Overview of Harvey Tool Coatings: Maximizing Tool Performance

Proper tool coating plays a large role during the selection of a CNC cutting tool. At Harvey Tool, coatings are optimized for specific materials and alloys to ensure the highest tooling performance, possible. Each coating offers a unique benefit for the cutting tool: increased strength, enhanced lubricity, heat resistance, and wear mitigation, just to name a few.  

In Benefits of Tool Coatings, the method of applying coatings to tools is examined. In this post, we’ll take a closer look at each Harvey Tool coating to examine its key properties, and to help you decide if it might add a boost to your next CNC application.

Harvey Tool offers a wide range of tool coating options for both ferrous and exotic materials, as well as non-ferrous and non-metallic materials. In the Harvey Tool catalog, coatings are often denoted in a -C# at the end of the product part number.

Harvey Tool Coating Gallery

Harvey Tool Coatings for Ferrous and Exotic Materials

TiN

TiN, or Titanium Nitride (-C1), is a mono-layer coating meant for general purpose machining in ferrous materials. TiN improves wear resistance over uncoated tools and aids in decreasing built-up edge during machining. This coating, however, is not recommended for applications that generate extreme heat as its max working temperature is 1,000 °F. TiN is also not as hard as AlTiN and AlTiN Nano, meaning its less durable and may have a shorter tool life.

Harvey Tool 46062 Tin Tool Coating

Harvey Tool 46062-C1

AlTiN

AlTiN, or Aluminum Titanium Nitride (-C3), is a common choice for machinists aiming to boost their tool performance in ferrous materials. This coating has a high working temperature of 1,400 °F, and features increased hardness. AlTiN excels in not only dry machining, due to its increased lubricity, but also in machining titanium alloys, Inconel, stainless alloys, and cast iron. To aid in its high heat threshold, the aluminum in this coating coverts to aluminum oxide at high temperatures which helps insulate the tool and transfer its heat into the formed chips.

altin tool coating 823816-C3

Harvey Tool 823816-C3

AlTiN Nano

AlTiN Nano or Aluminum Titanium Nitride Nano (-C6) is Harvey Tool’s premium coating for ferrous applications. This coating improves upon AlTiN by adding silicon to further increase the max working temperature to 2,100 °F while also increasing its hardness for increased tool life during demanding applications. Due to its penchant for demanding applications, AlTiN is recommended for hardened steels, hardened stainless, tool steels, titanium alloys, and aerospace materials. These applications often create high levels of heat that AlTiN Nano was designed to combat.

altin nano tool coating

Harvey Tool 843508-C6

harvey tool coating zoomed in

Tool Coatings for Non-Ferrous and Non-Metallic Materials

TiB2

TiB2, or Titanium Diboride (-C8), is Harvey Tool’s “bread and butter” coating for non-abrasive aluminum alloys and magnesium alloys, as it has an extremely low affinity to aluminum as compared to other coatings. Aluminum creates lower working temperatures than ferrous materials, so this coating has a max working temperature of of a suitable 900 °F. TiB2 prevents built-up edge and chip packing, further extending its impressive tool life. TiB2 is not recommended for abrasive materials as the carbide is slightly weakened during the coating process. These materials can cause micro fractures that may damage the tool at high RPMs.

TiB2 can be found on a wide variety of Harvey Tool 2 and 3 flute tools as the premium option for high performance in aluminum alloys.

tib2 tool coating

Harvey Tool 820654-C8

ZrN

ZrN, or Zirconium Nitride (-C7), is a general-purpose coating for a wide variety of non-ferrous materials, including abrasive aluminum alloys. This tool coating is a lower cost alternative to diamond coatings, while still boasting impressive performance through its high hardness levels and overall abrasion resistance. ZrN has a max working temperature of 1,110 °F with strong lubricity in abrasive alloys. This coating is best suited for abrasives, such as brass, bronze, and copper, as well as abrasive aluminum alloys that should not be used with TiB2.

zrn tool coating

Harvey Tool 27912-C7

CVD Diamond Tool Coatings

CVD Diamond, or Crystalline CVD Diamond, is a process where the coating is grown directly onto the carbide end mill. This process dramatically improves hardness over other coatings, improving tool life and abrasion resistance while also allowing for higher feed rates. The trade-off for increased wear resistance is a slight rounding of the cutting edge due to the coating application. Due to its increased wear resistance, CVD is best suited for highly abrasive materials such as graphite, composites, green carbide, and green ceramics. Similarly, these tool coatings have a max working temperature of 1,100 °F, meaning they are not well suited for ferrous applications.

Harvey Tool’s CVD Diamond Coating Options:

diamond tool coatings
Amorphous, CVD 4 μm, CVD 9 μm, PCD Diamond

CVD Diamond (4 μm)

The 4 μm is thinner than the 9 μm allowing for a sharper cutting edge, which in effect leaves a smoother finish.

CVD Diamond 9 μm)

The 9 μm CVD tool coating offers improved wear resistance over the 4 μm CVD and Amorphous coatings due to its increased coating thickness.

Amorphous Diamond

Amorphous Diamond (-C4) is a PVD diamond coating which creates an exceptionally sharp edge as compared to CVD. This coating aids in performance and finish in abrasive non-ferrous applications, as it allows for greatly improved abrasion resistance during machining, while still maintaining a sharp cutting edge necessary for certain abrasives. Due to the thinness of the coating, edge rounding is prevented in relation to CVD diamond tooling. Amorphous Diamond is best suited for use in abrasive plastics, graphite, and carbon fiber, as well as aluminum and aluminum alloys with high silica content, due to their abrasiveness. The max working temp is only 750 °F, so it is not suited for use in ferrous machining applications.2

Harvey Tool 809362-C4

PCD Diamond

PCD Diamond, or Polycrystalline Diamond, is a tool coating that is brazed onto the carbide body. In comparison to the other diamond coatings, PCD does not face the same challenges of other coatings as it pertains to rounded cutting edges, as these edges are ground sharp. PCD has the edge benefits of Amorphous Diamond with the abrasion resistance of CVD Diamond. PCD is the thickest diamond layer offered by Harvey Tool, and excels due to its incredible hardness and abrasion resistance. This tool is best suited for all forms of abrasive, non-ferrous materials including abrasive plastics, graphite, carbon fiber, and composites. Similar to the other non-ferrous tool coatings, PCD is not suited for ferrous applications due to its working temperature of 1,100 °F.

pcd diamond

Harvey Tool 12120

Tool Coating Summary

When deciding on a coating for your application there are many factors to be considered. Different coatings often cross several applications with performance trade-offs between all of them. Harvey Tool offers a “Material Specific Selection” that allows users to choose tooling based upon what materials they are working with. Further, Harvey Tool’s technical team is always a phone call away to help in finding the right tool for your specific applications at 1-800-645-5609. Also, you can contact Harvey Tool via e-mail.

Titan USA Carbide Drills: Jobber, Stub, & Straight Flutes

When navigating Titan USA’s offering of carbide drills, it is imperative to understand the key differences among the three carbide drill styles: Jobber Length, Stub Length, and Straight Flute Drills. The right drill for your application depends on, among other factors, the material you are working in, the job requirements, and the required accuracy.

PRO TIP:

Chip evacuation can be an obstacle for hole making. Pecking cycles can be used to aid in chip removal. Peck cycles are when the drill is brought in and out of the hole location, increasing depth each time until the desired depth is reached. However, pecking cycles should only be used when necessary; this process increases cycle time and subjects the tool to added wear from the repeated engaging and disengaging.

Jobber Length Drills

A carbide Jobber Length Drill is the standard general-purpose drill within Titan USA’s offering. It has a long flute length and an included angle of 118o. These drills are great for general purpose drilling where the tolerances are not as tight as the Stub Drill or Straight Flute Drill. Due to the length of these drills, however, they will be more affected by any lack of rigidity in the set up and can have higher runout, or straying from a desired location, during the drilling operation.

PRO TIP:

To achieve high accuracy and great finish, consider utilizing a Reamer. Reamers are designed to remove a finite amount of material but bring a hole to a very specific size. To do this, first drill 90% – 94% of the desired hole diameter with a Jobber Drill. After 90% – 94% of the material is removed, go in for a finishing pass with a Reamer. Reaming tools are highly accurate and leave a beautiful finish.

Stub Length Drills

Titan USA carbide Stub Length Drills have a shorter flute length, wider included point angle, and a significant drop in helix angle, when compared to Jobber Length Drills. The shorter length and wider tip create for a more rigid tool and, in turn, more accurate holes. The stub drill is the best option when drilling with tight tolerances on shallower holes.

Straight Flute Drills

Carbide Straight Flute Drills have the smallest core of the three drill types mentioned within this post. Titan USA offers Straight Flute Drills with 2 flutes and a 140o included angle. These drills are designed for hole making in materials that create short chips. Materials in which the Straight Flute Drill typically performs best include cast aluminums and cast irons, as well as copper. In addition, this type of drill can work very well in high hardness materials, but the core diameter should first be adjusted to accommodate the increased hardness. For these difficult to machine materials, casting the part with a core hole and then opening it up with the Straight Flute is a great option. This removes some of the stress caused by chip removal and allows for the drill to do what it does best.

Chip removal can be more difficult in this style of carbide drill because the chips are not guided along a helix. With helix flutes, the motion of chip removal is mostly continuous from their initiation point, through the flute valleys, and finally out of the flute valleys. The helix creates a wedge which helps push the chips along, but the straight flute does not have that. It interrupts that natural turning motion created by the drill face which can affect chip evacuation. Due to the interruption in motion this type of drill is better suited for applications involving chips of smaller size.

PRO TIP:

Helix drills create multiple different forces on the part, which can create micro imperfections. The Straight Flute Drills do not create those forces, so the finish is much more consistent down to the micro level. The margins of the Straight Flute Drill also burnish the inside of the hole as they spin, which improves the finish as well. When comparing the Straight Flute Drill to a helix drill, the length of the overall contact point is much shorter in the Straight Flute Drill, and has less heat generation. The decreased heat will also reduce the probability of work hardening.

Selecting Your Perfect Titan USA Carbide Drill

Selecting the correct carbide drill for your application is a crucial step in hole making. The Jobber Drill is a great general-purpose drill and should be utilized in applications requiring long reach. The Stub Drill increases the rigidity with its shorter length of flute, allowing it to drill with higher accuracy. Applications which involve tight tolerances and more shallow holes can be done with the Stub Drill for high-quality results. Lastly, for difficult to machine and hard materials, the Straight Flute Drill is the perfect solution. When the core diameter and chip evacuation is properly addressed, the Straight Flute Drill produces beautifully consistent surface finish and extremely tight tolerances. Similarly, Titan USA offers its carbide drills in both an uncoated option, and AlTiN coating. Traditionally, uncoated tools are general purpose workhorses in a wide variety of materials both ferrous and non-ferrous. AlTiN or Aluminum Titanium Nitride is an enhanced coating specifically made for ferrous materials that extends tool life and performance across a wide range of steels and their alloys.

For more information on Titan USA Drills, and to view its full selection, click here.

Understanding Key Qualities in Micro 100’s Offering of Micro-Quik™ Quick Change Tool Holders

Did you know that, along with supplying the machining industry with premier turning tools, Micro 100 also fully stocks tool holders for its proprietary Micro-Quik™ Quick Change Tool Holder System? In fact, Micro 100’s Spring 2021 Product Catalog introduced new “headless” style tool holders, which are revolutionizing the machine setup process for turning operations.

This “In the Loupe” guide is designed to provide you with insight for navigating Micro 100’s offering, and to help you select the optimal holder style for your operation.

Understanding Micro 100’s Micro-Quik™

Micro 100’s Micro-Quik™ is unlike any other tool change system you may have seen from other tool manufacturers because of its incredible axial and radial repeatability and its ease of use. This foolproof system delivers impressive repeatability, tip-to-tip consistency, and part-to-part accuracy, all the while resulting in tool changes that are 90 % faster than conventional methods.

In all, a tool change that would regularly take more than 5 minutes is accomplished in fewer than 30 seconds.

Try Micro 100’s “Headless” Tool Holders for Incredible Flexibility

Micro 100 Quick Change Tool Holder Selection

Straight Style, Headless Tool Holders

When using a straight style tool holder, you will enjoy significantly enhanced versatility during the machine set up process. These holders are engineered specifically for use in any Swiss, standard lathe, or multi-function lathe, and allow for adjustable holder depth in a tooling block. Radial coolant access ports provide easier access to coolant and the ability to utilize coolant through functionality in tooling blocks that share a static and live tool function, and cannot be plumbed through the back of the holder. Further, their headless design allows for installation through the backside of the tooling block in machines where the work envelope is limited, allowing for a simplified installation process.

Created by Harvey Performance Company Application Engineers, the following videos outline the simple process for inserting each style of Micro 100 Straight Tool Holder into a tooling block.

Micro 100 Straight Holder, Plumbed Style (QTS / QTSL)

In the video, you’ll notice that the first step is to place your Micro-Quik™ tool in this quick change holder, and align it with the locating pin. Then, tighten the locating and locking screw into the whistle notch. This forces the tool against the locking pin, and allows for repeatable accuracy, every time. From there, the quick change tool holder can be installed as a unit into a tooling block. When desired tool position is achieved, set screws can be tightened to lock the holder in place.

Micro 100 Straight Holder, Plumbed & Ported Style (QTSP / QTSPL)

This unique Micro 100 quick change tool holder style is plumbed and ported, allowing for enhanced versatility and coolant delivery efficiency. The setup process using this style of holder is also simple. First, place your Micro 100 quick change tool into the holder, and align it with the locating pin. From there, tighten the locating and locking screw into the whistle notch, forcing the tool against the locating pin and allowing for repeatable accuracy, every time. When plumbed coolant is being used, remove the plumbed plug in the back of the holder, and connect the appropriate coolant adapter and line. Then, the holder can be installed as a unit into the tooling block and locked into place with set screws.

When using ported coolant, make sure that the coolant plug in the back of the holder is tightly installed. Then, be sure to only use one of the radial ports. Simply plug the two that aren’t in use. Install the provided porting adapter to allow for coolant access. Porting options allow for coolant capabilities in machine areas where coolant is not easily accessible.

Headed Tool Holders

headed quick change tool holder

Micro 100’s original quick change tool holder for its Micro-Quik™ system, this style of tool holder for lathe applications features a unique “3 point” locking and locating system to ensure repeatability. When conducting a tool change with this tool holder style, you must follow a simple, 3-step process:

  1. Loosen the tool holder’s set screw
  2. Remove the used tool from the holder
  3. Insert the new tool and retighten the set screw

These headed holders are plumbed through the back of the holder for NPT coolant connection and are available in standard length and long length styles.

Double-Ended Modular Tool Holder System

double ended quick change tool holder

For twin spindle and Y-axis tooling block locations, Micro 100 fully stocks a double-ended modular system. Similar to its single-ended counterparts, this modular is headless, meaning it enhances machine access during the tool block installation process, and the holder depth can be adjusted while in the block. Because this system is double-ended, however, there is obviously no plumbed coolant option through the end of the tool. Instead, coolant is delivered via an external coolant port, the adapter for which is included in the purchase of the modular system. Right hand and left hand tool holders are designed so the set screws are facing the operator for easy access. Both right and left hand styles are designed for right hand turning.

Enjoy Quick Change Tool Holding Confidence & Ease of Use

When opting for a quick change system, machinists long for simplicity, versatility, and consistency. Though many manufacturers have a system of their own, Micro 100’s Micro-Quik™ sets itself apart with axial and radial repeatability, and tip-to-tip consistency. Further, Micro 100 fully stocks several quick change tool holder options, allowing a machinist to select the style that best fits their application.

Micro100 also manufactures and stocks a wide variety of boring tools for the Micro-Quik™. Click here to learn more.

For more information on selecting the appropriate quick change tool holder for your job, view our selection chart or call an experienced Micro 100 technical engineer at 800-421-8065.

quick change tool holder selection chart for Micro100

8 Unique Facts About Thread Forming Taps

Unlike most CNC cutting tools, Thread Forming Taps, otherwise known as Form Taps, Forming Taps, or Roll Taps, work by molding the workpiece rather than cutting it. Because of this, Form Taps do not contain any flutes, as there is no cutting action taking place, nor are there any chips to evacuate. Below are 8 unique facts of Thread Forming Taps (and some may surprise you).

1. Chips Aren’t Formed

When using a Form Tap, chips are not formed, nor is any part material evacuated (Yes, you read that right). With thread forming, the tool is void of any flutes, as chip evacuation is not a concern. Form Taps quite literally mold the workpiece, rather than cut it, to produce threads. Material is displaced within a hole to make way for the threads being formed.

2. Cutting Oils Allow for Reduced Friction & Heat Generation

Did you know that Thread Forming Taps require good lubrication? But why is that the case if chips are not being evacuated, and how does lubrication enter the part with such a limited area between the tool and the perimeter of the hole being threaded? Despite the fact that chips aren’t being formed or evacuated, cutting oils aid the Form Tap as it interacts with the part material, and reduces friction and heat generation. Lube vent grooves are narrow channels engineered into the side of Forming Taps that are designed to provide just enough room for lubricant to make its way into – and out of – a part.

titan thread forming tool

Not all materials are well suited for Thread Forming Taps. In fact, attempting to use a tap in the wrong material can result in significant part and tool damage. The best materials for this unique type of operation include aluminum, brass, copper, 300 stainless steel, and leaded steel. In other words, any material that leaves a stringy chip is a good candidate for cold forming threads. Materials that leave a powdery chip, such as cast iron, are likely too brittle, resulting in ineffective, porous threads.

4. Threads Produced Are Stronger Than Conventional Tapping Threads

Thread forming produces much stronger threads than conventional tapping methods, due to the displacements of the grain of the metal in the workpiece. Further, cutting taps produce chips, which may interfere with the tapping process.

5. Chip Evacuation is Never a Concern With Thread Forming

In conventional tapping applications, as with most machining applications, chip evacuation is a concern. This is especially true in blind holes, or holes with a bottom, as chips created at the very bottom of the hole oftentimes have a long distance to travel before being efficiently evacuated. With form taps, however, chip removal is never a concern.

6. Form Taps Offer Extended Tool Life

Thread Forming Taps are incredibly efficient, as their tool life is substantial (Up to 20x longer than cutting taps), as they have no cutting edges to dull. Further, Thread Forms can be run at faster speeds (Up to 2x faster than Cutting Taps).

Pro Tip: To prolong tool life even further, opt for a coated tool. Titan USA Form Taps, for example, are fully stocked in both uncoated and TiN coated styles.

titan thread forming tools

7. A Simple Formula Will Help You Find the Right Drill Size

When selecting a Tap, you must be familiar with the following formula, which will help a machinist determine the proper drill size needed for creating the starter hole, before a Thread Forming Tap is used to finish the application:

Drill Size = Major Diameter – [(0.0068 x desired % of thread) / Threads Per Inch]
Drill Size (mm) = Major Diameter – [(0.0068 x desired % of thread x pitch (mm)]

8. Thread Forming Taps Need a Larger Hole Size

  1. Thread Form Taps require a larger pre-tap hole size than a cutting tap. This is because these tools impact the sides of the hole consistently during the thread forming process. If the pre-tap hole size is too small, the tool would have to work too hard to perform its job, resulting in excessive tool wear, torque, and possible breakage.

As an example, a ¼-20 cut tap requires a #7 drill size for the starter hole, whereas a ¼-20 roll tap requires a #1 drill size for 65% thread.

CNC Machining & 3D Printing: A Hybrid Approach to Precision Manufacturing

With recent advancements in 3D printing capabilities, it is becoming easier for manufacturers to use additive manufacturing to create parts from a wide variety of materials, including polymers like ABS, TPE, and PLA as well as carbon fiber composites, nylon, and polycarbonates. Even pricey metals like Titanium, Stainless Steel, and Inconel are becoming increasingly common in the world of additive manufacturing as well.

There is no doubt that the additive manufacturing space will continue to develop and grow in the coming years, but will it render subtractive manufacturing methods like CNC Machining obsolete? Absolutely not. In fact, precision CNC machining is likely more important to the additive manufacturing process than you may think, as a new process called “hybrid manufacturing” is quickly taking hold in the industry.

3d printing metal
3D printing of metal parts is becoming more common, but subtractive manufacturing is an important part of manufacturing precision additive parts.

Additive Manufacturing vs. Subtractive Manufacturing

Before implementing a hybrid manufacturing approach, it is important to understand the pros and cons of each method. Here is a quick breakdown of both additive and subtractive manufacturing, and the benefits and drawbacks of each.

Additive ManufacturingSubtractive Manufacturing
Adds material layers to create partsRemoves material layers to create parts
Slower process, better for small production runsFaster process, better for large production runs
Better for smaller partsBetter for larger parts
Rough surface finish that requires significant post-operation finishingMore definied surface finish with minimal post-operation finishing required
Less precise part tolerancesAble to hold extremely precise part tolerances
Cheaper material costsMore expensive material costs
Less material wasteMore material waste
Intricate details easier to createIntricate details can require complex programs and additional capabilities (5 axis)

Using CNC Machining to Create Precise 3D Printed Parts

Looking at the chart above, you will notice that one of the key differences between additive manufacturing and subtractive manufacturing is the surface finish and tolerances that can be achieved with each method. This is where a hybrid approach to additive manufacturing can be extremely beneficial.

As parts come off the printer, they can be quickly moved into a CNC machine with a program designed for part completion. The CNC machine will be able to get 3D printed parts down to the tight tolerances required by many industries and reach the desired surface finish. Advanced finishing tools and long reach, tapered tools from brands like Harvey Tool can easily machine the tight geometries of 3D printed parts, while extremely sharp diamond-coated tooling and material-specific tools designed for plastics and composites can work to create a beautiful, in-tolerance finished part regardless of the material.

long reach end mill
Long reach tools can easily machine hard to reach, intricate part details on 3D printed parts.

By designing a workflow like this in your shop, you can spend less time worrying about the precision of printed parts by adding in subtractive operations to keep material costs low, create less waste, and keep parts in tight tolerances for precision machining excellence.

Using 3D Printing to Increase CNC Machining Efficiency

If your shop is focused completely on subtractive manufacturing methods, you are probably thinking that there is no need for an additive option in your shop. Can’t a CNC machine create everything a 3D printer can, and in less time? Not necessarily. Again, by using the two methods together and taking a hybrid approach, you may be able to lower your manufacturing and material costs.

For example, you could machine the bulk of a part with typical subtractive machines, which would likely take a very long time using additive methods. Then you can go back to that part with a 3D printer to add intricate features to the part that may take complex programming and hours of planning on a subtractive machine. An impeller is a great example, where the bulk of that part can be machined, but the tricky fins and blades could be printed onto the part, and then finished back on the CNC machine.

3d printed metal parts
3D printed impeller waiting for finishing operations

The ability of additive machines to literally “add-on” to a part can also make for a cheaper approach to part design. Instead of using expensive materials like Inconel or Titanium to machine an entire part, portions of the part that do not require extreme heat resistance could be machined out of cheaper steel, while the heat resistant portions using expensive materials can be added later through additive methods.

Hybrid Manufacturing Machines

As hybrid manufacturing workflows become more popular, so do new hybrid manufacturing machines. These hybrid machines are all-in-one machines where both additive and subtractive manufacturing can be performed in a single setup. Many of these machines offer metal 3D printing as well as multi-axis machining capabilities, ready for even the most complex parts thrown their way. With a bit of customization, large-scale 3D printing machines or CNC mills can be retrofit to allow for hybrid manufacturing with add-ons from companies like Hybrid Manufacuring Technologies.

hybrid manufacturing machines
Example of a hybrid machine add-on from Hybrid Manufacturing Technologies, featuring 3D printing spindles and milling tools in the same machine carousel.

As manufacturing and design techniques get progressively “smarter” with CAM/CAD programs offering generative design and artificial intelligence, these hybrid machines could become a new standard in high-end machine shops working in advanced manufacturing industries like aerospace, medical, defense, and the mold, tool & die market.

Overall, in 2021 we are still early on in this new revolution of hybrid machining and advanced design methods, but it is important to understand the role that adding a CNC machine could have in your additive-focused shop, and vice versa. By combining additive and subtractive together, shops can mitigate the cons of each method and take full advantage of the benefits of having both options available on the shop floor.

Causes & Effects of Built-Up Edge (BUE) in Turning Applications

In turning operations, the tool is stationary while the workpiece is rotating in a clamped chuck or a collet holder. Many operations are performed in a lathe, such as facing, drilling, grooving, threading, and cut-off applications. it is imperative to use the proper tool geometry and cutting parameters for the material type that is being machined. If these parameters are not applied correctly in your turning operations, built-up edge (BUE), or many other failure modes, may occur. These failure modes adversely affect the performance of the cutting tool and may lead to an overall scrapped part.

When inspecting a cutting tool under a microscope or eye loupe, there are several different types of turning tool failure modes that can be apparent. Some of the most common modes are:

  • Normal Flank Wear: The only acceptable form of tool wear, caused by the normal aging of a used cutting tool and found on the cutting edges.
    • This abrasive wear, caused by hard constituents in the workpiece material, is the only preferred method of tool wear, as it’s predictable and will continue to provide stable tool life, allowing for further optimization and increased productivity.
  • Cratering: Deformations found on the cutting face of a tool.
    • This tool mode is a chemical and heat failure, localized on the rake face area of the turning tool, or insert. This failure results from the chemical reaction between the workpiece material and the cutting tool and is amplified by cutting speed. Excessive Crater Wear weakens a turning tool’s cutting edge and may lead to cutting edge failure.
  • Chipping: Breaking of the turning tool along its cutting face, resulting in an inaccurate, rough cutting edge.
    • This is a mechanical failure, common in interrupted cutting or non-rigid machining setups. Many culprits can be to blame for chipping, including machine mishaps and tool holder security.
  • Thermal Mechanical Failure (Thermal Cracking): The cracking of a cutting tool due to significant swings in machining temperature.
    • When turning, heat management is key. Too little or too much heat can create issues, as can significant, fast swings in temperature (repeated heating and cooling on the cutting edge). Thermal Mechanical Failure usually shows in the form of evenly spaced cracks, perpendicular to the cutting edge of the turning tool.
  • Built-Up Edge (BUE): When chips adhere to the cutting tool due to high heat, pressure, and friction.

Effects of Built-Up Edge in Turning Application

A built-up edge is perhaps the easiest mode of tool wear to identify, as it may be visible without the need for a microscope or an eye loupe. The term built-up edge means that the material that you’re machining is being pressure welded to the cutting tool. When inspecting your tool, evidence of a BUE problem is material on the rake face or flank face of the cutting tool.

built up cutting edge on turning tools
Image Source: Carbide inserts Wear Failure modes. | machining4.eu, 2020

This condition can create a lot of problems with your machining operations, such as poor tool life, subpar surface finish, size variations, and many other quality issues. The reason for these issues is that the centerline distance and the tool geometry of the cutting edge are being altered by the material that’s been welded to the rake or flank face of the tool. As the BUE condition worsens, you may experience other types of failures or even catastrophic failure.                     

Causes of Built-Up Edge in Turning Applications

Improper Tooling Choice

Built-Up Edge is oftentimes caused by using a turning tool that does not have the correct geometry for the material being machined. Most notably, when machining a gummy material such as aluminum or titanium, your best bet is to use tooling with extremely sharp cutting edges, free cutting geometry, and a polished flank and rake face. This will not only help you to cut the material swiftly but also to keep it from sticking to the cutting tool.

various turning tools

Using Aged Tooling

Even when using a turning tool with correct geometry, you may still experience BUE. As the tool starts to wear and its edge starts to degrade, the material will start building up on the surface of the tool. For this reason, it is very important to inspect the cutting edge of a tool after you have machined a few parts, and then randomly throughout the set tool life. This will help you identify the root cause of any of the failure modes by identifying them early on.

Insufficient Heat Generation

Built-up edge can be caused from running a tool at incorrect cutting parameters. Usually, when BUE is an issue, it’s due to the speed or feed rates being too low. Heat generation is key during any machining application – while too much heat can impact a part material, too little can cause the tool to be less effective at efficiently removing chips.

4 Simple Ways to Mitigate BUE in Turning Applications

  1. When selecting a tool, opt for free cutting, up sharp geometries with highly polished surfaces. Selecting a tool with chipbreaker geometry will also help to divide chips, which will help to remove it from the part and the cutting surface.
  2. Be confident in your application approach and your running parameters. It’s always important to double-check that your running parameters are appropriate for your turning application.
  3. Make sure the coolant is focused on the cutting edge and increase the coolant concentration amount.
  4. Opt for a coated Insert, as coatings are specifically engineered for a given set of part materials, and are designed to prevent common machining woes.
solid carbide turning tool

Save Time With Quick Change Tooling

Making a manual tool change on any CNC machine is never a timely or rewarding process. Typically, a tool change in a standard holder can take up to 5 minutes. Add that up a few times, and suddenly you have added significant minutes to your production time.

As CNC machine tool and cutting tool technology has advanced, there are more multi-functional tools available to help you avoid tool changes. However, sometimes it just isn’t feasible, and multiple tool changes are needed. Luckily, Micro 100 has developed a revolutionary new method to speed up tool changes significantly.

What is the Micro-Quik™ Tooling System?

Developed in Micro 100’s world-class grinding facility in Meridian, Idaho, the Micro 100 Micro-Quik™ tooling system is held to the same standards and tight tolerances as all of the Micro 100 carbide tooling.

quick change system with micro 100 boring bar

The quick change tooling system allows for highly repeatable tool changes that save countless hours without sacrificing performance. This system combines a unique tool holder with a unique tool design to deliver highly repeatable and accurate results.

Each quick change tool holder features a locating/locking set screw to secure the tool and a locating pin which helps align the tool for repeatability. Removing a tool is as simple as loosening the set screw and inserting its replacement.

removing tool from quick change system

During tool changes, the precision ground bevel on the rear of the tool aligns with a locating pin inside the tool holder. The distance from this locational point to the tip of the tool is highly controlled under tight tolerances, meaning that the Micro-Quik™ tooling system ensures a very high degree of tool length and centerline repeatability. The “L4” dimension on all of our quick change tools, as seen in the image above, remains consistent across the entire product line. Check out the video below for a demonstration of the Micro 100 Micro-Quik™ system in action!

Quick Change Tooling Benefits

The most obvious benefit to using Micro 100’s Micro-Quik™ Quick Change Tooling System is the time savings that come with easier tool changes. By using the quick change holders in combination with quick change tooling, it is easy to reduce tool changes from 5 minutes to under 30 seconds, resulting in a 90% decrease in time spent swapping out tools. This is a significant benefit to the system, but there are benefits once the tool is in the machine as well.

As mentioned above, the distance from the locational point on each tool shank to the tip of the tool is highly controlled, meaning that regardless of which type of tool you insert into the holder, your stick out will remain the same. This allows you to have confidence in the tooling and does not require additional touch offs, which is another major time saver.

assortment of boring bars with quick change system

By removing additional touch-offs and tool changes from your workflow, you also reduce the chances for human or machine error. Improper touch-offs or tool change errors can cause costly machine crashes and result in serious repairs and downtime. With the Micro 100 Micro-Quik™ Quick Change Tooling System, initial setups become much easier, allowing you to hit the cycle start button with total confidence for each run.

By making a few simple changes to your tool holding configurations and adopting the Micro-Quik™ system, your shop can save thousands in time saved, with less machine downtime and increased part production. To learn more about the Micro 100 Micro-Quik™ cutting tools and tool holders, please visit (URL here to quick change page).

5 Things to Know About Helical’s High Feed End Mills

Helical Solutions‘ High Feed End Mills provide many opportunities for machinists, and feature a special end profile to increase machining efficiencies. A High Feed End Mill is a High Efficiency Milling (HEM) style tool with specialized end geometry that utilizes chip thinning, allowing for drastically increased feed rates in certain applications. While standard end mills have square, corner radius, or ball profiles, this Helical tool has a specialized, very specific design that takes advantage of chip thinning, resulting in a tool that can be pushed harder than a traditional end mill.

Below are 5 things that all machinists should know about this exciting Helical Solutions product offering.

1. They excel in applications with light axial depths of cut

A High Feed End Mill is designed to take a large radial depth of cut (65% to 100% of the cutter diameter) with a small axial depth of cut (2.5% to 5% diameter) depending on the application. This makes them perfect for face milling, roughing, slotting, deep pocketing, and 3D milling. Where HEM toolpaths involve light radial depths of cut and heavy axial depths of cut, these utilize high radial depths of cut and smaller axial depths of cut.

2. This tool reduces radial cutting forces

The end profile of this tool is designed to direct cutting forces upward along the axis of the tool and into the spindle. This reduces radial cutting forces which cause deflection, allowing for longer reach tools while reducing chatter and other issues that may otherwise lead to tool failure. The reduction of radial cutting forces makes this tool excellent for use in machines with lower horsepower, and in thin wall machining applications.

3. High Feed End Mills are rigid tools

The design and short length of cut of these end mills work in tandem with the end geometry to produce a tool with a strong core, further limiting deflection and allowing for tools with greater reach lengths.

4. They can reduce cycle times

In high RDOC, low ADOC applications, these tools can be pushed significantly faster than traditional end mills, saving time and money over the life of the tool.

5. High Feed End Mills are well suited for hard materials

The rigidity and strength of High Feed End Mills make them excellent in challenging to machine materials. Helical’s High Feed End Mills come coated with Tplus coating, which offers high hardness and extended tool life in high temp alloys and ferrous materials up to 45Rc.

In summary, these tools with specialized end geometry that utilizes chip thinning and light axial depths of cut to allow for significantly increased feed rates in face milling, slotting, roughing, deep pocket milling, and 3D milling applications. The end profile of a High Feed End Mill applies cutting forces back up into the spindle, reducing radial forces that lead to deflection in long reach applications. Combining this end geometry with a stubby length of cut results in a tool that is incredibly rigid and well suited for harder, difficult to machine materials.

Benefits & Drawbacks of High and Low Helix Angles

While many factors impact the outcome of a machining operation, one often overlooked factor is the cutting tool’s helix angle. The Helix angle of a tool is measured by the angle formed between the centerline of the tool and a straight line tangent along the cutting edge.

A higher helix angle, usually 40° or more, will wrap around the tool “faster,” while a “slower” helix angle is usually less than 40°.

When choosing a tool for a machining operation, machinists often consider the material, the tooling dimensions and the flute count. The helix angle must also be considered to contribute to efficient chip evacuation, better part finish, prolonged tool life, and reduced cycle times.

Helix Angles Rule of Thumb

One general rule of thumb is that as the helix angle increases, the length of engagement along the cutting edge will decrease. That said,
there are many benefits and drawbacks to slow and high helix angles that can impact any machining operation.

Slow Helix Tool <40°

Benefits

  • Enhanced Strength – A larger core creates a strong tool that can resist deflection, or the force that will bend a tool under pressure.
  • Reduced Lifting – A slow helix will decrease a part from lifting off of the worktable in settings that are less secure.
  • Larger Chip Evacuation – The slow helix allows the tool to create a large chip, great for hogging out material.

Drawbacks

  • Rough Finish – A slow helix end mill takes a large chip, but can sometimes struggle to evacuate the chip. This inefficiency can result in a sub-par part finish.
  • Slower Feed Rate – The increased radial force of a slow helix end mill requires running the end mill at a slower feed rate.

High Helix Tool >40°

Benefits

  • Lower Radial Force – The tool will run quieter and smoother due to better shearing action, and allow for less deflection and more stability in thin wall applications.
  • Efficient Chip Evacuation – As the helix angle increases, the length of cutting edge engagement will decrease, and the axial force will increase. This lifts chips out and away, resulting in efficient chip evacuation.
  • Improved Part Finish – With lower radial forces, high helix tools are able to cut through material much more easily with a better shearing action, leaving an improved surface finish.

Drawbacks

  • Weaker Cutting Teeth – With a higher helix, the teeth of a tool will be thinner, and therefore thinner.
  • Deflection Risk – The smaller teeth of the high helix tool will increase the risk of deflection, or the force that will bend a tool under pressure. This limits how fast you can push high helix tools.
  • Increased Risk of Tool Failure – If deflection isn’t properly managed, this can result in a poor finish quality and tool failure.

Helix Angle: An Important Decision

In summary, a machinist must consider many factors when choosing tools for each application. Among the material, the finish requirements, and acceptable run times, a machinist must also consider the helix angle of each tool being used. A slow helix end mill will allow for larger chip formation, increased tool strength and reduce lifting forces. However, it may not leave an excellent finish. A high helix end mill will allow for efficient chip evacuation and excellent part finish, but may be subject to increased deflection, which can lead to tool breakage if not properly managed.

Selecting the Right Chamfer Cutter Tip Geometry

A chamfer cutter, or a chamfer mill, can be found at any machine shop, assembly floor, or hobbyist’s garage. These cutters are simple tools that are used for chamfering or beveling any part in a wide variety of materials. There are many reasons to chamfer a part, ranging from fluid flow and safety, to part aesthetics.

Due to the diversity of needs, tooling manufacturers offer many different angles and sizes of chamfer cutters, and as well as different types of chamfer cutter tip geometries. Harvey Tool, for instance, offers 21 different angles per side, ranging from 15° to 80°, flute counts of 2 to 6, and shank diameters starting at 1/8” up to 1 inch.

After finding a tool with the exact angle they’re looking for, a customer may have to choose a certain chamfer cutter tip that would best suit their operation. Common types of chamfer cutter tips include pointed, flat end, and end cutting. The following three types of chamfer cutter tip styles, offered by Harvey Tool, each serve a unique purpose.

Three Types of Harvey Tool Chamfer Cutters

Type I: Pointed

This style of chamfer cutter is the only Harvey Tool option that comes to a sharp point. The pointed tip allows the cutter to perform in smaller grooves, slots, and holes, relative to the other two types. This style also allows for easier programming and touch-offs, since the point can be easily located. It’s due to its tip that this version of the cutter has the longest length of cut (with the tool coming to a finished point), compared to the flat end of the other types of chamfer cutters. With only a 2 flute option, this is the most straightforward version of a chamfer cutter offered by Harvey Tool.

Type I Chamfer Cutter overview

Type II: Flat End, Non-End Cutting

Type II chamfer cutters are very similar to the type I style, but feature an end that’s ground down to a flat, non-cutting tip. This flat “tip” removes the pointed part of the chamfer, which is the weakest part of the tool. Due to this change in tool geometry, this tool is given an additional measurement for how much longer the tool would be if it came to a point. This measurement is known as “distance to theoretical sharp corner,” which helps with the programming of the tool. The advantage of the flat end of the cutter now allows for multiple flutes to exist on the tapered profile of the chamfer cutter. With more flutes, this chamfer has improved tool life and finish. The flat, non-end cutting tip flat does limit its use in narrow slots, but another advantage is a lower profile angle with better angular velocity at the tip.

Type II Chamfer Cutter overview

Type III: Flat End, End Cutting

Type III chamfer cutters are an improved and more advanced version of the type II style. The type III boasts a flat end tip with 2 flutes meeting at the center, creating a center cutting-capable version of the type II cutter. The center cutting geometry of this cutter makes it possible to cut with its flat tip. This cutting allows the chamfer cutter to lightly cut into the top of a part to the bottom of it, rather than leave material behind when cutting a chamfer. There are many situations where blending of a tapered wall and floor is needed, and this is where these chamfer cutters shine. The tip diameter is also held to a tight tolerance, which significantly helps with programing it.

Type III Chamfer Cutter overview

In conclusion, there could be many suitable cutters for a single job, and there are many questions you must ask prior to picking your ideal tool. Choosing the right angle comes down to making sure that the angle on the chamfer cutter matches the angle on the part. One needs to be cautious of how the angles are called out, as well. Is the angle an “included angle” or “angle per side?” Is the angle called off of the vertical or horizontal? Next, the larger the shank diameter, the stronger the chamfer and the longer the length of cut, but now, interference with walls or fixtures need to be considered. Flute count comes down to material and finish. Softer materials tend to want less flutes for better chip evacuation, while more flutes will help with finish. After addressing each of these considerations, the correct style of chamfer for your job should be abundantly clear.