not the only alloying element that can have an effect on hardenability. The disparity in hardenability behavior between these three steels can be explained in terms of their alloying elements. Table 1 below shows a comparison of the alloying content in each of the steels. 1040 is a plain carbon steel and therefore has the lowest hardenability as there are no other elements besides iron to block the carbon atoms from escaping the matrix. The nickel added to 4340 allows for a slightly greater amount of martensite to form compared to 4140, giving it the highest hardenability of these three alloys. Most metallic alloying elements slow down the formation of pearlite, ferrite and bainite, therefore they increase a steel’s hardenability.

Table 1: Shows the alloying contents of 4340, 4140, and 1040 steel

Type of Steel: Nickel (wt %): Molybdenum (wt %): Chromium (wt %):
4340 1.85% 0.25% 0.80%
4140 0.00% 0.20% 1.00%
1040 0.00% 0.00% 0.00%

There can be a variation in hardenability within one material group. During the industrial production of steel, there are always slight unavoidable variations in the elemental composition and average grain size from one batch to another. Most of the time a material’s hardenability is represented by maximum and minimum curves set as limits.

Hardenability also increases with increasing austenitic grain size. A grain is an individual crystal in a polycrystalline metal. Think of a stained glass window (like the one seen below), the colored glass would be the grains while the soldering material holding it altogether would be the grain boundaries. Austenite, ferrite, and cementite are all different types of grains that make up the different microstructures of steel. It is at the grain boundaries that the pearlite and bainite will form. This is detrimental to the hardening process as martensite is the desired microstructure, the other types get in the way of its growth. Martensite forms from the rapid cooling of austenite grains and its transformation process is still not well understood. With increasing grain size, there are more austenite grains and fewer grain boundaries. Therefore, there are fewer opportunities for microstructures like pearlite and bainite to form and more opportunities for martensite to form.

colorful glass representing austenite
Figure 5: The colorful glass pieces represent grains of austenite which transforms into the desirable martensite upon quenching. The black portions in between the color portions represent grain boundaries. Sites where pearlite or bainite will form upon quenching.

3. The method of quenching

As previously stated, the type of quench affects the cooling rate. Using oil, water, aqueous polymer quenchants, or air will yield a different hardness through the interior of the workpiece. This also shifts the hardenability curves. Water produces the most severe quench followed by oil and then air. Aqueous polymer quenchants provide quenching rates between those of water and oil and can be tailored to specific applications by changing the polymer concentration and temperature. The degree of agitation also affects the rate of heat removal. The faster the quenching medium moves across the specimen, the greater the quenching effectiveness. Oil quenches are generally used when a water quench may be too severe for a type of steel as it may crack or warp upon treatment.

metalworker quenching casts in an oil bath
Figure 6: Metalworker quenching casts in an oil bath

Machining Hardened Steels:

The type of cutter that should be chosen for processing tools chosen for machining a workpiece after hardening depends on a few different variables. Not counting the geometric requirements specific to the application, two of the most important variables are the material hardness and its hardenability. Some relatively high-stress applications require a minimum of 80% martensite to be produced throughout the interior of the workpiece. Usually, moderately stressed parts only require about 50% martensite throughout the workpiece. When machining a quenched metal with very low hardenability a standard coated solid carbide tool may work without a problem. This is because the hardest portion of the workpiece is limited to its surface. When machining a steel with a high hardenability it is recommended that you use a cutter with specialized geometry that is for that specific application. High hardenability will result in a workpiece that is hard throughout its entire volume. Harvey Tool has a number of different cutters for hardened steel throughout the catalog, including drills, end mills, keyseat cutters, and engravers.


Hardenability is a measure of the depth to which a ferrous alloy may be hardened by the formation of martensite throughout its entire volume, surface to core. It is an important material property you must consider when choosing a steel as well as cutting tools for a particular application. The hardening of any steel depends on the size and shape of the part, the molecular composition of the steel, and the type of quenching method used.

Grappling With Graphite: A Machining Guide

Despite being a softer material, graphite is actually one of the most difficult materials to machine. There are many considerations machinists need to make in terms of tooling, coolant use, and personal safety when it comes to machining these parts. This “In The Loupe” post will examine the material properties, key machining techniques to consider, and tips for properly selecting cutting tools to achieve success in this tricky material.

What is Graphite?

While graphite is an allotrope of carbon, the two terms are not simply interchangeable. Carbon is an element that can form into several different allotropes including graphite, diamond, and fullerite. Graphite happens to be the most stable form of carbon, and is the most common, as carbon naturally occurs as graphite under standard conditions.

Graphite is most recognized for its superior conductivity and resistance to high heat and corrosion. This makes it a common material in high heat, high-pressure situations in the aerospace, electrode, nuclear, energy, and military industries.

graphite cnc material

Even though graphite can handle intense high-pressure situations with ease, it is actually a very soft, abrasive, and brittle material. This can cause serious challenges when machining, as graphite can eat up cutting tools, and severely minimize a tool’s usable life. However, with the proper tooling and techniques, there are ways to optimize graphite machining to be more cost-effective than the competition.

Graphite Machining Techniques

Since graphite is such a soft and brittle material, special consideration needs to be made when machining to avoid chipping it. To get a good cut, it is recommended that you take light chip loads and use lower feed rates in graphite. If you were to take a heavy cut at a fast feed rate, you would start chipping the graphite and could cause it to fracture completely. To give a comparison point, chip loads for graphite are similar to those for Aluminum materials, but with less than half the feed rate.

To give you an idea of speeds and feeds for graphite, here is an example using a 1/4″ Harvey Tool CVD Diamond Coated, 4 flute Square End Mill. If that tool was running at a standard RPM of 12,000 at 780 SFM, the recommended chip load would be .00292 for a feed rate of 140 IPM.

electrode machining

In terms of machine setup, the one major tip to remember is to always avoid using coolant. Graphite is a fairly porous material, and so it can absorb coolant and act as a “coolant sponge,” which will cause problems with finished parts. Inside the machine and on the tooling, the coolant can actually react with the graphite dust and create an abrasive slurry, which will cause problems while machining. A vacuum system is recommended for clearing material while machining graphite. Otherwise, coated tools should be able to run dry.

Another thing to note when machining graphite is that because graphite does not produce chips, but rather a cloud of very abrasive dust, it can be harmful to operators and machines without proper care. Operators should be wearing a protective mask to avoid inhaling the graphite dust. Proper ventilation and maintaining air quality in the shop is also key for the protection of machinists when working in graphite.

Since the graphite dust is also extremely conductive, it can easily damage non-protective circuits inside your CNC machine, which can cause major electrical issues. While coolant is not recommended, a vacuum system can help to remove the dust, keeping it from accumulating too much inside the machine and preventing serious problems.

Cutting Tools for Graphite Machining

As previously mentioned, graphite is a notorious cutting tool-killer due to its extremely abrasive nature. Even the highest quality carbide end mills, if left uncoated, will wear quickly on most jobs. This extreme wear may force a tool change during an operation, which could lead to an imperfection in the part when trying to restart the operation where the worn tool left off.

graphite cutting tools

When selecting a cutting tool for graphite machining, the coating and cutting edge is the most important consideration. Flute count, helix angles, and other key features of the tool geometry ultimately come second to the coating when purchasing tooling.

For graphite machining, a CVD (Chemical Vapor Deposition) diamond coating is recommended whenever possible to maximize tool life and tool performance. These coatings are grown directly into the carbide end mill, improving the hardness and leaving the tool with a coating layer that is 5 times thicker than a PVD Diamond Coating. While not the sharpest edge, the CVD diamond coating provides much longer tool life than other diamond coatings due to the thicker diamond layer.

Even though initial tooling costs may be higher with CVD coated tools versus uncoated tools, since CVD coated tools see considerably longer tool life than uncoated tools, this makes the cost per part shrink significantly. In difficult, abrasive materials like graphite, the uncoated carbide tool will last a short time before the abrasiveness of the graphite completely wears down the cutting edge. Having a CVD coated tool will give you a leg up over the competition, keep your machine running with less downtime for tool changes, and ultimately deliver substantial cost savings.

end mills for graphite
CVD Diamond Coated End Mill from Harvey Tool

Overall, graphite can be a difficult material to machine, but with the right cutting tools and proper speeds and feeds you will be making quality parts in no time. Harvey Tool offers a wide selection of CVD coated end mills in various diameters, reaches, and lengths of cut to ensure you have what you need for any job that comes your way.

High Efficiency Milling for Titanium Made Easy With Helical’s New HVTI Cutter

Titanium is a notoriously difficult material to machine, especially in aggressive toolpaths, such as those associated with High Efficiency Milling (HEM). Helical Solutions’ new line of tooling, the HVTI-6 series of end mills for titanium, is optimized specifically for this purpose, and proven to provide 20% more tool life than a competitor’s similar tool.

At face level, these new Helical end mills for titanium feature corner radius geometry, 6 flutes, and are Aplus coated for optimal tool life and increased cutting performance. But there is much more to these end mills than the typical geometry of standard 6 flute tools. The HVTI-6 was designed with a combination of a unique rake, core, and edge design that give it a leg up over standard 6 flute tools for milling titanium while cutting HEM toolpaths. Click here to watch the HVTI-6 in action!

End Mills for Titanium

The design of the HVTI-6 was the result of significant testing by the Harvey Performance Company Innovation and New Product Development teams. These teams spent many months testing tools, doing in-depth analysis on materials and tool geometry, and pushing these tools through dozens of hours in the cut at testing sites across the country.

The new HVTI-6 cutter experienced higher metal removal rates (MRR) and 20% longer tool life while performing HEM in Titanium when compared to a standard 6 flute tool offered by a Helical Solutions competitor. This type of tool life improvement will produce huge cost savings on tooling, as well as shortened cycle times and lower cost per part.

Helical HVTI Titanium

The Harvey Performance Innovation team targeted Titanium grade Ti6Al4V for their testing, which accounts for the vast majority of the Titanium being machined in North America. The test part was designed and programmed to allow for a more defined agility test of the tool, taking the tool into key geometry cutting exercises like tight corners, long straight line cuts, and rapid movement.

Many hours were spent with Lyndex-Nikken, manufacturers of high-quality rotary tables, tool holders, and machining accessories, at their Chicago headquarters. By working with the team at Lyndex-Nikken, the Harvey Performance Company team was able to test under optimal conditions with top-of-the-line tool holders, work holding, and machining centers. Lyndex was also available to provide their expert support on tool holding techniques and were an integral part of the testing process for these tools. Video of the impressive test cuts taken at the Lyndex facility can be seen below.


In these tests, the HVTI was able to run HEM toolpaths at 400 SFM and 120 IPM in Ti6Al4V, which served as the baseline for most of the testing.

While the standard 6 flute tools offered by Helical will still perform to high standards in Titanium and other hard materials (steels, exotic metals, cast iron), the HVTI-6 is a specialized, material-specific tool designed specifically for HEM toolpaths in Titanium. Advanced speeds and feeds for these new tools are already available in Machining Advisor Pro, and the complete offering is now available in the Helical CAM tool libraries for easy programming.

To learn more about the HVTI 6 Flute End Mills for Titanium, please visit the Helical Solutions website. To learn more about HEM techniques, download the HEM Guidebook for a complete guide on this advanced toolpath.

An In-Depth Look at Helical’s Tplus Coating for End Mills

When working with difficult-to-machine materials, such as Inconel, stainless steel, or hardened steels, utilizing an effective coating is important for sustaining the life of your tool and perfecting the outcome of your part. While looking for the right coating, many machinists try out several before finding a solution that works – a process that wastes valuable time and money. One coating gaining popularity in applications involving tough materials is Helical SolutionsTplus coating. This post will explore what Tplus coating is (and isn’t), and when it might be best for your specific job.

tplus coating on helical end mill

What is Helical Solutions’ Tplus Coating?

Helical’s Tplus coating is a Titanium-based, multi-layered coating that is applied by a Physical Vapor Deposition (PVD) process. This method of coating takes place in a near-vacuum and distributes micron-thick layers evenly onto a properly prepared tool.  Tplus is a premium, multi-layered, titanium coating that increases edge strength, wear resistance, and tool life.

tplus coating specification chart

When Should a Machinist Use Tplus Coating?

When Working in Difficult to Machine Materials

Tplus coating works great in difficult-to-machine materials such as Inconel, stainless steel, hardened steels, and other alloyed steels with a hardness up to 65 Rc. It provides high hardness (44 GPa) for your tool, creating stronger cutting edges and resulting in extended tool life.

When Working in High Temperature Applications

When you are running an application in a ferrous material where extreme heat and work hardening are a possibility, Tplus is a great solution, as it’s designed to withstand high temperatures (up to 2,192°).

In Dry Machining Applications

In the absence of coolant, fear not! Tplus coating is a viable option since it can handle the heat of machining. The low coefficient of friction (0.35) guarantees great performance in dry machining and allows the coated tool to move throughout the part smoothly, creating less heat, which is extremely beneficial in applications without coolant.

In Large Production Runs

In high production runs is truly where this coating excels, as its properties allow your tool to remain in the spindle longer – creating more parts by avoiding time in swapping out a worn tool.

Machining Precious Metals

Precious metals can be particularly difficult to machine due to their wide range of material properties and high cost if a part has to be scrapped. The following article will introduce these elements and their alloys as well as provide a guide on how to machine them effectively and efficiently.

About the Elements

Sometimes called “noble” metals, precious metals consist of eight elements that lie in the middle of the periodic table (seen below in Figure 1). The eight metals are:

  1. Ruthenium (Ru)
  2. Rhodium (Rh)
  3. Palladium (Pd)
  4. Silver (Ag)
  5. Osmium (Os)
  6. Iridium (Ir)
  7. Platinum (Pt)
  8. Gold (Au)

These elements are some of the rarest materials on earth, and can therefore be enormously expensive. Gold and silver can be found in pure nugget form, making them more easily available. However, the other six elements are typically found mixed in the raw ore of the four metals they sit below on the periodic table: Iron (Fe), Cobalt (Co), Nickel (Ni), and Copper (Cu). These elements are a subset of precious metals and are generally called Platinum Group Metals (PGM). Because they are found together in raw ore, this makes mining and extraction difficult, dramatically increasing their cost. Because of their high price tag, machining these materials right the first time is incredibly important to a shop’s efficiency.

machining metals

Figure 1: Periodic table with the 8 precious metals boxed in blue. Image source:

Basic Properties and Compositions of Precious Metals

Precious metals have notable material properties as they are characteristically soft, ductile, and oxidation resistant. They are called “noble” metals because of their resistance to most types of chemical and environmental attack. Table 1 lists a few telling material properties of precious metals in their elemental form. For comparison purposes, they are side-by-side with 6061 Al and 4140 Steel. Generally, only gold and silver are used in their purest form as the platinum group metals are alloys that consist mainly of platinum (with a smaller composition of Ru, Rh, Pa, Os, Ir). Precious metals are notable for being extremely dense and having a high melting point, which make them suitable for a variety of applications.

Table 1: Cold-worked Material Properties of Precious Metals, 4140 Steel and 6061 Aluminum 

precious metals

Common Machining Applications of Precious Metals

Silver and gold have particularly favorable thermal conductivity and electrical resistivity. These values are listed in Table 2, along with CC1000 (annealed copper) and annealed 6061 aluminum, for comparison purposes. Copper is generally used in electrical wiring because of its relatively low electrical resistivity, even though silver would make a better substitute. The obvious reason this isn’t the general convention is the cost of silver vs. copper. That being said, copper is generally plated with gold at electrical contact areas because it tends to oxide after extended use, which lowers its resistivity. As stated before, gold and the other precious metals are known to be resistant to oxidation. This corrosion resistance is the main reason that they are used in cathodic protection systems of the electronics industry.

Table 2: Thermal Conductivity and Electrical Resistivity of Ag, Au, Cu, and Al 

machining metals

Platinum and its respective alloys offer the most amount of applications as it can achieve a number of different mechanical properties while still maintaining the benefits of a precious metal (high melting point, ductility, and oxidation resistance). Table 3 lists platinum and a number of other PGMs each with their own mechanical properties. The variance of these properties depends on the alloying element(s) being added to the platinum, the percentage of alloying metal, and whether or not the material has been cold-worked or annealed. Alloying can significantly increase the tensile strength and hardness of a material while decreasing its ductility at the same time. The ratio of this tensile strength/hardness increase to ductility decrease depends on the metal added as well as how much is added, as seen in Table 3. Generally this depends on the particle size of the element added as well as its natural crystalline structure. Ruthenium and Osmium have a specific crystal structure that has a significant hardening effect when added to platinum. Pt-Os alloys in particular are extremely hard and practically unworkable, which doesn’t yield many real-world applications. However, the addition of the other 4 PGMs to platinum allow for a range of mechanical properties with various usages.

Table 3: PGM material properties (Note: the hardness and tensile strength are cold worked values) 

machining metals

Platinum and its alloys are biocompatible, giving them the ability to be placed in the human body for long periods of time without causing adverse reactions or poisoning. Therefore, medical devices including heart muscle screw fixations, stents, and marker bands for angioplasty devices are made from platinum and its alloys. Gold and palladium are also commonly used in dental applications.

Pt-Ir alloys are noticeably harder and stronger than any of the other alloys and make excellent heads for spark plugs in the automobile industry. Rhodium is sometimes added to Pt-Ir alloys to make the material less springy (as they are used as medical spring wire) while also increasing its workability. Pt and Pt-Rh wire pairs are extremely effective at measuring temperatures and are therefore used in thermocouples.

Machining Precious Metals

The two parameters that have the most effect when machining are hardness and percent elongation. Hardness is well-known by machinists and engineers across the manufacturing industry as it indicates a material’s resistance to deformation or cutting. Percent elongation is a measurement used to quantify material ductility. It indicates to a designer the degree to which a structure will deform plastically (permanently) before fracture. For example, a ductile plastic such as ultrahigh molecular weight polyethylene (UHMWPE) has a percent elongation of 350-525%, while a more brittle material such as oil-quenched and tempered cast iron (grade 120-90-02) has a percent elongation of about 2%. Therefore, the greater the percent elongation, the greater the material’s “gumminess.” Gummy materials are prone to built-up edge and have a tendency to produce long stringy chips.

Tools for Precious Metals

Material ductility makes a sharp cutting tool essential for cutting precious metals. Variable Helix for Aluminum Alloy tools can be used for the softer materials such as pure gold, silver, and platinum.

machining metals

Figure 2: Variable Helix Square End Mill for Aluminum Alloys

Higher hardness materials still require a sharp cutting edge. Therefore, one’s best option is to invest in a PCD Diamond tool. The PCD wafer has the ability to cut extremely hard materials while maintaining a sharp cutting edge for a relatively long period of time, compared to standard HSS and carbide cutting edges.

machining metals

Figure 3: PCD Diamond Square End Mill

Speeds and Feeds charts:

machining metals

Figure 4: Speeds and Feeds for precious metals when using a Square Non-ferrous, 3x LOC

machining metals

Figure 5: Speeds and Feeds for precious metals when using a 2-Flute Square PCD end mill

What to Know About Helical Solution’s Zplus Coating

Non-ferrous and non-metallic materials are not usually considered difficult to machine, and therefore, machinists often overlook the use of tool coatings. But while these materials may not present the same machining difficulties as hardened steels and other ferrous materials, a coating can still vastly improve performance in non-ferrous applications. For instance, materials such as aluminum and graphite can cause machinists headaches because of the difficulty they often create from abrasion. To alleviate these issues in non-ferrous machining applications, a popular coating choice is Helical Solution’s Zplus coating.

zplus coating

What is Helical Solutions’ Zplus Coating?

Helical’s Zplus is a Zirconium Nitride-based coating, applied by a Physical Vapor Deposition (PVD) process. This method of coating takes place in a vacuum and forms layers only microns thick onto the properly prepared tool. Zirconium Nitride does not chemically react to a variety of non-ferrous metals, increasing the lubricity of the tool and aiding in chip evacuation.

zplus coating specification chart

When Should a Machinist Use Helical Solution’s Zplus?

Working with Abrasive Materials

While Zplus was created initially for working in aluminum, its hardness level and maximum working temperature of 1,110°F enables it to work well in abrasive forms of other non-ferrous materials, as well. This coating decreases the coefficient of friction between the tool and the part, allowing it to move easier through more abrasive materials. This abrasion resistance decreases the rate of tool wear, prolonging tool life.

Concerns with Efficient Chip Evacuation

One of the primary functions of this coating is to increase the smoothness of the flutes of the tool, which allows for more efficient chip removal. By decreasing the amount of friction between the tool and the material, chips will not stick to the tool, helping to prevent chip packing. The increased lubricity and smoothness provided by the coating allows for a higher level of performance from the cutting tool. Zplus is also recommended for use in softer, gummy alloys, as the smooth surface encourages maximum lubricity within the material – this decreases the likelihood of those gummier chips sticking to the tool while machining.

Large Production Runs

Uncoated tools can work well in many forms of non-ferrous applications. However, to get a genuinely cost-effective tool for your job, the proper coating is highly recommended. Large production runs are known for putting a lot of wear and tear on tools due to their increased use, and by utilizing an appropriate coating, there can be a significant improvement in the tools working life.

When is Zplus Coating Not Beneficial to My Application?

Finishing Applications

When your parts finish is vital to its final application, a machinist may want to consider going with an uncoated tool. As with any coating, ZrN will leave a very minor rounded edge on the tip of the cutting edge. The best finish often requires an extremely sharp tool, and an uncoated tool will have a sharper cutting edge than its coated version.

What to Know About Harvey Tool’s TiB2 Coating

Aluminum and magnesium alloys are common materials found in machine shops worldwide, and are known as an “easier” material to machine. However, machinists can still experience hiccups while machining this material if they are not prepared with the proper tooling.. When working with aluminum and magnesium alloys, it is important to choose a coating that will work to extend your tool’s life and aid in the removal of chips. A popular choice for this material bucket is Harvey Tool’s TiB2 coating.

What is Harvey Tool’s TiB2 Coating?

Harvey Tool’s TiB2 coating is a Titanium Diboride, ceramic-based coating that provides superb erosion resistance during machining. TiB2 is added to a tool by a method called Physical Vapor Deposition (PVD), which is conducted in a vacuum where particles are vaporized and applied onto a surface, forming thin layers of material onto the properly-prepped tool. This method enables the coating to be corrosion and tarnish resistant.

TiB2 Coating Specification chart

TiB2 is identified in Harvey Tool’s product catalog with a “-C8” following the sku number. It can be found offered in Harvey Tool’s lines of Variable Helix End Mills for Aluminum Alloys, Double Angle Shank Cutters, and Miniature High Performance Drills for Aluminum Alloys.

When Should a Machinist Use TiB2 Coating?

Chip Evacuation Concerns

TiB2 has an extremely low affinity to aluminum, which helps with the chip evacuation process. Simply, chips of a material are able to evacuate through chip valleys easier if they don’t have a high affinity to the coating being used. TiB2 coating does not chemically react with aluminum and magnesium, which allows for smoother chip evacuation, as the chips do not stick to the coating and create issues such as chip packing. This is a common machining mishap that can cause both part and tool damage, quickly derailing a machining operation. By using a coating that increases the lubricity of the tool, chips will not have a surface to stick to and will more smoothly evacuate from the flutes of the tool.

Large Production Runs

While an uncoated tool may work fine in some applications, not all applications can succeed without a tool coating. When working with large production runs where the tools need to hold up through the process of machining large numbers of parts, using a coating is always recommended because they extend the life of your tool.

When is TiB2 Coating Not Beneficial to My Application?

Extremely Abrasive Materials

During the PVD coating process, tools can reach a temperature in excess of 500° F, which can cause the toughness of the carbide to drop slightly. This process does not normally compromise the performance of the tool due to the coating being placed over the carbide. The coating then protects the slightly weakened edge and increases tool performance in recommended materials. Micro-fractures only start appearing when the tool is being run incredibly fast through highly abrasive materials, leading to a decrease in the life of the tool.

Extremely Soft Materials

The coating, while only a few microns thick at most, still provides an ever-so-slight rounded edge to the cutting edge of the tools it is placed on. It is important to take this into consideration, as using the sharpest tools possible when working with materials such as soft plastics is recommended. The sharpest edge possible decreases the likelihood of any “pushing” that might occur on the material and increases the likelihood of proper “shearing” when machining.

When Finish Is Vital

If your part’s finish is imperative to the final product, an uncoated tool may work better for your application. A coating, like stated above, creates a microscopic rounded surface to the cutting edge of the tool. When running tools at finishing speeds and feeds in materials like aluminum, a sharp edge can create the difference between a finished part that does – or does not – pass final inspection.