Spot Drilling: The First Step to Precision Drilling

Drilling an ultra-precise hole can be tough. Material behavior, surface irregularities, and drill point geometry can all be factors leading to inaccurate holes. A Spot Drill, if used properly, will eliminate the chance of drill walking and will help to ensure a more accurate final product.

Choosing a Spot Drill

Ideally, the center of a carbide drill should always be the first point to contact your part. Therefore, a spotting drill should have a slightly larger point angle than that of your drill. Common drill point angles range from 118° to 140° and larger. Shallower drill angles are better suited to harder materials like steels due to increased engagement on the cutting edges. Aluminums can also benefit from these shallower angles through increased drill life. While these drills wear less and more evenly, they are more prone to walking, therefore creating a need for a proper high performance spot drill in a shallow angle to best match the chosen drill.

Five Valor holemaking high performance spot drills displayed on top of a workpiece with a purple product packaging container in front

If a spotting drill with a smaller point angle than your drill is used, your drill may be damaged due to shock loading when the outer portion of its cutting surface contacts the workpiece before the center. Using a drill angle equal to the drill angle is also an acceptable situation. Figure 1 illustrates the desired effect. On the left, a drill is entering a previously drilled spot with a slightly larger angle than its point. On the right, a drill is approaching an area with an angle that is far too small for its point.

Proper Spot Angle Diagram

Marking Your Spot

A Spotting Drill’s purpose is to create a small divot to correctly locate the center of a drill when initiating a plunge. However, some machinists choose to use these tools for a different reason – using it to chamfer the top of drilled holes. By leaving a chamfer, screw heads sit flush with the part once inserted.

Spot Drill

What Happens if I Use a Spot Drill with an Improper Angle?

Using a larger angle drill will allow the drill to find the correct location by guiding the tip of the drill to the center. If the outer diameter of a carbide drill were to contact the workpiece first, the tool could chip. This would damage the workpiece and result in a defective tool. If the two flutes of the drill were slightly different from one another, one could come into contact before the other. This could lead to an inaccurate hole, and even counteract the purpose of spot drilling in the first place.

Avoiding CNC Drill Walking With a Spotting Drill

Few CNC machining applications demand precision like drilling. The diameter hole size, hole depth, part location, and finish are all important and provide little recourse if not up to specifications. That said, accuracy is paramount – and nothing leads to inaccurate final parts faster than drill walking, or the inadvertent straying from a drill’s intended location during the machining process. So how does drill walking occur, and how can one prevent it?

To understand drill walking, think about the act of striking a nail with a hammer, into a piece of wood. Firm contact to a sharp nail into an appropriate wood surface can result in an accurate, straight impact. But if other variables come into play – an uneven surface, a dull nail, an improper impact – that nail could enter a material at an angle, at an inaccurate location, or not at all. With CNC Drilling, the drill is obviously a critical element to a successful operation – a sharp, unworn cutting tool – when used properly, will go a long way toward an efficient and accurate final part.

To mitigate any variables working against you, such as an uneven part surface or a slightly used drill, a simple way to avoid “walking” is to utilize a Spotting Drill. This tool is engineered to leave a divot on the face of the part for a drill to engage during the holemaking process, keeping it properly aligned to avoid a drill from slipping off course.

When Won’t a Spot Drill Work for My Application?

When drilling into an extremely irregular surface, such as the side of a cylinder or an inclined plane, this tool may not be sufficient to keep holes in the correct position. For these applications, flat bottom versions or Flat Bottom Counterbores may be needed to creating accurate features.

Harvey tool spot drill zoomed in on the tip of the drill
Harvey Tool Spot Drill

Harvey Tool Coatings: Maximizing Tool Performance

Proper tool coating plays a large role during the selection of a CNC cutting tool. At Harvey Tool, coatings are optimized for specific materials and alloys to ensure the highest tooling performance, possible. Each coating offers a unique benefit for the cutting tool: increased strength, enhanced lubricity, heat resistance, and wear mitigation, just to name a few.  

In Benefits of Tool Coatings, the method of applying coatings to tools is examined. In this post, we’ll take a closer look at each Harvey Tool coating to examine its key properties, and to help you decide if it might add a boost to your next CNC application.

Harvey Tool offers a wide range of tool coating options for both ferrous and exotic materials, as well as non-ferrous and non-metallic materials. In the Harvey Tool catalog, coatings are often denoted in a -C# at the end of the product part number.

Harvey Tool Coating Gallery

Harvey Tool Coatings for Ferrous and Exotic Materials

TiN

TiN, or Titanium Nitride (-C1), is a mono-layer coating meant for general purpose machining in ferrous materials. TiN improves wear resistance over uncoated tools and aids in decreasing built-up edge during machining. This coating, however, is not recommended for applications that generate extreme heat as its max working temperature is 1,000 °F. TiN is also not as hard as AlTiN and AlTiN Nano, meaning its less durable and may have a shorter tool life.

Harvey Tool 46062 Tin Tool Coating

Harvey Tool 46062-C1

AlTiN

AlTiN, or Aluminum Titanium Nitride (-C3), is a common choice for machinists aiming to boost their tool performance in ferrous materials. This coating has a high working temperature of 1,400 °F, and features increased hardness. AlTiN excels in not only dry machining, due to its increased lubricity, but also in machining titanium alloys, Inconel, stainless alloys, and cast iron. To aid in its high heat threshold, the aluminum in this coating coverts to aluminum oxide at high temperatures which helps insulate the tool and transfer its heat into the formed chips.

altin tool coating 823816-C3

Harvey Tool 823816-C3

AlTiN Nano

AlTiN Nano or Aluminum Titanium Nitride Nano (-C6) is Harvey Tool’s premium coating for ferrous applications. This coating improves upon AlTiN by adding silicon to further increase the max working temperature to 2,100 °F while also increasing its hardness for increased tool life during demanding applications. Due to its penchant for demanding applications, AlTiN is recommended for hardened steels, hardened stainless, tool steels, titanium alloys, and aerospace materials. These applications often create high levels of heat that AlTiN Nano was designed to combat.

altin nano tool coating

Harvey Tool 843508-C6

harvey tool coating zoomed in

Tool Coatings for Non-Ferrous and Non-Metallic Materials

TiB2

TiB2, or Titanium Diboride (-C8), is Harvey Tool’s “bread and butter” coating for non-abrasive aluminum alloys and magnesium alloys, as it has an extremely low affinity to aluminum as compared to other coatings. Aluminum creates lower working temperatures than ferrous materials, so this coating has a max working temperature of of a suitable 900 °F. TiB2 prevents built-up edge and chip packing, further extending its impressive tool life. TiB2 is not recommended for abrasive materials as the carbide is slightly weakened during the coating process. These materials can cause micro fractures that may damage the tool at high RPMs.

TiB2 can be found on a wide variety of Harvey Tool 2 and 3 flute tools as the premium option for high performance in aluminum alloys.

tib2 tool coating

Harvey Tool 820654-C8

ZrN

ZrN, or Zirconium Nitride (-C7), is a general-purpose coating for a wide variety of non-ferrous materials, including abrasive aluminum alloys. This tool coating is a lower cost alternative to diamond coatings, while still boasting impressive performance through its high hardness levels and overall abrasion resistance. ZrN has a max working temperature of 1,110 °F with strong lubricity in abrasive alloys. This coating is best suited for abrasives, such as brass, bronze, and copper, as well as abrasive aluminum alloys that should not be used with TiB2.

zrn tool coating

Harvey Tool 27912-C7

CVD Diamond Tool Coatings

CVD Diamond, or Crystalline CVD Diamond, is a process where the coating is grown directly onto the carbide end mill. This process dramatically improves hardness over other coatings, improving tool life and abrasion resistance while also allowing for higher feed rates. The trade-off for increased wear resistance is a slight rounding of the cutting edge due to the coating application. Due to its increased wear resistance, CVD is best suited for highly abrasive materials such as graphite, composites, green carbide, and green ceramics. Similarly, these tool coatings have a max working temperature of 1,100 °F, meaning they are not well suited for ferrous applications.

Harvey Tool’s CVD Diamond Coating Options:

diamond tool coatings
Amorphous, CVD 4 μm, CVD 9 μm, PCD Diamond

CVD Diamond (4 μm)

The 4 μm is thinner than the 9 μm allowing for a sharper cutting edge, which in effect leaves a smoother finish.

CVD Diamond 9 μm)

The 9 μm CVD tool coating offers improved wear resistance over the 4 μm CVD and Amorphous coatings due to its increased coating thickness.

Amorphous Diamond

Amorphous Diamond (-C4) is a PVD diamond coating which creates an exceptionally sharp edge as compared to CVD. This coating aids in performance and finish in abrasive non-ferrous applications, as it allows for greatly improved abrasion resistance during machining, while still maintaining a sharp cutting edge necessary for certain abrasives. Due to the thinness of the coating, edge rounding is prevented in relation to CVD diamond tooling. Amorphous Diamond is best suited for use in abrasive plastics, graphite, and carbon fiber, as well as aluminum and aluminum alloys with high silica content, due to their abrasiveness. The max working temp is only 750 °F, so it is not suited for use in ferrous machining applications.

Harvey Tool 809362-C4

PCD Diamond

PCD Diamond, or Polycrystalline Diamond, is a tool coating that is brazed onto the carbide body. In comparison to the other diamond coatings, PCD does not face the same challenges of other coatings as it pertains to rounded cutting edges, as these edges are ground sharp. PCD has the edge benefits of Amorphous Diamond with the abrasion resistance of CVD Diamond. PCD is the thickest diamond layer offered by Harvey Tool, and excels due to its incredible hardness and abrasion resistance. This tool is best suited for all forms of abrasive, non-ferrous materials including abrasive plastics, graphite, carbon fiber, and composites. Similar to the other non-ferrous tool coatings, PCD is not suited for ferrous applications due to its working temperature of 1,100 °F.

pcd diamond

Harvey Tool 12120

Tool Coating Summary

When deciding on a coating for your application there are many factors to be considered. Different coatings often cross several applications with performance trade-offs between all of them. Harvey Tool offers a “Material Specific Selection” that allows users to choose tooling based upon what materials they are working with. Further, Harvey Tool’s technical team is always a phone call away to help in finding the right tool for your specific applications at 1-800-645-5609. Also, you can contact Harvey Tool via e-mail.

8 Unique Facts About Thread Forming Taps

Unlike most CNC cutting tools, Thread Forming Taps, otherwise known as Form Taps, Forming Taps, or Roll Taps, work by molding the workpiece rather than cutting it. Because of this, Form Taps do not contain any flutes, as there is no cutting action taking place, nor are there any chips to evacuate. Below are 8 unique facts of Thread Forming Taps (and some may surprise you).

1. Chips Aren’t Formed

When using a Form Tap, chips are not formed, nor is any part material evacuated (Yes, you read that right). With thread forming, the tool is void of any flutes, as chip evacuation is not a concern. Form Taps quite literally mold the workpiece, rather than cut it, to produce threads. Material is displaced within a hole to make way for the threads being formed.

Increase Your Tapping Efficiency 20x With Titan USA’s Thread Form Taps

2. Cutting Oils Allow for Reduced Friction & Heat Generation

Did you know that Thread Forming Taps require good lubrication? But why is that the case if chips are not being evacuated, and how does lubrication enter the part with such a limited area between the tool and the perimeter of the hole being threaded? Despite the fact that chips aren’t being formed or evacuated, cutting oils aid the Form Tap as it interacts with the part material, and reduces friction and heat generation. Lube vent grooves are narrow channels engineered into the side of Forming Taps that are designed to provide just enough room for lubricant to make its way into – and out of – a part.

titan usa thread forming tool

Not all materials are well suited for Thread Forming Taps. In fact, attempting to use a tap in the wrong material can result in significant part and tool damage. The best materials for this unique type of operation include aluminum, brass, copper, 300 stainless steel, and leaded steel. In other words, any material that leaves a stringy chip is a good candidate for cold forming threads. Materials that leave a powdery chip, such as cast iron, are likely too brittle, resulting in ineffective, porous threads.

4. Threads Produced Are Stronger Than Conventional Tapping Threads

Thread forming produces much stronger threads than conventional tapping methods, due to the displacements of the grain of the metal in the workpiece. Further, cutting taps produce chips, which may interfere with the tapping process.

5. Chip Evacuation is Never a Concern With Thread Forming

In conventional tapping applications, as with most machining applications, chip evacuation is a concern. This is especially true in blind holes, or holes with a bottom, as chips created at the very bottom of the hole oftentimes have a long distance to travel before being efficiently evacuated. With form taps, however, chip removal is never a concern.

6. Form Taps Offer Extended Tool Life

Thread Forming Taps are incredibly efficient, as their tool life is substantial (Up to 20x longer than cutting taps), as they have no cutting edges to dull. Further, Thread Forms can be run at faster speeds (Up to 2x faster than Cutting Taps).

Pro Tip: To prolong tool life even further, opt for a coated tool. Titan USA Form Taps, for example, are fully stocked in both uncoated and TiN coated styles.

titan usa thread forming tool on stack of red product packaging containers

7. A Simple Formula Will Help You Find the Right Drill Size

When selecting a Tap, you must be familiar with the following formula, which will help a machinist determine the proper drill size needed for creating the starter hole, before a Thread Forming Tap is used to finish the application:

Drill Size = Major Diameter – [(0.0068 x desired % of thread) / Threads Per Inch]
Drill Size (mm) = Major Diameter – [(0.0068 x desired % of thread x pitch (mm)]

two titan usa thread form taps

8. Thread Forming Taps Need a Larger Hole Size

  1. Thread Form Taps require a larger pre-tap hole size than a cutting tap. This is because these tools impact the sides of the hole consistently during the thread forming process. If the pre-tap hole size is too small, the tool would have to work too hard to perform its job, resulting in excessive tool wear, torque, and possible breakage.

As an example, a ¼-20 cut tap requires a #7 drill size for the starter hole, whereas a ¼-20 roll tap requires a #1 drill size for 65% thread.

How to Optimize Results While Machining With Miniature End Mills

 The machining industry generally considers micromachining and miniature end mills to be any end mill with a diameter under 1/8 of an inch. This is also often the point where tolerances must be held to a tighter window. Because the diameter of a tool is directly related to the strength of a tool, miniature end mills are considerably weaker than their larger counterparts, and therefore, lack of strength must be accounted for when micromachining. If you are using these tools in a repetitive application, then optimization of this process is key.

Size comparison chart with square miniature end mill, ant leg, human hair, and grains of salt
Size Comparison for Harvey Tool’s #13901 Square Miniature End Mill

Key Cutting Differences Between Conventional and Miniature End Mills

Runout

Runout during an operation has a much greater effect on miniature tools, as even a very small amount can have a large impact on the tool engagement and cutting forces. Runout causes the cutting forces to increase due to the uneven engagement of the flutes, prompting some flutes to wear faster than others in conventional tools, and breakage in miniature tools. Tool vibration also impacts the tool life, as the intermittent impacts can cause the tool to chip or, in the case of miniature tools, break. It is extremely important to check the runout of a setup before starting an operation. The example below demonstrates how much of a difference .001” of runout is between a .500” diameter tool and a .031” diameter tool.

chart comparing tool diameter for runout in micromachining with miniature end mills
The runout of an operation should not exceed 2% of the tool diameter. Excess runout will lead to a poor surface finish.

Chip Thickness

The ratio between the chip thickness and the edge radius (the edge prep) is much smaller for miniature tools. This phenomena is sometimes called “the size effect” and often leads to an error in the prediction of cutting forces. When the chip thickness-to-edge radius ratio is smaller, the cutter will be more or less ploughing the material rather than shearing it. This ploughing effect is essentially due to the negative rake angle created by the edge radius when cutting a chip with a small thickness.

If this thickness is less than a certain value (this value depends of the tool being used), the material will squeeze underneath the tool. Once the tool passes and there is no chip formation, part of the plowed material recovers elastically. This elastic recovery causes there to be higher cutting forces and friction due to the increased contact area between the tool and the workpiece. These two factors ultimately lead to a greater amount of tool wear and surface roughness.

chart of edge radius in relation to chip thickness for micromachining
Figure 1: (A) Miniature tool operation where the edge radius is greater than the chip thickness (B) Conventional operation where the edge radius is small than the chip thickness

Tool Deflection in Conventional vs. Micromachining Applications

Tool deflection has a much greater impact on the formation of chips and accuracy of the operation in micromachining operations, when compared to conventional operations. Cutting forces concentrated on the side of the tool cause it to bend in the direction opposite the feed. The magnitude of this deflection depends upon the rigidity of the tool and its distance extended from the spindle. Small diameter tools are inherently less stiff compared to larger diameter tools because they have much less material holding them in place during the operation. In theory, doubling the length sticking out of the holder will result in 8 times more deflection. Doubling the diameter of an end mill it will result in 16 times less deflection. If a miniature cutting tool breaks on the first pass, it is most likely due to the deflection force overcoming the strength of the carbide. Here are some ways you can minimize tool deflection.

Workpiece Homogeny

Workpiece homogeny becomes a questionable factor with decreasing tool diameter. This means that a material may not have uniform properties at an exceptionally small scale due to a number of factors, such as container surfaces, insoluble impurities, grain boundaries, and dislocations. This assumption is generally saved for tools that have a cutter diameter below .020”, as the cutting system needs to be extremely small in order for the homogeny of the microstructure of the material to be called into question.

Surface Finish

Micromachining may result in an increased amount of burrs and surface roughness when compared to conventional machining. In milling, burring increases as feed increases, and decreases as speed increases. During a machining operation, chips are created by the compression and shearing of the workpiece material along the primary shear zone. This shear zone can be seen in Figure 2 below. As stated before, the chip thickness-to-edge radius ratio is much higher in miniature applications. Therefore, plastic and elastic deformation zones are created during cutting and are located adjacent to the primary shear zone (Figure 2a). Consequently, when the cutting edge is close to the border of the workpiece, the elastic zone also reaches this border (Figure 2b). Plastic deformation spreads into this area as the cutting edge advances, and more plastic deformation forms at the border due to the connecting elastic deformation zones (Figure 2c). A permanent burr begins to form when the plastic deformation zones connect (Figure 2d) and are expanded once a chip cracks along the slip line (Figure 2e). When the chips finally break off from the edge of the workpiece, a burr is left behind (Figure 2f).

burr formation mechanism using a miniature end mill
Figure 2: Burr formation mechanism using a miniature end mill 

Tool Path Best Practices for Miniature End Mills

Because of the fragility of miniature tools, the tool path must be programmed in such a way as to avoid a sudden amount of cutting force, as well as permit the distribution of cutting forces along multiple axes. For these reasons, the following practices should be considered when writing a program for a miniature tool path:

Ramping Into a Part

Circular ramping is the best practice for moving down axially into a part, as it evenly distributes cutting forces along the x, y, and z planes. If you have to move into a part radially at a certain depth of cut, consider an arching tool path as this gradually loads cutting forces onto the tool instead of all at once.

Micromachining in Circular Paths

You should not use the same speeds and feed for a circular path as you would for a linear path. This is because of an effect called compounded angular velocity. Each tooth on a cutting tool has its own angular velocity when it is active in the spindle. When a circular tool path is used, another angular velocity component is added to the system and, therefore, the teeth on the outer portion of tool path are traveling at a substantially different speed than expected. The feed of the tool must be adjusted depending on whether it is an internal or external circular operation. To find out how to adjust your feed, check out this article on running in circles.

Slotting with a Miniature End Mill

Do not approach a miniature slot the same way as you would a larger slot. With a miniature slot, you want as many flutes on the tool as possible, as this increases the rigidity of the tool through a larger core. This decreases the possibility of the tool breaking due to deflection. Because there is less room for chips to evacuate with a higher number of flutes, the axial engagement must be decreased. With larger diameter tools you may be stepping down 50% – 100% of the tool diameter. But when using miniature end mills with a higher flute count, only step down between 5% – 15%, depending on the size of the diameter and risk of deflection. The feed rate should be increased to compensate for the decreased axial engagement. The feed can be increased even high when using a ball nose end mill as chip thinning occurs at these light depths of cut and begins to act like a high feed mill.

Slowing Down Your Feed Around Corners

Corners of a part create an additional amount of cutting forces as more of the tool becomes engaged with the part. For this reason it is beneficial to slow down your feed when machining around corners to gradually introduce the tool to these forces.

Climb Milling vs. Conventional Milling in Micromachining Applications

This is somewhat of a tricky question to answer when it comes to micromachining. Climb milling should be utilized whenever a quality surface finish is called for on the part print. This type of tool path ultimately leads to more predictable/lower cutting forces and therefore higher quality surface finish. In climb milling, the cutter engages the maximum chip thickness at the beginning of the cut, giving it a tendency to push away from the workpiece. This can potentially cause chatter issues if the setup does not have enough rigidity.  In conventional milling, as the cutter rotates back into the cut it pulls itself into the material and increases cutting forces. Conventional milling should be utilized for parts with long thin walls as well as delicate operations.

Combined Roughing and Finishing Operations

These operations should be considered when micromachining tall thin walled parts as in some cases there is not sufficient support for the part for a finishing pass.

Helpful Tips for Achieving Successful Micromachining Operations With Miniature End Mills

Try to minimize runout and deflection as much as possible when micromachining with miniature end mills. This can be achieved by using a shrink-fit or press-fit tool holder. Maximize the amount of shank contact with the collet while minimizing the amount of stick-out during an operation. Double check your print and make sure that you have the largest possible end mill because bigger tools mean less deflection.

  • Choose an appropriate depth of cut so that the chip thickness to edge radius ratio is not too small as this will cause a ploughing effect.
  • If possible, test the hardness of the workpiece before machining to confirm the mechanical properties of the material advertised by the vender. This gives the operator an idea of the quality of the material.
  • Use a coated tool if possible when working in ferrous materials due to the excess amount of heat that is generated when machining these types of metals. Tool coatings can increase tool life between 30%-200% and allows for higher speeds, which is key in micro-machining.
  • Consider using a support material to control the advent of burrs during a micromachining application. The support material is deposited on the workpiece surface to provide auxiliary support force as well as increase the stiffness of the original edge of the workpiece. During the operation, the support material burrs and is plastically deformed rather than the workpiece.
  • Use flood coolant to lower cutting forces and a greater surface finish.
  • Scrutinize the tool path that is to be applied as a few adjustments can go a long way in extending the life of a miniature tool.
  • Double-check tool geometry to make sure it is appropriate for the material you are machining. When available, use variable pitch and variable helix tools as this will reduce harmonics at the exceptionally high RPMs that miniature tools are typically run at.
side-by-side view of two end mills comparing variable pitch versus non-variable pitch
Figure 3: Variable pitch tool (yellow) vs. a non-variable pitch tool (black)

An In-Depth Look at Helical’s Tplus Coating for End Mills

When working with difficult-to-machine materials, such as Inconel, stainless steel, or hardened steels, utilizing an effective coating is important for sustaining the life of your tool and perfecting the outcome of your part. While looking for the right coating, many machinists try out several before finding a solution that works – a process that wastes valuable time and money. One coating gaining popularity in applications involving tough materials is Helical SolutionsTplus coating. This post will explore what Tplus coating is (and isn’t), and when it might be best for your specific job.

tplus coating on helical end mill

What is Helical Solutions’ Tplus Coating?

Helical’s Tplus coating is a Titanium-based, multi-layered coating that is applied by a Physical Vapor Deposition (PVD) process. This method of coating takes place in a near-vacuum and distributes micron-thick layers evenly onto a properly prepared tool.  Tplus is a premium, multi-layered, titanium coating that increases edge strength, wear resistance, and tool life.

tplus coating specification chart

When Should a Machinist Use Tplus Coating?

When Working in Difficult to Machine Materials

Tplus coating works great in difficult-to-machine materials such as Inconel, stainless steel, hardened steels, and other alloyed steels with a hardness up to 65 Rc. It provides high hardness (44 GPa) for your tool, creating stronger cutting edges and resulting in extended tool life.

When Working in High Temperature Applications

When you are running an application in a ferrous material where extreme heat and work hardening are a possibility, Tplus is a great solution, as it’s designed to withstand high temperatures (up to 2,192°).

Helical Solutions’ 7 Flute Tplus End Mill

In Dry Machining Applications

In the absence of coolant, fear not! Tplus coating is a viable option since it can handle the heat of machining. The low coefficient of friction (0.35) guarantees great performance in dry machining and allows the coated tool to move throughout the part smoothly, creating less heat, which is extremely beneficial in applications without coolant.

In Large Production Runs

In high production runs is truly where this coating excels, as its properties allow your tool to remain in the spindle longer – creating more parts by avoiding time in swapping out a worn tool.

What to Know About Harvey Tool’s TiB2 Coating

Aluminum and magnesium alloys are common materials found in machine shops worldwide, and are known as an “easier” material to machine. However, machinists can still experience hiccups while machining this material if they are not prepared with the proper tooling.. When working with aluminum and magnesium alloys, it is important to choose a coating that will work to extend your tool’s life and aid in the removal of chips. A popular choice for this material bucket is Harvey Tool’s TiB2 coating.

Explore More TiB2 Tooling With Harvey Tool’s End Mills for Aluminum

What is Harvey Tool’s TiB2 Coating?

Harvey Tool’s TiB2 coating is a Titanium Diboride, ceramic-based coating that provides superb erosion resistance during machining. TiB2 is added to a tool by a method called Physical Vapor Deposition (PVD), which is conducted in a vacuum where particles are vaporized and applied onto a surface, forming thin layers of material onto the properly-prepped tool. This method enables the coating to be corrosion and tarnish resistant.

TiB2 Coating Specification chart

TiB2 is identified in Harvey Tool’s product catalog with a “-C8” following the sku number. It can be found offered in Harvey Tool’s lines of Variable Helix End Mills for Aluminum Alloys and Miniature High Performance Drills for Aluminum Alloys.

When Should a Machinist Use TiB2 Coating?

Chip Evacuation Concerns

TiB2 has an extremely low affinity to aluminum, which helps with the chip evacuation process. Simply, chips of a material are able to evacuate through chip valleys easier if they don’t have a high affinity to the coating being used. TiB2 coating does not chemically react with aluminum and magnesium, which allows for smoother chip evacuation, as the chips do not stick to the coating and create issues such as chip packing. This is a common machining mishap that can cause both part and tool damage, quickly derailing a machining operation. By using a coating that increases the lubricity of the tool, chips will not have a surface to stick to and will more smoothly evacuate from the flutes of the tool.

tib2 coated cnc end mill

Large Production Runs

While an uncoated tool may work fine in some applications, not all applications can succeed without a tool coating. When working with large production runs where the tools need to hold up through the process of machining large numbers of parts, using a coating is always recommended because they extend the life of your tool.

When is TiB2 Coating Not Beneficial to My Application?

Extremely Abrasive Materials

During the PVD coating process, tools can reach a temperature in excess of 500° F, which can cause the toughness of the carbide to drop slightly. This process does not normally compromise the performance of the tool due to the coating being placed over the carbide. The coating then protects the slightly weakened edge and increases tool performance in recommended materials. Micro-fractures only start appearing when the tool is being run incredibly fast through highly abrasive materials, leading to a decrease in the life of the tool.

Extremely Soft Materials

The coating, while only a few microns thick at most, still provides an ever-so-slight rounded edge to the cutting edge of the tools it is placed on. It is important to take this into consideration, as using the sharpest tools possible when working with materials such as soft plastics is recommended. The sharpest edge possible decreases the likelihood of any “pushing” that might occur on the material and increases the likelihood of proper “shearing” when machining.

When Finish Is Vital

If your part’s finish is imperative to the final product, an uncoated tool may work better for your application. A coating, like stated above, creates a microscopic rounded surface to the cutting edge of the tool. When running tools at finishing speeds and feeds in materials like aluminum, a sharp edge can create the difference between a finished part that does – or does not – pass final inspection.

How to Extend the Life of Your End Mill

Breaking and damaging an end mill is oftentimes an avoidable mistake that can be extremely costly for a machine shop. To save time, money, and your end mill it is important to learn some simple tips and tricks to extend tool life.

Properly Prepare Before the Tool Selection Process

The first step of any machining job is selecting the correct end mill for your material and application. However, this doesn’t mean that there should not be an adequate amount of legwork done beforehand to ensure the right decision on a tool is being made. Harvey Tool, Helical Solutions, Titan USA, and Corehog have thousands of different tools for different operations – a vast selection which, if unprepared – can easily result in selecting a tool that’s not the best for your job. To start your preparation, answer the 5 Questions to Ask Before Selecting an End Mill to help you quickly narrow down your selection and better understand the perfect tool you require.

Understand Your Tooling Requirements

It’s important to understand not only what your tool needs, but also general best practices to avoid common machining mishaps. For instance, it is important to use a tool with a length of cut only as long as needed, as the longer a tools length of cut is, the greater the chance of deflection or tool bending, which can decrease its effective life.

end mill being fed coolant cutting into a workpiece to extend tool life

Another factor to consider is the coating composition on a tool. Harvey Tool and Helical Solutions offer many varieties of tool coatings for different materials. Some coatings increase lubricity, slowing tool wear, while others increase the hardness and abrasion resistance of the tool. Not all coatings increase your tool’s life in every material, however. Be wary of coatings that don’t perform well in your part’s material – such as the use of AlTiN coating in Aluminum (Both coating and material are aluminum-based and have a high affinity for each other, which can cause built-up edge and result in chip evacuation problems).

Consider Variable Helix & Pitch Geometry

A feature on many of our high performance end mills is variable helix or variable pitch geometry, which have differently-spaced flutes. As the tool cuts, there are different time intervals between the cutting edges contacting the workpiece, rather than simultaneously on each rotation. The varying time intervals minimizes chatter by reducing harmonics, increasing tool life and producing better results.

Ensure an Effective Tool Holding Strategy

Another factor in prolonging tool life is proper tool holding. A poor tool holding strategy can cause runout, pullout, and scrapped parts. Generally, the most secure connection has more points of contact between the tool holder and tool shank. Hydraulic and Shrink Fit Tool Holders provide increased performance over other tightening methods.

three different end mills in tool holders

Helical also offers shank modifications to all stocked standards and special quotes, such as the ToughGRIP Shank, which provides added friction between the holder and the shank of the tool for a more secure grip; and the Haimer Safe-Lock™, which has grooves on the shank of the tool to help lock it into place in a tool holder.

massive helical end mill in machinists hand

Trust Your Running Parameters, and their Source

After selecting the correct end mill for your job, the next step is to run the tool at the proper speeds and feeds.

Run at the Correct Speed

Understanding the ideal speed to run your machine is key to prolonging tool life. If you run your tool too fast, it can cause suboptimal chip size, ineffective chip evacuation, or even total tool failure. Adversely, running your tool too slowly can result in deflection, bad finish, or decreased metal removal rates.

Push at the Best Feed Rate

Another critical parameter of speeds and feeds is finding the best possible feed rate for your job, for sake of both tool life and achieving maximum shop efficiency. Pushing your tool too aggressively can result in breakage, but being too conservative can lead to recutting chips and excess heat generation, accelerating tool wear.

Use Parameters from Your Tooling Manufacturer

A manufacturer’s speeds and feeds calculations take into account every tool dimension, even those not called out in a catalog and readily available to machinists. Because of this, it’s best to rely on running parameters from tooling manufacturers. Harvey Tool offers speeds and feeds charts for every one of its more than 21,000 tools featured in its catalog, helping machinists to confidently run their tool the first time.

Harvey Performance Company offers the Machining Advisor Pro application, a free, cutting-edge resource that generates custom running parameters for optimized machining with all of Helical Solutions’ and Harvey Tool’s products.

machining advisor pro graphic for pc, laptops, and other devices

Opt for the Right Milling Strategy: Climb vs Conventional

There are two ways to cut material when milling: Climb Milling and Conventional Milling. In conventional milling, the cutter rotates against the feed. In this method, chips will start at theoretical zero and increase in size. Conventional milling is usually recommended for tools with higher toughness, or for breaking through case hardened materials.

In Climb Milling, the cutter rotates with the feed. Here, the chips start at maximum width and decrease, causing the heat generated to transfer into the chip instead of being left in the tool or work piece. Climb milling also produces a cleaner shear plane, causing less rubbing, decreasing heat, and improving tool life. When climb milling, chips will be removed behind the cutter, reducing your chances of recutting.

Utilize High Efficiency Milling

High Efficiency Milling (HEM), is a roughing technique that uses the theory of chip thinning by applying a smaller radial depth of cut (RDOC) and a larger axial depth of cut (ADOC). The parameters for HEM are similar to that of finishing, but with increased speeds and feeds, allowing for higher material removal rates (MRR). HEM utilizes the full length of cut instead of just a portion of the cutter, allowing heat to be distributed across the cutting edge, maximizing tool life and productivity. This reduces the possibility of accelerated tool wear and breakage.

Decide On Coolant Usage & Delivery

Coolant can be an extremely effective way to protect your tool from premature wear and possible tool breakage. There are many different types of coolant and methods of delivery to your tool. Coolant can come in the form of compressed air, water-based, straight oil-based, soluble oil-based, synthetic or semi-synthetic. It can be delivered as mist, flood, high pressure or minimum quantity lubricant.

Appropriate coolant type and delivery vary depending on your application and tool. For example, using a high pressure coolant with miniature tooling can lead to tool breakage due to the fragile nature of extremely small tools. In applications of materials that are soft and gummy, flood coolant washes away the long stringy chips to help avoid recutting and built-up edge, preventing extra tool wear.

Extend Your Tool’s Life

The ability to maximize tool life saves you time, money and headaches. To get the best possible outcome from your tool, you first need to be sure you’re using the best tool for your job. Once you find your tool, ensure that your speeds and feeds are accurate and are from your tooling manufacturer. Nobody knows the tools better than they do. Finally, think about how to run your tool: the rotation of your cutter, whether utilizing an HEM approach is best, and how to introduce coolant to your job.

Workholding Styles & Considerations

Machinists have a number of variables to consider when setting up devices for a machining operation. When it comes to cnc workholding, there are some major differences between holding a loosely toleranced duplicate part with a 10-minute cycle time and holding a tightly toleranced specialized part with a 10-hour cycle time. Determining which method works best for your machining job is essential to maintaining an efficient operation.

CNC Workholding Devices

Ideal workholding devices have easily repeatable setups. For this reason, some machines have standard workholding devices. Vises are generally used with milling machines while chucks or collets are used when running a lathe machine. Sometimes, a part may need a customized cnc workholding setup in order to secure the piece properly during machining. Fixtures and jigs are examples of customized devices.

Fixtures and Jigs

A jig is a work holding device that holds, supports and locates a workpiece and guides the cutting tool into a specific operation (usually through the use of one or more bushings). A fixture is essentially the same type of device, but the main difference is that it does not guide the cutting tool into a specified operation. Fixtures are typically used in milling operations while jigs are generally used in drilling, reaming, tapping and boring. Jigs and fixtures are more precise relative to standard cnc workholding devices, which leads to tighter tolerances. They can also be indexable, allowing them to control the cutting tool movement as well as workpiece movement. Both jigs and fixtures are made up of the same basic components: fixture bodies, locators, supports, and clamps.

The 4 Fixture Bodies

There are 4 basic types of fixture bodies: faceplates, baseplates, angle plates, and tombstones.

Faceplates: Typically used in lathe operations, where components are secured to the faceplate and then mounted onto the spindle.

Baseplates: Common in milling and drilling operations and are mounted to the worktable.

Angle plates: Two plates perpendicular to each other but some are adjustable or customized to change the angle of the workpiece.

Tombstones: Large vertically oriented rectangular fixtures that orients a workpiece perpendicular to the worktable. Tombstones also have two sides to accommodate multiple parts.

cnc tombstone work holding fixture body

Locators

Locators are characterized by four criteria: assembled, integral, fixed, and adjustable. Assembled locators, can be attached and removed from the fixture, which is contrary to integral locators that are built into the fixture. Fixed locators allow for no moving components, while adjustable locators permit movement through the use of threads and/or springs, and can adjust to a workpiece’s size. These can be combined to provide the appropriate rigidity-assembly convenience ratio. For example, a V-locator fixture is the combination of assembled and fixed locators. It can be secured to a fixture but has no moving components.

cnc workholding showcasing a workpiece in v-locator

Supports

Supports do exactly what their name suggests, they support the workpiece during the machining process to avoid workpiece deformation. These components can double as locators and also come fixed, adjustable and integral, or assembled. Generally, supports are placed under the workpiece during manufacturing but this also depends on the geometry of the workpiece, the machine being operated and where the cutting tool will make contact. Supports can come in different shapes and sizes. For example, rest buttons are smaller support components used in series either from underneath the workpiece or from the sides. Concurrently, parallel supports are placed on either side of the part to provide general support.

cnc material support with parallel supports and rest buttons

Clamps

Clamps are devices used for strengthening or holding things together, and come in different shapes, sizes and strengths. Vises and chucks have movable jaws and are considered standard clamps. One atypical example is the toggle clamp, which has a pivot pin that acts as a fulcrum for a lever system. One of the more convenient types is a power clamping system. There are two type of power clamping methods: hydraulic and pneumatic.

cnc workholding clamps

Example of a standard fixture setup.

Hydraulic Workholding Systems

Hydraulic Systems create a gripping force by attaining power from compressing a liquid. This type of power clamp is generally used with larger workpieces as it usually takes up less space relative to pneumatic clamps.

Pneumatic clamps

Pneumatic clamps attain their gripping force from the power created by a compressed gas (usually air). These systems are generally bulkier and are used for smaller workpieces that require less room on the worktable. Power clamping offers a few advantages over conventional clamping. First, these systems can be activated and deactivated quickly to save on changeover time. Second, they place uniform pressure on the part, which help prevent errors and deformation. A significant disadvantage they pose is the cost of a system but this can be quickly offset by production time saved.

Key Guidelines to Follow

Lastly, there are a few guidelines to follow when choosing the appropriate CNC workholding fixture or jig setup.

Ensure Proper Tolerancing

The tolerances of the workholding device being used should be 20%-50% tighter than those of the workpiece.

Utilize Acceptable Locating & Supporting Pieces

Locating and supporting pieces should be made of a hardened material to prevent wear and allow for several uses without the workpieces they support falling out of tolerance. Supports and locators should also be standardized so that they can be easily replaced.

Place Workholding Clamps in Correct Locations

Clamps should be placed above the locations of supports to allow the force of the clamp to pass into the support without deforming the workpiece. Clamps, locators and supports should also be placed to distribute cutting forces as evenly as possible throughout the part. The setup should allow for easy clamping and not require much change over time

Maximize Machining Flexibility

The design of the fixture or jigs should maximize the amount of operations that can be performed in one orientation. During the machining operation, the setup should be rigid and stable.

Bottom Line

Workholding can be accomplished in a number of different ways and accomplish the same task of successfully gripping a part during a machining operation with the end result being in tolerance. The quality of this workholding may differ greatly as some setups will be more efficient than others. For example, there is no reason to create an elaborate jig for creating a small slot down the center of a rectangular brick of aluminum; a vise grip would work just fine. Maximizing the efficiency and effectiveness of an operators’ cnc workholding setup will boost productivity by saving on changeover, time as well as cost of scrapped, out of tolerance parts.

Drill / End Mills: Drill Style vs. Mill Style

Drill / End Mills are one of the most versatile tools in a machinist’s arsenal. These tools can perform a number of different operations, freeing space on your carousel and improving cycle times by limiting the need for tool changes. These operations include:

  1. Drilling
  2. V-Grooving
  3. Milling
  4. Spot Drilling
  5. Chamfering

Shop Harvey Tool Dill/End Mills Today – Fully Stocked in Multiple Styles

The ability of the Drill / End Mill to cut along the angled tip as well as the outer diameter gives it the range of operations seen above and makes it an excellent multi-functional tool.

5 unique drill mill operations

Drill Style vs. Mill Style

The main difference between Drill / End Mill styles is the point geometry.  They are defined by how the flutes are designed on the end of the tool, using geometry typically seen on either an end mill or a drill.  While mill style tools follow the features of an end mill or chamfer mill, the drill style geometry uses an S-gash at the tip.  This lends strength to the tip of the tool, while giving it the ability to efficiently and accurately penetrate material axially.  While both styles are capable of OD milling, mill style tools will be better for chamfering operations, while drill style will excel in drilling.  The additional option of the Harvey Tool spiral tipped Drill / End Mill is an unprecedented design in the industry.  This tool combines end geometry taken from our helical flute chamfer cutters with a variable helix on the OD for enhanced performance. Versatility without sacrificing finish and optimal performance is the result.

graphic showcasing the tool face differences between and mill and drill mills
Left to Right: 2 Flute Drill Style End, 2 Flute Mill Style End, 4 Flute Mill Style End

Drill Mills: Tool Offering

Harvey Tool currently offers Drill / End Mills in a variety of styles that can perform in different combinations of machining applications:

Mill Style – 2 Flute

This tool is designed for chamfering, milling, drilling non-ferrous materials, and light duty spotting. Drilling and spotting operations are recommended only for tools with an included angle greater than 60°. This is a general rule for all drill mills with a 60° point. Harvey Tool stocks five different angles of 2 flute mill-style Drill / End Mills, which include 60°, 82°, 90°, 100° and 120°. They are offered with an AlTiN coating on all sizes as well as a TiB2 coating for cutting aluminum with a 60° and 90° angle.

harvey tool 2 flute mill style drill end mill

Mill Style – 4 Flute

4 flute mill-style Drill / End Mills have two flutes that come to center and two flutes that are cut back. This Drill / End Mill is designed for the same operations as the 2 flute style, but has a larger core in addition the higher flute count. The larger core gives the tool more strength and allows it to machine a harder range of materials. The additional flutes create more points of contact when machining, leading to better surface finish. AlTiN coating is offered on all 5 available angles (60°, 82°, 90°, 100°, and 120°) of this tool for great performance in a wide array of ferrous materials.

harvey tool 4 flute mill style drill mill

Drill Style – 2 Flute

This tool is specifically designed for the combination of milling, drilling, spotting and light duty chamfering applications in ferrous and non-ferrous materials. This line is offered with a 90°, 120°, and 140° included angle as well as AlTiN coating.

2 flute drill mills drill style

Helical Tip – 4 Flute

The Helically Tipped Drill / End Mill offers superior performance in chamfering, milling and light duty spotting operations. The spiral tip design allows for exceptional chip evacuation and surface finish. This combined with an OD variable helix design to reduce chatter and harmonics makes this a valuable tool in any machine shop. It is offered in 60°, 90°, and 120° included angles and comes standard with the latest generation AlTiN Nano coating that offers superior hardness and heat resistance.

Attacking Aluminum: a Machining Guide

Aluminum is one of the most commonly machined materials, as most forms of the material feature excellent machinability, and is thus a commonly used material in manufacturing. Because of this, the competition for aluminum machining can be intense. Understanding the basics behind tool selection, running parameters, and advanced milling techniques for aluminum can help machinists earn a competitive advantage.

Material Properties

Aluminum is a highly formable, workable, lightweight material. Parts made from this material can be found in nearly every industry. Additionally, Aluminum has become a popular choice for prototypes due to its low-cost and flexibility.

Aluminum is available in two basic forms: Cast and Wrought. Wrought Aluminum is typically stronger, more expensive, and contains a lower percentage of outside elements in its alloys. Wrought Aluminum is also more heat-resistant than Cast and has a higher level of machinability.

Cast Aluminum has less tensile strength but with a higher flexibility. It costs less, and has higher percentages of outside elements (silicon, magnesium, etc.) in its alloys, making it more abrasive than Wrought.

Shop Helical Solutions’ End Mills for Aluminum & Non-ferrous Materials

Tool Geometry

There are a few coating options available for Aluminum tooling, including the popular gold-colored ZrN (Zirconium Nitride) and the lesser known but highly effective TiB2 (Titanium Diboride). Uncoated tooling can also provide solid machining performance. However, the real key to high performance machining in Aluminum is knowing the proper flute count and helix angle required for your operation.

Flute Count

End mills for aluminum are often available in either 2 flute or 3 flute styles. With higher flute counts, it would become difficult to evacuate chips effectively at the high speeds at which you can run in aluminum. This is because aluminum alloys leave a large chip, and chip valleys become smaller with each additional flute on an end mill.

2, 3, and 4 flute count for aluminum

Traditionally, 2 flute end mills have been the preferred choice for Aluminum. However, 3 flute end mills have proven to be more successful in many finishing operations, and with the right parameters they can also work successfully as roughers. While much of the debate between 2 and 3 flute end mills for Aluminum boils down to personal preference, the operation, rigidity, and desired material removal rates can also have an effect on tool selection.

Helix Angles

The helix angle of a tool is measured by the angle formed between the centerline of the tool and a straight line tangent along the cutting edge. Cutting tools for aluminum typically feature higher helix angles than standard end mills. Specialized helix angles for Aluminum are typically either 35°, 40°, or 45°. Variable helix tools are also available and make a great choice for reducing chatter and harmonics while also increasing material removal rates.

35, 40, and 45 degree helix choices for Aluminum Machining end mills

A helix angle of 35° or 40° is a good choice for traditional roughing and slotting applications. A 45° helix angle is the preferred choice for finishing, but also for High Efficiency Milling toolpaths as the high helix angle wraps around the tool faster and makes for a more aggressive cut.

Tooling Options

When machining aluminum, standard 2 or 3 flute tools will often get the job done. However, for certain applications and machine setups there are some more tooling options to consider for even better performance.

helical solutions end mills for aluminum and non-ferrous materials ad

Chipbreaker Tooling

One of the most important things to consider when machining aluminum (and many other materials) is effective chip evacuation. Standard 2-3 flute end mills running at recommended speeds and feeds and proper chip loads can evacuate chips fairly well. However, 3 flute chipbreaker tooling can run at increased speed and feed rates for even better performance. The unique offset chip breaker geometry creates smaller chips for optimal evacuation while still leaving a semi-finished surface.

two Chipbreaker Aluminum end mills

These tools are excellent for more advanced toolpaths like High Efficiency Milling, which is another important tool for a successful aluminum machining experience.

High Balance End Mills

High balance end mills are designed to significantly increase performance in highly balanced machining centers capable of elevated RPMs and feed rates. These tools are precision balanced specifically for high velocity machining in aluminum (up to 33,000 RPM).

Zoomed in image of helical solutions High Balance coolant through Tool for Aluminum

Helical Solutions offers high balance tooling in standard 2 flute styles, as well as coolant-through 3 flute styles for reduced heat, enhanced chip evacuation, and increased material removal rates. These tools, like the chipbreakers, are also an excellent choice for High Efficiency Milling toolpaths.

Running Parameters

Setting the right parameters for aluminum applications is vital to optimizing productivity and achieving better machining results. Since aluminum is an easier material to machine, pushing your machine to its limits and getting the most out of your tool is vital to stay ahead of the competition and keep winning business.

While there are many factors that go into the parameters for every job, there are some general guidelines to follow when machining aluminum. For cast aluminum alloys (i.e. 308, 356, 380), a surface footage of 500-1000 SFM is recommended, with RPMs varying based on cutter diameter. The basic calculation to find a starting point for RPMs would be (3.82 x SFM) / Diameter.

In wrought aluminum alloys (i.e. 2024, 6061, 7075), a surface footage of 800-1500 SFM is recommended, with the same calculation being used to find a starting point for RPMs.

High Efficiency Milling

High Efficiency Milling, commonly known as HEM, is a strategy that is rapidly gaining popularity in the manufacturing industry. Many CAM programs are now including HEM toolpaths, and while virtually any machine can perform HEM, the CNC controller must feature a fast processor to keep up with the additional lines of code. A great example of High Efficiency Milling toolpaths in Aluminum can be seen below.

At its core, HEM is a roughing technique that utilizes a low Radial Depth of Cut (RDOC) and a high Axial Depth of Cut (ADOC) to take full advantage of the cutting edge of the tool. To learn more about how High Efficiency Milling can increase your efficiency, extend your tool life to keep costs down, and get greater performance for aluminum (and other materials), click here to download the HEM Guidebook.

In Summary

Aluminum is a versatile material with a high level of machinability, but it should not be overlooked. Understanding the best ways to tackle it is important for achieving the desired results. Optimizing your tool crib, machine setups, and toolpaths for aluminum is essential to stay ahead of the competition and make your shop more efficient.