Tag Archive for: 5 axis

Harvey Performance Company Joins High Speed Machining Roadshow

Updated March 30, 2020 – All In-Person Events Postponed, Join The Webinar on April 7th

Due to the current coronavirus (COVID-19) pandemic, and in an effort to maintain the safety and health of all employees and attendees, all in-person High Speed Machining events have been postponed until further notice. We hope to reschedule these events in the future.

In the meantime, we are offering the event in a virtual webinar setting on April 7th. Interested users can register here: https://micromachine.fusion360.events-autodesk.com/ 


Harvey Performance Company is excited to announce that we have partnered with Air Turbine Spindles, Autodesk, and 5th Axis Workholding on a series of nationwide events focused on high speed machining with miniature tooling from our Harvey Tool brand. This “High Speed Machining Roadshow” will be stopping at different machine tool suppliers across the US, ranging from Connecticut and Ohio to Arizona and California.

Each event will feature live high speed, micro machining demos at spindle speeds up to 65,000 RPM, and in-depth technical presentations to help unlock the mystery behind high speed machining. A free lunch will be provided for all in attendance, and there will be many opportunities to network with local CNC machinists, programmers, and engineers. Attendees will also have access to Application Engineers from all of the industry participants, including Harvey Performance Company, to help discuss difficult applications, troubleshoot current projects, and develop new, valuable relationships with local experts.

“We receive questions from our customers on a daily basis, and many are about micro machining with high RPMs,” said Jeff Rauseo, Manager of Digital Marketing, Harvey Performance Company. “We hope that by participating in these events, we can ease some of the fears that come with using miniature tooling and help enable successful micromachining projects in shops nationwide.”

A current list of dates and locations for these events can be seen here. More events and locations may be added at a later date, so stay tuned for updates from Air Turbine Spindles and Harvey Performance Company.

If you have any questions, please reach out to Tony Gunn at Air Turbine Spindles or visit their website for more information.


high speed machining

Master Machine Manufacturing – Featured Customer

Featured Image Courtesy of MMM USA

Master Machine Manufacturing, or MMM USA, is a family-owned and operated machine shop based out of Tulsa, Oklahoma. Master Machine is a rapidly expanding company which has seen serious growth as both a job shop and as an OEM Manufacturer of their own Quick Vise Handles and Piranha Jaws for CNC machinists.

Brothers Geordan and Nace Roberts, along with their mother, Sherry Roberts, are the owners of Master Machine Manufacturing. With Geordan and Nace, we dove into topics like having a growth mindset, working smarter instead of harder, and expanding a “job shop” business while also creating and manufacturing their own OEM products.

Tell us a little about Master Machine’s history and the type of work that your company does.

Geordan: Master Machine has been in business since 1981. Our father, George Roberts, started the business. At the beginning it was a pretty typical manual machine shop operating primarily as a job shop. As Nace and I got older, Dad introduced us to the business and we started working there part-time, eventually transitioning into full-time employees. In 1996, we transitioned to high precision machining with our first CNC machine – a Haas VF1, and we kept adding new CNC machines from there.

Nace and I took over in 2013 after our Dad passed. We had to make the transition from managers and shop foreman to owners and dealing with customers. We now own and operate the business with our mother, Sherry Roberts.

master machine

Geordan, Nace, Sherry, and the rest of the MMM USA team at IMTS with Mark Terryberry from Haas Automation Photo Courtesy of: MMM USA

At its core, Master Machine is a job shop that does a lot of high precision machining. We work on things like lab test equipment, parts for the aerospace industry, and a lot of parts for the oil and gas industry. More medical jobs and odd things like parts for off-road racing have started to come in recently as well. One cool thing about us is that we have the unique ability to operate as a job shop, but also to design and manufacture our own products. Many of your readers have probably seen some of our vise handles and jaws in use online, especially on Instagram.

Your MMM USA Jaws and Vise Handles have become extremely popular in the CNC machining community. Where did you get the idea for that product?

Geordan: We had been using other brands of vise handles and jaws for a long time and got tired of buying products that were cheap and didn’t work well. We had this idea for a while, so in 2013 when things started to slow down a little bit, we had an opportunity to spend some time and design our own products. It was just about 2 years ago that we designed our first vise handle and Piranha Jaws. After using social media, showing them off at IMTS and other Industrial Trade Shows, they really started to take off. Our vise handles and jaws have really started to become a business of their own over the past couple of years.

vise handle

Photo Courtesy of: MMM USA

Can you breakdown the shop for us? What are you working with in terms of shop size, machine capabilities, and software?

Nace: We operate as a 100% debt-free company, so we grow as we need to. We have been at our current location for 10 years with 5-7 different additions along the way. Our shop is now spread across 10,300 square feet.

We currently have 18 CNC milling machines, including our original machine, the 1996 Haas VF1. We have been growing very fast over the past 10 years. From 2004-2007, we only had 3 CNC mills, and we have acquired the other 15 machines all in the last decade. We like buying from companies that make their products right here in the USA, so we have grown our shop through the Haas line of machines. Almost everything we own here is made by Haas Automation. In fact, our Haas VF4 and our 5-axis Haas UMC750 are some of our biggest mills in the shop right now.

Geordan: We also have other capabilities in the shop. We can do welding, painting, surface grinding, and we have a nice setup of bar feeders and lathes. For software, we use a lot of BOBCAD V31 for our 4th and 5th axis mill programming and all of our lathe programming, Nace uses a lot of Autodesk Fusion 360 for the mill side of things.

For inspection, we have many inspection tools, including a Fowler Z-Cat CMM that can measure down to +/- .0002″ for our most high precision jobs.

How did you guys first get involved in manufacturing?

Geordan: I started machining with my Dad at age 13, and got into it full-time after high school, but was not yet fully committed. At this point, I learned manual and CNC machining entirely through working with my Dad and my Uncle.  It wasn’t until my Uncle, the main machinist in our shop, decided to split off and start his own shop that I was faced with a more urgent need to commit to the family business. So I decided to make manufacturing a full time career move and started learning fixturing, programming, and everything I needed to know to be successful. We still have a great relationship with my uncle and his shop and I wouldn’t be where I am today without him stepping out on his own.

Nace: I didn’t know what I wanted to do with my life. I just knew I wanted to make money, and a lot of money. I was actually in college for radiology and physical therapy, but I didn’t like the layout of the career path. I could not convince myself to wait to start making real money until I had finished a long education and received a license 6-8 years down the road.

Instead of physical therapy and radiology, I started taking more computer engineering courses and learned a lot about programming and technology. After my uncle left, I told my Dad I would like to be a bigger part of the business and take what I knew from my computer programming classes and apply it to the shop. Within a year I had gone from never running a CNC to fully doing everything on the machine. My computer programming skills definitely helped me make the transition into CNC machining and programming.

master machine

Photo Courtesy of: MMM USA

As a second generation owner of a family business, how do you stick to those family values while also rapidly expanding the business?

Nace: We have grown a lot with our systems and technology, but our culture has also changed since we took over. We educated ourselves on workplace culture and maintaining a positive work environment. When we were kids, Dad worked probably 100 hours a week and we were always fortunate that he was able to provide us with food, clothes, and a roof over our heads. But no matter how hard he worked, he can’t replace the time with us that was spent working.

One of the major improvements we focused on was trying to maintain repeatability. Everything in the shop is labeled in boxes and readily available for our employees. Ultimately, we want to do everything we can to make it easy as possible for our employees. We want to work smarter, not harder, so there is more time for our employees to spend with family and not spend their lives in the shop.

As owners, we often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until 2 or 3 a.m.. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back in to the shop.

Working with family, we have to remind ourselves that business is business, and outside of business it is all about family. It can be tough to differentiate those two, but you have to. We went to business counseling and learned how to respect family members and build up the team while also making tough business decisions. We have our tough moments at the shop, but at the end of the day this is still your family. You can’t carry any frustration with other family members outside of those shop doors and into the home.

mmm usa piranha jaws

Photo Courtesy of: MMM USA

What are some other things you have done to maintain your “Work Smarter, Not Harder” mantra?

Geordan: One of the first things we did was look into getting more tooling and better tooling. We paid more for tools that can push harder and faster, and last longer. When Dad ran the shop, he would just buy whatever he thought we could afford and still get the job done. Now as CNC technology and advanced CAM systems have improved, the need for quality tooling is extremely important. Finding the best and most reliable tools helped take our shop to the next level and that is where Harvey Tool and Helical come into play.

Nace: We like to be the “purple cow” of the industry, differentiating ourselves in any way that we can. We strive to maintain a certain level of quality across our website, our Instagram page, our products, and the entire business as a whole. We are proud to support products made in the USA and keep supporting American manufacturing to help keep the business thriving in our shop and others. We are always happy to support companies like Haas, Harvey Tool, Helical, and many others who are doing it all right here in the USA.

What are some of your “go-to” Harvey Tool and Helical products?

Geordan: The Helical Chipbreaker End Mill for Aluminum is key for making our vise handles. We use the ½” end mill and run it at 10k RPM, 300 IPM with a .700” DOC and 40% stepover. We can push those tools harder than others while also maintaining our product’s quality. We also rely heavily on Helical’s HEV-5 for our steel applications.

One of our favorite and most-used tools is the Harvey Tool 90 Degree Helically Fluted Chamfer Mill. We use the 3-flute style on everything that isn’t Aluminum because we can simply push it faster and harder than anything else that we have tried.

master machine

Photo Courtesy of: MMM USA

Nace: We actually keep a ton of other Harvey Tool and Helical products in our Autocrib. It made sense for us to get an inventory system, and we got a great deal on a system during the recession. Industrial Mill & Maintenance Supply got us hooked up with an Autocrib and a ton of tools, and they have been great at supplying it whenever we need more. It has helped a lot having an inventory system like that. It is reassuring to know that we have the best tools ready on hand so we can eliminate any potential downtime.

Master Machine is everywhere in the online machining community, specifically on Instagram. How has online marketing and social media changed the way you promote your business?

Geordan: Most people who run businesses seem to just hope that the word of mouth gets out there, or they have a website and hope it just goes viral one day and gets some attention. With the way the Internet is so crowded these days, you have to do something more to stand out. On our side, we have boosted our business through the use of paid online advertising with Google, boosting our SEO (Search Engine Optimization) to rank higher in search results, and being heavy users of social media like Instagram.

When I started the Master Machine Instagram account, I was really just using it to see what other machinists were doing. It was actually only a personal account for my use. I was skeptical of Instagram because of the Facebook community of machinists. I always viewed Facebook as a little more negative and less productive, while the Instagram community was much more collaborative.

mmm usa

Photo Courtesy of: MMM USA

I started by following people like Aeroknox, Kalpay, John Saunders, Bad Ass Machinists, and Tactical Keychains. I immediately noticed how helpful everyone was. I started posting as a business just about 2 years ago, when I posted our first version of the vise handles. Almost immediately people started asking to buy them. We were blown away by the response.

We didn’t set out to create something new with these handles, but by getting our name out there and filling a need for people following us, the hype continued to grow and grow and grow. Instagram has been a great tool for that aspect of the business, especially. We now have around 15 distributors across the US who are carrying our products, and are getting some great momentum. We also sell a lot of our products direct on our website, and 99% of that probably comes through Instagram.

Nace: We have actually landed distributors through someone following us online and going to their integrated distributor asking for our products. The distributor then called us and asked if they could carry our product on their shelves. Other online connections have also helped us land distributors through simple messages and phone calls.

Where do you see MMM USA in 10 years?

Nace: That’s a tough question…

At the shop, we always stress four major actions: Define, Act, Measure, and Refine. In our eyes, there are always better ways to do things and improve our processes. We hire people to have a growth mindset, and so we are redefining our future every day through our continual improvement process. We strive to always have that growth mindset to figure out how to do a job more efficiently. With constant improvement always taking place, it is hard to nail down exactly where the shop will be in 10 years, 5 years, or even 1 year from now. One thing is for sure – we will be successful.

Geordan: Something we do want to focus on is creating new assets, exploring new ventures, and doubling in size every year. We want to continue to release new products to build out our own product line and have MMM USA distributors worldwide.

Back in the day, Kurt Workholding was just a job shop, and now they are one of the most recognized workholding brands in the CNC machining industry. It is really hard to say where this ends or goes, but we think we have a bright future as both a job shop and as a supplier of our own OEM products for manufacturing.

vise handles

Photo Courtesy of: MMM USA

Are you currently hiring new machinists? If so, what qualities and skills do you look for?

Geordan: Every Tuesday we have an open interview at 4 PM. As you can imagine, with our company’s growth, we are constantly hiring. We are looking for people that are positive that have a growth mindset who can grow within the company. We always believe we can promote from within. Most of our people have been at Master Machine for 10-15 years because we can always move people up closer to the top and help them advance in their careers as we grow.

Nace: We are really focused on finding people with good attitudes, and people who want to be here. Skilled machinists are great, but they can be rare, so attitude and fitting in with the culture is huge. We can always take a good attitude and train the skill level up, but we can’t take a good skill level and change the bad attitude. We want team members who will coach each other up and help improve the team as a whole. We love working together and supporting the business together in every aspect of the business.

master machine

Photo Courtesy of: MMM USA

What is the best advice you have ever received?

Geordan: We really like “Notable Quotables.” Here are a couple of our favorites.

“The pen is for remembering, and the mind is for making decisions.”

We only have so much brain power to make crucial decisions, so we write all the day-to-day action items down on our checklists to make sure nothing is left undone. That frees our minds up from having to remember every little piece of the business so we can save that brain power for strategic decision making moments. We must be proactive and not reactive as we lead our team.

Nace: “Your employees want to follow someone who is always real, and not always right.”

As a leader, you need to take responsibility when you screw up, and be open with the team. Let them be a part of fixing the problem, and approach every situation looking at the positive.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

How to Extend the Life of Your End Mill

Breaking and damaging an end mill is oftentimes an avoidable mistake that can be extremely costly for a machine shop. To save time, money, and your end mill it is important to learn some simple tips and tricks to extend tool life.

Properly Prepare Before the Tool Selection Process

The first step of any machining job is selecting the correct end mill for your material and application. However, this doesn’t mean that there should not be an adequate amount of legwork done beforehand to ensure the right decision on a tool is being made. Harvey Tool and Helical Solutions have thousands of different tools for different operations – a vast selection which, if unprepared – can easily result in selecting a tool that’s not the best for your job. To start your preparation, answer the 5 Questions to Ask Before Selecting an End Mill to help you quickly narrow down your selection and better understand the perfect tool you require.

Understand Your Tooling Requirements

It’s important to understand not only what your tool needs, but also general best practices to avoid common machining mishaps. For instance, it is important to use a tool with a length of cut only as long as needed, as the longer a tools length of cut is, the greater the chance of deflection or tool bending, which can decrease its effective life.

tool life

Another factor to consider is the coating composition on a tool. Harvey Tool and Helical Solutions offer many varieties of coatings for different materials. Some coatings increase lubricity, slowing tool wear, while others increase the hardness and abrasion resistance of the tool. Not all coatings increase your tool’s life in every material, however. Be wary of coatings that don’t perform well in your part’s material – such as the use of AlTiN coating in Aluminum (Both coating and material are aluminum-based and have a high affinity for each other, which can cause built-up edge and result in chip evacuation problems).

Consider Variable Helix & Pitch Geometry

A feature on many of our high performance end mills is variable helix or variable pitch geometry, which have differently-spaced flutes. As the tool cuts, there are different time intervals between the cutting edges contacting the workpiece, rather than simultaneously on each rotation. The varying time intervals minimizes chatter by reducing harmonics, increasing tool life and producing better results.

Ensure an Effective Tool Holding Strategy

Another factor in prolonging tool life is proper tool holding. A poor tool holding strategy can cause runout, pullout, and scrapped parts. Generally, the most secure connection has more points of contact between the tool holder and tool shank. Hydraulic and Shrink Fit Tool Holders provide increased performance over other tightening methods.

tool life

Helical also offers shank modifications to all stocked standards and special quotes, such as the ToughGRIP Shank, which provides added friction between the holder and the shank of the tool for a more secure grip; and the Haimer Safe-Lock™, which has grooves on the shank of the tool to help lock it into place in a tool holder.

helical end mill

Trust Your Running Parameters, and their Source

After selecting the correct end mill for your job, the next step is to run the tool at the proper speeds and feeds.

Run at the Correct Speed

Understanding the ideal speed to run your machine is key to prolonging tool life. If you run your tool too fast, it can cause suboptimal chip size, ineffective chip evacuation, or even total tool failure. Adversely, running your tool too slowly can result in deflection, bad finish, or decreased metal removal rates.

Push at the Best Feed Rate

Another critical parameter of speeds and feeds is finding the best possible feed rate for your job, for sake of both tool life and achieving maximum shop efficiency. Pushing your tool too aggressively can result in breakage, but being too conservative can lead to recutting chips and excess heat generation, accelerating tool wear.

Use Parameters from Your Tooling Manufacturer

A manufacturer’s speeds and feeds calculations take into account every tool dimension, even those not called out in a catalog and readily available to machinists. Because of this, it’s best to rely on running parameters from tooling manufacturers. Harvey Tool offers speeds and feeds charts for every one of its more than 21,000 tools featured in its catalog, helping machinists to confidently run their tool the first time.

Harvey Performance Company offers the Machining Advisor Pro application, a free, cutting-edge resource that generates custom running parameters for optimized machining with all of Helical’s products.

tool life

Opt for the Right Milling Strategy: Climb vs Conventional

There are two ways to cut material when milling: Climb Milling and Conventional Milling. In conventional milling, the cutter rotates against the feed. In this method, chips will start at theoretical zero and increase in size. Conventional milling is usually recommended for tools with higher toughness, or for breaking through case hardened materials.

In Climb Milling, the cutter rotates with the feed. Here, the chips start at maximum width and decrease, causing the heat generated to transfer into the chip instead of being left in the tool or work piece. Climb milling also produces a cleaner shear plane, causing less rubbing, decreasing heat, and improving tool life. When climb milling, chips will be removed behind the cutter, reducing your chances of recutting.

Utilize High Efficiency Milling

High Efficiency Milling (HEM), is a roughing technique that uses the theory of chip thinning by applying a smaller radial depth of cut (RDOC) and a larger axial depth of cut (ADOC). The parameters for HEM are similar to that of finishing, but with increased speeds and feeds, allowing for higher material removal rates (MRR). HEM utilizes the full length of cut instead of just a portion of the cutter, allowing heat to be distributed across the cutting edge, maximizing tool life and productivity. This reduces the possibility of accelerated tool wear and breakage.

Decide On Coolant Usage & Delivery

Coolant can be an extremely effective way to protect your tool from premature wear and possible tool breakage. There are many different types of coolant and methods of delivery to your tool. Coolant can come in the form of compressed air, water-based, straight oil-based, soluble oil-based, synthetic or semi-synthetic. It can be delivered as mist, flood, high pressure or minimum quantity lubricant.

Appropriate coolant type and delivery vary depending on your application and tool. For example, using a high pressure coolant with miniature tooling can lead to tool breakage due to the fragile nature of extremely small tools. In applications of materials that are soft and gummy, flood coolant washes away the long stringy chips to help avoid recutting and built-up edge, preventing extra tool wear.

Extend Your Tool’s Life

The ability to maximize tool life saves you time, money and headaches. To get the best possible outcome from your tool, you first need to be sure you’re using the best tool for your job. Once you find your tool, ensure that your speeds and feeds are accurate and are from your tooling manufacturer. Nobody knows the tools better than they do. Finally, think about how to run your tool: the rotation of your cutter, whether utilizing an HEM approach is best, and how to introduce coolant to your job.

Fleet Machine Co. – Featured Customer

Featured Image Courtesy of Fleet Machine Co.

Fleet Machine Co. was founded in 2010 to dramatically outperform other contract manufacturers by fusing advanced machine tools, automation and custom software to achieve what they call “Zero Manufacturing”. The team at Fleet Machine take pride in their ability to produce zero defects, zero missed delivery dates, carry zero part and material inventory, and maintain zero process inefficiencies. Every strategic decision and investment that they make is based on this philosophy of eliminating waste and human error from the manufacturing process.

For Manufacturing Day 2018, the team at Fleet Machine hosted several shop tours for Harvey Performance Company employees. Employees across all departments from Customer Service and Marketing to Finance and Accounting were given a in-depth tour of Fleet Machine’s manufacturing process. Josh Pregent, co-owner of Fleet Machine, was kind enough to host the tours at his shop and talk to us for this post. We talked with Josh about manufacturing automation, the challenges of obtaining AS9100/ISO9001 certification for your business, and the advantages of different milling machine types.

Thanks for hosting our team at your shop. It was a great tour! To get started, tell us a little bit about Fleet Machine’s history, and what sort of products you typically manufacture.

Fleet Machine Co. was incorporated in 2010 in Gloucester, MA to manufacture precision components for the Aerospace, Defense, Medical, and Robotics industries. Fleet’s emphasis on quality, customer service, and professionalism quickly distinguished us from other manufacturers and allowed us to outgrow our original location and expand to our current location. Since our inception, we have devoted our company to automating manufacturing and business processes to minimize human interaction and error in the manufacturing process. Our ultimate goal is to completely eliminate all human involvement in production. This may seem like a lofty goal, but you have to have dreams!

Fleet Machine

Photo Courtesy of: Fleet Machine Co.

How did you first get involved in manufacturing?

My business partner and I both worked in a machine shop while we were in college and instantly became interested in manufacturing. Over the years, we advanced through the different facets of manufacturing, learning everything we could. In 2010 we seized an opportunity and decided to branch out on our own to start Fleet Machine.

Do you have any advice for someone who is looking to open their own shop?

Opening your own shop involves more than knowing how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.

We saw a good mix of machine types while walking around the shop floor. What sort of machines and software do you have here in the shop?

Fleet currently has three two axis turning centers, four three axis VMCs (Vertical Milling), one mill/turn with sub-spindle, and two HMCs (horizontal milling) with sixteen work stations each. It is a long list, but the specific types of machines we have in our facility are listed below. For software, we use a custom Salesforce CRM module, E2 MRP, and Mastercam 2019 for programming.

CNC MILLING

  • (2) Akari-Seiki 450i HMC 27 x 26 x 25 X, Y, Z Travel, dual 400mm pallets, 15,000 RPM, through spindle coolant, 80 tools
  • (2) Mori-Seiki MV-40E VMC 22 x 16 x 18” X, Y, Z Travel, 20 tools, 8000 RPM
  • (1) Mori-Seiki MV-40B VMC 31 x 16 x 20” X, Y, Z Travel, 20 tools, 8000 RPM
  • (1) Haas VF-2 VMC 30 x 16 x 20” X, Y, Z Travel, 25 tools, 10,000 RPM

CNC TURNING

  • (1) Mori-Seiki SL-15 5000 RPM, 9” maximum turning diameter x 16” maximum length
  • (1) Yama-Seiki GA-2000 6000 RPM, 13” maximum turning diameter x 20” maximum length, programmable tailstock, tool setter
  • (1) Doosan Puma 240MSB 6000 RPM, 11” maximum turning diameter, 18” maximum length, dual spindle, live tooling, C-axis milling, tool setter, part catcher/part conveyor
  • (1) Mori-Seiki CL-200 4000 RPM, 11” Maximum turning diameter, 12” maximum length

lathe with lubrication

Photo Courtesy of: Fleet Machine Co.

How has the mill/turn CNC machine helped you speed up production? Would you recommend it to others?

Our mill/turn machine has helped us increase production by reducing our setup time. There is no longer a need to remove a turned part, get it over to a mill, and set everything up again. Most basic milling operations can be performed on the mill/turn machine, so it is a great time saver.

We would definitely recommend this type of machine to other shops. Ultimately, we highly recommend any machine/software/process/ancillary equipment that eliminates or reduces human labor. Manufacturing is a ruthlessly competitive, tech-driven industry and the failure to invest in technology of this type exposes you to over reliance on expensive, scarce, and potentially unreliable human labor and possible obsolescence.

You also have both horizontal milling centers (HMCs) and vertical milling centers (VMCs). What has been your experience with both, and do you prefer one style over the other?

In my opinion, HMCs are superior to VMCs in every respect due to the additional axis, superior chip evacuation, greater load capacity, and the ability to run unattended with pallet pools. VMCs are still useful for simple jobs and rapid prototyping, but for high production runs we lean on the HMCs to get the job done.

cnc metal parts

Photo Courtesy of: Fleet Machine Co.

What have been some of your keys to success for expanding the business and growing your shop to take on more work?

Fleet Machine provides a superior product in terms of quality and value and uses automation and poke yoke techniques to streamline processes and eliminate the possibility of error.

We noticed the banner hanging in the shop celebrating your AS9100/ISO9001 certification. How important has that been in your manufacturing process?

Having an AS9100/ISO9001-certified quality system will improve every aspect of your organization while eliminating waste, improving product quality, and improving OTD. Imposing the discipline required to attain certification on your company will reveal inefficiencies that you never realized existed.

Do you have any advice for shops looking to try and get their AS9100/ISO9001 certification?

It is easily worth the investment but it requires attention to detail, extensive documentation, focus on constant improvement, and a real commitment from all employees. It needs to govern every aspect of your business, from the quoting process to shipping. If you don’t have someone who is extremely organized and enjoys data collection, measurement, and documentation, or employees who aren’t compliant or don’t understand the value of certification, it probably isn’t for you.

Fleet Machine facility

Photo Courtesy of: Fleet Machine Co.

Who are some of your key customers?

Some of our key customers (the ones we can name) include Hill-Rom, United Technologies Corp, Rockwell, and B/E Aerospace. We do work under NDAs for some projects so we cannot reveal all of our customers, but they are heavily skewed to the Aerospace, Medical, Robotics, and Defense industries.

How do Harvey Tool products help Fleet Machine stay at the top of their game?

Harvey Tool products are an integral part of what we do, from the quoting process through finishing. Fleet relies on the tooling engineers and technical support team at Harvey to help us produce parts that we wouldn’t otherwise be able to make.

cnc

Photo Courtesy of: Fleet Machine Co.

What skills or qualities do you look for when hiring a new machinist?

Fleet Machine has a robust training program for all new employees. We look for important soft skills such as good written and verbal communication, reliability, a positive attitude, the ability to work as part of team, and basic computer skills. We have found that people with this combination of attributes rapidly surpass people with machining skills who lack these qualities.

Being well-rounded is important as an employee in any business, but as manufacturing progresses to become more and more technology-based it will be important to hire machinists with computer skills and technological know-how to stay ahead of your competitors.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

B&R Custom Machining- Featured Customer

Featured Image Courtesy of B&R Custom Machining

B&R Custom Machining is a rapidly expanding aerospace machine shop located in Ontario, Canada, focused primarily on aerospace and military/defense manufacturing. Over the past 17 years, B&R has grown from a 5 person shop with a few manual mills and lathes, into one of Canada’s most highly respected manufacturing facilities, with nearly 40 employees and 21 precision CNC machines.

B&R focuses on quality assurance and constant improvement, mastering the intimacies of metal cutting and maintaining the highest levels of quality through their unique shop management philosophies. They seek to consistently execute on clear contracts through accurate delivery, competitive price, and high quality machined components.

We talked with Brad Jantzi, Co-Founder and Technical Manager of B&R Custom Machining, to learn about how he started in the industry, his experience with High Efficiency Milling, what he looks for most in a cutting tool, and more!

B&R Custom machining

Photo Courtesy of: B&R Custom Machining

Can you tell us a little bit about how B&R Custom Machining started, and a little background about yourself and the company?

My brother (Ryan Jantzi, CEO/Co-Founder) and I started working in manufacturing back in 2001, when we were just 20/21 years old. We had 5 employees (including ourselves), a few manual mills and lathes, and we were wrapping our parts in newspaper for shipping. We took over from a preexisting shop and assumed their sales and machines.

We bought our first CNC machine in 2003, and immediately recognized the power of CNC and the opportunities it could open up for us. Now, we have 21 CNC machines, 38 employees, and more requests for work than we can keep up with, which is a good thing for the business. We are constantly expanding our team to elevate the business and take on even more work, and are currently hiring for multiple positions if anyone in Ontario is looking for some challenging and rewarding work!

What kind of CNC machines are you guys working with?

Right now we have a lot of Okuma and Matsuura machines, many of which have 5 axis capabilities, and all of them with high RPM spindles. In fact, our “slowest” machine runs at 15k RPM, with our fastest running at 46k. One of our high production machines is our Matsuura LX160, which has the 46k RPM spindle. We use a ton of Harvey Tool and Helical product on that machine and really get to utilize the RPMs.

B&R Custom Machining

Photo Courtesy of: B&R Custom Machining

What sort of material are you cutting?

We work with Aluminum predominantly, but also with a lot of super alloys like Invar, Kovar, Inconel, Custom 455 Stainless, and lots of Titanium. Some of those super alloys are really tricky stuff to machine. Once we learn about them and study them, we keep a recorded database of information to help us dial in parameters. Our head programmer/part planner keeps track of all that information, and our staff will frequently reference old jobs for new parts.

Sounds like a great system you guys have in place. How did B&R Custom Machining get into aerospace manufacturing?

It is a bit of a funny story actually. Just about 12 years ago we were contacted by someone working at Comdev, which is close to our shop, who was looking to have some parts made. We started a business relationship with him, and made him his parts. He was happy with the work, and so we eventually got involved in his company’s switch division and started to make more and more aerospace parts.

aerospace machining

Photo Courtesy of: B&R Custom Machining

We immediately saw the potential of aerospace manufacturing, and it promoted where we wanted to go with CNC machining, so it was a natural fit. It really was a case of being in the right place at the right time and seizing the moment. If an opportunity comes up and you aren’t ready for it, you miss it. You have to be hungry enough to see an opportunity, and confident enough to grab it, while also being competent enough to handle the request. So, we took advantage of what we were given, and we grew and went from there.

Who are some of the major players who you work with?

We have great relationships with Honeywell, MDA Brampton, and MDA Quebec. We actually worked on parts for a Mars Rover with MDA that was commissioned by the Canadian Space Agency, which was really cool to be a part of.

Working with large companies like that means quality is key. Why is high quality tool performance important to you?

High quality and superior tool performance is huge. Aside from cutting conditions, there are two quick things that cause poor performance on a tool: tool life and consistency of the tool quality. One without the other means nothing. We all can measure tool life pretty readily, and there is a clear advantage that some tools have over others, but inconsistent quality can sneak up on you and cause trouble. If you have a tool manufacturer that is only producing a quality tool even 95% of the time, that might seem ok, but that means that 5% of the time you suffer something wrong on the machine. Many times, you won’t know where that trouble is coming from. This causes you to pause the machine, investigate, source the problem, and then ultimately switch the tool and create a new program. It becomes an ordeal. Sometimes it is not as simple as manually adjusting the feed knob, especially when you need to rely on it as a “proven program” the next time around.

So, say the probability of a shortcoming on a machine is “x” with one brand of tooling, but is half of that with a brand like Harvey Tool. Sure, the Harvey Tool product might be 10-20% higher in upfront cost, but that pales in comparison to buying cheaper tools and losing time and money due to machine downtime caused by tool failure. The shop rate for an average machine is right around $100/hour, so machine downtime is much more expensive than the added cost of a quality tool.

B&R Custom machining

Photo Courtesy of: B&R Custom Machining

Inconsistent tool quality can be extremely dangerous to play around with, even outside of machine downtime. We create based on a specific tool and a certain level of expected performance. If that tool cannot be consistent, we now jeopardize an expensive part. The machine never went down, but the part is no good because we programmed based on consistency in tool quality. Again, the cost of scrapped parts heavily outweighs the upfront cost of quality tooling. Tooling is a low cost of what we do here, but poor tooling can cost us thousands versus a few dollars more for quality tools. Too many people focus on the upfront cost, and don’t look downstream through the rest of the process to see how poor quality tooling can affect your business in a much bigger way. We get to see the whole picture because I am involved from cradle to grave, gaining feedback and knowledge along the way.

That’s great feedback Brad, and I think it is important for people to understand what you have laid out here. Speaking of tool performance, have you guys been using High Efficiency Milling techniques in the shop?

Absolutely. We feel that we are on the front edge of efficient milling. We are quite capable of all the latest techniques, as our programmers are well-versed and up to date. For our larger production work, we have programs dialed in that allow us to push the tools to their limits and significantly cut down our cycle times.

What advice would you have for others who are interested in High Efficiency Milling?

Make sure you are smart about using HEM. If we have one-off parts, particularly expensive ones, that do not have time restraints, we want to make sure we have a safe toolpath that will get us the result we want (in terms of quality and cutting security), rather than pushing the thresholds and taking extra time to program the HEM toolpaths. HEM makes total sense for large production runs, but make sure you know when to, and when not to use these techniques to get the most out of HEM.

B&R Custom machining

Photo Courtesy of: B&R Custom Machining

Have you been using Machining Advisor Pro in your shop when you run Helical end mills?

We have been, and it makes for a great point of reference for the Helical end mills. It has become a part of our new employee training, teaching them about speeds and feeds, how hard they can push the Helical tools, and where the safe zones are. Our more experienced guys also frequent it for new situations where they have no data. Machining Advisor Pro helps to verify what we thought we knew, or helps us get the confidence to start planning for a new job.

If you could give one piece of advice to a new machinist, or someone looking to take the #PlungeIntoMachining for the first time, what would it be?

Learn the intimacies of metal cutting. Get ultra-familiar with the results of what is actually happening with your tool, your setup, your part, and your machine. As well, don’t be limited to thinking “it sounds good,” or “it’s going good so far, so that must be acceptable.” In order to push the tools and confirm they are performing well and making money, you need to identify and understand where the threshold of failure is, and back off the right amount. This doesn’t end here though. Cutting conditions change as the tools, holders, machines, and parts change. Learning the nuances of this fluctuating environment and adapting accordingly is essential. Verify your dimensions, mitigate against risk, and control the variables.

Also, get intimate with what causes tools to succeed and fail, and keep a log of it for reference. Develop a passion for cutting; don’t just punch in and punch out each shift. Here at B&R, we are looking for continuous improvement, and employees who can add value. Don’t stand around all day with your arms folded, but keep constant logs of what’s going on and always be learning and thinking of how to understand what is happening, and improve on it. That is what makes a great machinist, and a successful shop.

B&R custom machining

Photo Courtesy of: B&R Custom Machining

How to Maximize High Balance End Mills

High speed machining is becoming increasingly widespread in machine shops all over the world due to the proven benefits of greater efficiency and productivity through increased spindle speeds and metal removal rates.  However, at such high spindle speeds, otherwise negligible errors and imperfections can cause negative effects such as reduced tool life, poor surface finish, and wear on the machine itself. Many of these negative effects stem from an increase in total centrifugal forces leading to vibration, commonly referred to in the industry as chatter. A key contributor to vibrations and one of the more controllable factors, is tool unbalance.

Why Balance is Critical to Machining

Unbalance is the extent to which the tool’s center of mass diverges from its axis of rotation.  Small levels of unbalance may be indistinguishable at lower RPMs, but as centrifugal force increases, small variations in the tool’s center of mass can cause substantial detrimental effects on its performance. High Balance End Mills are often used to help solve the problem of vibrations at the increased spindle speeds. Balancing is used to make compensation for the intrinsic unsymmetrical distribution of mass, which is typically completed by removing mass of a calculated amount and orientation.

axes for high balance machining

Image Source: Haimer; Fundamentals of Balancing

Helical Solutions offers High Balance End Mills in both 2 and 3 flute options (see Figure 2), square and corner radius, along with coolant-through on the 3 fluted tools. These end mills are balanced at the industry standard of G2.5 at 33,000 RPM: G stands for the potential damage due to unbalance, which can be expressed as “Balancing Quality Grade” or G and 2.5 is the vibration velocity in MM per second. These tools are designed specifically to increase performance in highly balanced machining centers that are capable of elevated RPMs and feed rates. With high balance tooling, improved surface finishes are also achieved due to reduced vibrations during the machining process. Additionally, these end mills have been designed around current high-end tool holding, and come in a variety of neck lengths at specific overall lengths. These dimensional combinations result in maximum rigidity and reduced excess stick out, allowing for optimal performance and the ability to push the tools to the limit.

high balance end mills

High Balanced Tooling Cost Benefits

Machinists who choose to use High Balance End Mills will see certain benefits at the spindle, but also in their wallets. Cost benefits of opting to run this type of tool include:

Utilizing Tap Testers

What Tap Testers Do

Vibrations are your applications worst enemy, especially at elevated RPMs and feed rates. Using resources such as a Tap Tester can help decrease vibrations and allow you to get the most out of your High Balance End Mills by generating cutting performance predictions and chatter limits.

How Tap Testing Works

High balance

Image Source: Manufacturing Automation Laboratories Inc.

Tap Testing generates cutting performance predictions and chatter limits. In a tap test, the machine-tool structure is “excited,” or tested, by being hit with an impulse hammer. In milling, the machine-tool structure is usually flexible in all three directions: X, Y, and Z, but in milling applications where High Balance Tooling is used, the flexibility is commonly only considered in two planes – the X and Y directions. By hitting the X and Y directions with the impulse hammer, the impact will excite the structure over a certain frequency range that is dependent on the hammer’s size, the type of tool being used, and the structure itself. The frequencies generated from the initial hit will produce enough information that both the impact force measurement and the displacement/accelerometer measurement are available. Combining these two measurements will result in the Frequency Response Function, which is a plot of the dynamic stiffness of the structure in frequencies.

After the information from the Tap Test is gathered, it will then process the information into useful cutting parameters for all spindles speeds such as cut depths, speed rates, and feed rates. In knowing the optimum running parameters, vibrations can be minimized and the tool can be utilized to its full potential.

High Balanced Tooling Summarized

Keeping vibrations at bay during the machining process is extremely important to machining success. Because one cause of vibration is tool unbalance, utilizing a balanced tool will result in a smoother job, a cleaner final product, and a longer life of both the tool and spindle. Machinists who choose to use High Balance Tooling can utilize a Tap Tester, or a method for generating the perfect running parameters for your tool and machine setup to ensure that machining vibration is as minimal as possible.

Contouring Considerations

What is Contouring?

Contouring a part means creating a fine finish on an irregular or uneven surface. Dissimilar to finishing a flat or even part, cnc contouring involves the finishing of a rounded, curved, or otherwise uniquely shaped part.

CNC Contouring & 5-Axis Machining

5-axis machines are particularly suitable for contouring applications. Because contouring involves the finishing of an intricate or unique part, the multiple axes of movement in play with 5-axis Machining allow for the tool to access tough-to-reach areas, as well as follow intricate tool paths.

Recent  Advances

Advanced CAM software can now write the G-Code (the step-by-step program needed to create a finished part) for a machinists application, which has drastically simplified contouring applications. Simply, rather than spend several hours writing the code for an application, the software now handles this step. Despite these advances, most young machinists are still required to write their own G-Codes early on in their careers to gain valuable familiarity with the machines and their abilities. CAM software, for many, is a luxury earned with time.

Benefits of Advanced CAM Software

Increased Time Savings
Because contouring requires very specific tooling movements and rapidly changing cutting parameters, ridding machinists of the burden of writing their own complex code can save valuable prep time and reduce machining downtime.

Reduced Cycle Times
Generated G-Codes can cut several minutes off of a cycle time by removing redundancies within the application. Rather than contouring an area of the part that does not require it, or has been machined already, the CAM Software locates the very specific areas that require machining time and attention to maximize efficiency.

Improved Consistency
CAM Programs that are packaged with CAD Software such as SolidWorks are typically the best in terms of consistency and ability to handle complex designs. While the CAD Software helps a machinist generate the part, the CAM Program tells a machine how to make it.

Proper Tips

Utilize Proper Cut Depths

Prior to running a contouring operation, an initial roughing cut is taken to remove material in steps on the Z-axis so to leave a limited amount of material for the final contouring pass. In this step, it’s pivotal to leave the right amount of material for contouring — too much material for the contouring pass can result in poor surface finish or a damaged part or tool, while too little material can lead to prolonged cycle time, decreased productivity and a sub par end result.

CNC Contouring planes

The contouring application should remove from .010″ to 25% of the tool’s cutter diameter. During contouring, it’s possible for the feeds to decrease while speeds increases, leading to a much smoother finish. It is also important to keep in mind that throughout the finishing cut, the amount of engagement between the tool’s cutting edge and the part will vary regularly – even within a single pass.

Use Best Suited Tooling

Ideal tool selection for contouring operations begins by choosing the proper profile of the tool. A large radius or ball profile is very often used for this operation because it does not leave as much evidence of a tool path. Rather, they effectively smooth the material along the face of the part. Undercutting End Mills, also known as lollipop cutters, have spherical ball profiles that make them excellent choices for contouring applications. Harvey Tool’s 300° Reduced Shank Undercutting End Mill, for example, features a high flute count to benefit part finish for light cut depths, while maintaining the ability to reach tough areas of the front or back side of a part.

CNC Contouring ball end mill

Fact-Check G-Code

While advanced CAM Software will create the G-Code for an application, saving a machinist valuable time and money, accuracy of this code is still vitally important to the overall outcome of the final product. Machinists must look for issues such as wrong tool call out, rapids that come too close to the material, or even offsets that need correcting. Failure to look G-Code over prior to beginning machining can result in catastrophic machine failure and hundreds of thousands of dollars worth of damage.

Inserting an M01 – or a notation to the machine in the G-Code to stop and await machinist approval before moving on to the next step – can help a machinist to ensure that everything is approved with a next phase of an operation, or if any redundancy is set to occur, prior to continuation.

Contouring Summarized

CNC contouring is most often used in 5-axis machines as a finishing operation for uniquely shaped or intricate parts. After an initial roughing pass, the contouring operation – done most often with Undercutting End Mills or Ball End Mills, removes anywhere from .010″ to 25% of the cutter diameter in material from the part to ensure proper part specifications are met and a fine finish is achieved. During contouring, cut only at recommended depths, ensure that G-Code is correct, and use tooling best suited for this operation.

TL Technologies – Featured Customer

Featured Image Courtesy of TL Technologies

TL Technologies helps manufacturers reduce time to market and drive down per-piece cost with their unique “Intelligent Design and Planning” processes. Located in Lancaster, Pennsylvania, TL Technologies serves manufacturers throughout the mid-Atlantic from their centrally located, 10,000 sq. ft. facility. Their unique manufacturing processes and services quickly made them stand out in the industry since their inception in 2012.

Jonathon Thompson is the Vice President of Engineering at TL Technologies. Jonathon talked with us about their rigorous manufacturing and inspection processes, the advantage of using high-quality tooling, their unique on-site assembly services, and much more in this Featured Customer interview.

Tell us a bit about your shop, how you got started, and what sort of products you manufacture.

TL Technologies got started in January 2012. Our first customers were firearms and defense based. Since then we have diversified our business through growth within customers and word of mouth. We started with the intent to be precise and accurate in a lights-out or nearly automated fashion.

What sort of machines do you use in your shop?

We use an array of modern equipment. 4 axis Kitamura HX400G Horizontal Mills. Nakamura Tome 9 axis Turn Mill, Star 6 axis, and two 5 axis vertical Hurco Machines. All our machines are optioned out with Renishaw probing and all the bells and whistles required to handle high accuracy runs for 24 hours a day with no process issues. Most of the machines have glass scales and thermal packages.

kitamura cnc machine

Photo Courtesy of: TL Technologies

Which materials do you most often work with at your shop?

Mostly steels; the usual 4000 and 8000 series steels. Comparatively less 6061 and 7075 aluminum and other common stainless grades. We’ve been fortunate to have many of our materials within a reasonable range of Rockwell so that we may tool accordingly for most of the business.

How has your experience been with multi-axis machining?

Fantastic. Multi axis Machining has been excellent for us. It requires high-level understanding to fully maximize but the benefits are huge.

On your website, you mention that TL Technologies has never delivered a rejected part. What sets your quality apart from the competition?

From day one and job one, we worked with the customer to understand exactly how they were measuring the parts, exactly with what tools, processes, and methods to identically duplicate the process in our shop. After replicating key processes we performed many correlation studies to ensure that our measurements were within single-digit microns of what our customers were seeing on their end during inspection. This methodology was scaled up into our overall quality program and allows us to greater understand and manufacture our goods. Our ISO process coupled with this method truly does prevent bad work from getting out. We have never had a case where a part did not function or perform due to our oversight or bad specs. There have been failures on the customer side of things due to engineering, bad prints, and tolerance stackups, but we have not supplied parts that were flat out incorrect.

TL Technologies

Photo Courtesy of: TL Technologies

What sort of tolerances do you work in on a daily basis?

Typically single or double-digit microns. .0002” to .003” total is common for a large percentage of specs. It is not unusual for +/-.0002” to run long-term over many fixture stations with no manual adjustment. Our machined products are from 1” to 8” cubed.

What are some of the coolest projects you have had come through the shop?

That’s a good question. TL Technologies sat on the United States Senate committee in 2013 for Small Business and Entrepreneurship. We were featured on the cover of New York Times business section in 2013 as well. Throughout our years we’ve been fortunate to meet many amazing people from high branches in the government, the US Military, top name manufacturers, lenders, and local municipalities. Some of the coolest contacts were folks that formerly operated with US Special Forces. Unfortunately, we cannot comment.

As for projects not covered by an NDA, one of my personal favorites was producing low impact physical therapy products for rehabilitating shoulders after surgery. Though simple in manufacturing, this project provided an array of fun challenges that required high performance tooling, 3D printing, and using our machines with custom cycles. This allowed us to use the equipment very unconventionally. In this way, we were able to provide a cost-effective product utilizing the maximum ability of our equipment with a very short lead-time and low up-front cost.

harvey tool catalog

Photo Courtesy of: TL Technologies

You also offer assembly services on-site, which is fairly unique in the industry. Can you talk a little bit more about this?

Sure. Both my business partner and I have tremendous experience with assemblies in both hands-on and directorial roles. Whether it was a high precision multi-axis mechanism that ended up being a custom machine, on and off-road vehicles, or even things like child safety seats, we have had our hands in a lot of things over the years. At TL Technologies we’ve provided assistance to machine tool builders, special tooling designers, consumer goods of various types, and most frequently to firearms builders. Mostly we drive out cost, but as we age we’ve been called upon to troubleshoot high-end assemblies where the issues were not immediately apparent. This led to us creating sub-assemblies and even semi-finished OEM products. This includes hand fitting and assembling collectible pistols and precision bolt action rifles. This is usually offered as a temporary solution or process engineering service to larger companies developing new goods or revamping existing ones, and is offered as part of our comprehensive knowledge to attract clients. It has been very successful.

You service a variety of industries, including defense, automotive, agricultural equipment, and consumer products. Do you have a personal favorite?

I’d have to say the products we make that almost every soldier carries and relies on are my favorite. We take great pride in knowing that these parts have not failed due to machining error since we took over the production years ago on the core components.

TL Technologies

Photo Courtesy of: TL Technologies

Why is American manufacturing important to you?

It’s everything. It’s the heart and soul of all products and by extension facilitates the means with which goods and services exist in our society. By bolstering the skills, knowledge, and experience, we can not only succeed economically but also further the craft and pride of making quality goods. We will always need to be able to make our own goods. The skill and craft to create is more than just economic. We absolutely must embrace and respect the skill and hard work it takes to create. We must pass that knowledge on for posterity so the next generation might find the satisfaction and pride of skilled work.

Why is high-quality tool performance important to you?

It’s everything. The old adage, “Garbage in, garbage out,” is accurate for us. We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.

Have Harvey Tools had an impact on your performance?

Oh man…frequently. Harvey Tools are a mainstay in our company. If I had to think of some key examples it would have to be your variety of Keyseat Cutters, 3 Flute Counterbores, Extended Reach Ball End Mills, and Miniature End Mills under .040”. The 270 degree Lollipop Cutters are excellent for deburring, and we also rely on the 140° spot drills, corner radius forming tools, and more. In short, not only are the tools good, but they provide exactly what we need and the specifications to handle major OEM jobs. We absolutely love metric and you’ve got that too. Your catalogs help us eliminate the need for customs. That is key to cost and lead time.

harvey tool end mills

Photo Courtesy of: TL Technologies

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Embrace the old knowledge and techniques. The manual skills learned with files and hand ground tools translate critically into the concepts you will need to master if CNC becomes your career. Understand how and why materials cut or refuse to cut, what rake angle to use and when, and how to leverage machine physics to help you work smarter instead of harder. Don’t be afraid to jump down the rabbit hole of engineering concepts, materials, physics, elementary chemistry; these all help give you an edge. Machining is done best with comprehensive knowledge of the machines and machining environment. You never stop learning. All that said, keep a fresh perspective. Old knowledge can be great, but operationally each business will likely have its own methods and flow. Try to understand there is more to the overall business picture than you can often see.

Is there anything else you would like to share with the In The Loupe community?

Oh definitely! Buy our stuff!! Ha. We are a supplier of choice for OEM, and small batch bolt actions for rifles, pistol components, and pistol slides. We machine to spec and provide cost-competitive options as well as super-premium options.  We are working now to release our own line of aftermarket products in 2018, so keep an eye out for those!

TL Technologies

Photo Courtesy of: TL Technologies


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

The Advances of Multiaxis Machining

CNC Machine Growth

As the manufacturing industry has developed, so too have the capabilities of machining centers. CNC Machines are constantly being improved and optimized to better handle the requirements of new applications. Perhaps the most important way these machines have improved over time is in the multiple axes of direction they can move, as well as orientation. For instance, a traditional 3-axis machine allows for movement and cutting in three directions, while a 2.5-axis machine can move in three directions but only cut in two. The possible number of axes for a multiaxis machine varies from 4 to 9, depending on the situation. This is assuming that no additional sub-systems are installed to the setup that would provide additional movement. The configuration of a multiaxis machine is dependent on the customer’s operation and the machine manufacturer.

Multiaxis Machining

With this continuous innovation has come the popularity of multiaxis machines – or CNC machines that can perform more than three axes of movement (greater than just the three linear axes X, Y, and Z). Additional axes usually include three rotary axes, as well as movement abilities of the table holding the part or spindle in place. Machines today can move up to 9 axes of direction.

https://www.instagram.com/p/BdssKBsg0Sa/

Multiaxis machines provide several major improvements over CNC machines that only support 3 axes of movement. These benefits include:

  • Increasing part accuracy/consistency by decreasing the number of manual adjustments that need to be made.
  • Reducing the amount of human labor needed as there are fewer manual operations to perform.
  • Improving surface finish as the tool can be moved tangentially across the part surface.
  • Allowing for highly complex parts to be made in a single setup, saving time and cost.

9-Axis Machine Centers

The basic 9-axis naming convention consists of three sets of three axes.

multiaxis machining

Set One

The first set is the X, Y, and Z linear axes, where the Z axis is in line with the machine’s spindle, and the X and Y axes are parallel to the surface of the table. This is based on a vertical machining center. For a horizontal machining center, the Z axis would be aligned with the spindle.

Set Two

The second set of axes is the A, B, and C rotary axes, which rotate around the X, Y, and Z axes, respectively. These axes allow for the spindle to be oriented at different angles and in different positions, which enables tools to create more features, thereby decreasing the number of tool changes and maximizing efficiency.

Set Three

The third set of axes is the U, V, and W axes, which are secondary linear axes that are parallel to the X, Y, and Z axes, respectively. While these axes are parallel to the X, Y, and Z axes, they are managed by separate commands. The U axis is common in a lathe machine. This axis allows the cutting tool to move perpendicular to the machine’s spindle, enabling the machined diameter to be adjusted during the machining process.

The Growing Industry of Multiaxis Machining

In summary, as the manufacturing industry has grown, so too have the abilities of CNC Machines. Today, tooling can move across nine different axes, allowing for the machining of more intricate, precise, and delicate parts. Additionally, this development has worked to improve shop efficiency by minimizing manual labor and creating a more perfect final product.

Aspex CNC – Featured Customer

Featured Image Courtesy of Aspex Cnc

Aspex CNC is a CNC machine shop based out of Poway, California. They offer prototype turning and milling, as well as production level machining. Their quick turnaround times and premium quality have garnered them some serious recognition in the manufacturing industry. Aspex CNC is just one of the four businesses that Gary Colle Jr. currently owns, but they are an essential part of his business ecosystem, creating parts for the other three product-based companies while also offering machining services to outside customers.

We talked to Gary about his unique experiences in the industry, his thoughts on 5 axis machining, his advice for trying High Efficiency Milling, and more!

Tell us a bit about how you got started in machining, your businesses, and how Aspex CNC was formed.

It is a bit of an interesting story. I got started in manufacturing because my father designed, developed, and manufactured one of the first lines of Wheelchair Accessible Vehicle lifts, which allow people in wheelchairs to easily get in and out of their vehicles. The company was called GoldenBoy Mobility and is still one of the four business I currently own and operate today.

At a young age, I was working in my father’s shop, answering phones and doing odd jobs as young as the age of 10. When I got to high school, I worked after school and during the summers in a more hands-on position, welding parts, cutting up cars, and helping on the shop floor. This really inspired my love for metalworking at a young age.

goldenboy mobility

Photo Courtesy of: Aspex CNC

My dad used to let me mess around in the shop at night, so I started welding my own parts and trying to learn as much as I could. One day, someone came in and asked if I could create a “tuna tower” (an accessory for wakeboarding/water skiing) for their boat. I relented at first, but eventually gave in and welded all the parts together for him. After I made that one, word got around that I could create these at night. I started to advertise a little bit locally, and people started ordering more and more. That summer, I ended up making 50 of these towers and got noticed by a couple of big distributors. Scaling up like that made it necessary to outsource some of our parts to local machine shops, which is where I discovered machining. I had very little prior knowledge of machining, but once I stepped into my first machine shop, I was blown away.

As that business grew even larger (now known as DBG Concepts), I needed more parts and needed them faster. We outgrew the local shops and purchased our first machine, a Fadal 4020 CNC Mill, from a local machine salesman, who also helped teach me the ropes. I learned a lot in those first 6 months about machining.

Business kept ramping up, and my father eventually retired and I took over GoldenBoy Mobility. With all the extra parts we needed, we kept machining things in-house, and buying more mills. Eventually, machining became an even larger part of the business than either DBG Concepts or GoldenBoy Mobility, so we formed Aspex CNC to move our machining out of the product line and more into prototype work and production machining for other business. We still machine most of the parts for DBG and GoldenBoy in-house, but we are doing much more for outside sources than we used to.

What sort of machines do you use in your shop?

Right now, we are a Haas-only shop. We currently have eight Haas machines in our shop. Our lineup consists of a couple of lathes (ST10 and ST30), a Super Mini Mill, and five CNC Mills (VF2SS, VF2SSYT, VF4SS, VF5SS, and UMC750SS), with another UMC750 on the way!

aspex cnc

Photo Courtesy of: Aspex CNC

Which materials do you most often work with in your shop?

We work with a lot of the common materials, 6061/7075 Aluminum, 1018/1045 Steel, 303/304/17-4ph Stainless, as well as plastics like Acetal, UHMW, HDPE, and PVC.

How has your experience been with 5 axis machining?

If you don’t keep up with technology, you won’t be able to keep up with business, so learning multi-axis machining was a no-brainer for us. We first started with a Haas HRT210 4th axis rotary, and began to play with that. Over the next two years, we learned everything we could about multi-axis machining and made the decision to upgrade to a 5 axis machine. We actually went to IMTS that year to talk to manufacturers and find the perfect machine for us and ended up sticking with Haas because of their support platform and educational resources.

5 axis can be hard, but there are a lot of tools out there (HSM Works from Autodesk being one) that can help you learn. It does require a little more upfront work and discipline, but it eliminates a lot of setup time, creates new opportunities for our shop, and has been really good for us from a business standpoint. A big part of our business is machining one-off parts, so the 5 axis machine allows for a faster turnaround time for those odd shapes and sizes we come across.

5 axis machining

Photo Courtesy of: Aspex CNC

You are very active on social media promoting your business. How has the online machinist community helped your business?

Honestly, even though it can become a bit of a distraction at times, using social media to share our work and partner up with companies like Harvey Tool and Helical has been a lot of fun. We are still young in the social media space, so we haven’t seen a massive impact yet, but the best is yet to come. We have received a few bites here and there which has led to work, but as with everything, it takes some time. We expect a lot of growth this year as we work on more really neat projects and continue to get our name out there. As we grow, the opportunities are going to come.

aspex cnc

Photo Courtesy of: Aspex CNC

What are some of the coolest projects you have ever worked on?

Unfortunately, we can’t talk about most of the work we do, due to customer confidentiality, but we did just do a project for the State of California building a training vehicle for their driver’s education program. We designed and built a dual steering system that gave the driver’s trainer a second steering wheel on the passenger side of the car to be used during training. Another job we just finished up was some parts for the new Raiders football stadium in Las Vegas. They contacted us in a pinch and needed them in two days, and we made it happen. It is pretty cool to know you played a part in a huge project like that.

Aspex CNC also does a lot of work with racing/off-road vehicle companies, often machining parts for the chassis and suspension components. We have worked on projects for companies like Scarbo Performance, ID Designs, TSCO Racing and a whole list of others.

You can only use one machine for the rest of your life. Do you go with a CNC Milling machine or the Lathe?

I would hate to have to choose between them, but it is 100% the CNC Mill. I love ripping around with end mills and working with the 5 axis machines. It is mind blowing what these things are capable of.

Why is manufacturing products in America important to you?

Growing up in the industry which I did while working under my father (building wheelchair accessible vehicles), we had a lot of customers who were veterans coming back from Vietnam or Desert Storm who had been injured overseas and needed extra accommodations, which we could provide for them. The veterans I have worked with made me so patriotic with their stories and courage. We also get to work on a lot of projects with the US Department of Veteran’s Affairs, which is putting money back into the American economy by supporting companies like ours and contracting us to make these vehicles. It only makes sense that we employ more people here and avoid sending things overseas to support those who have supported us.

aspex cnc

Photo Courtesy of: Aspex CNC

Do you utilize High Efficiency Milling (HEM) techniques in your shop? What advice do you have for those who are getting started with HEM?

Absolutely, all the time!

The biggest thing is listening to your tool manufacturer for recommendations and then cut those in half to start. From there, work your way up until you are comfortable. Just because the tool can handle it doesn’t necessarily mean your machine, work holding and or set up can, so I would advise people to walk before you run when it comes to HEM.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Be conservative and establish good habits from the start. You can get more aggressive as your career starts to take off, but don’t run out and try to run the biggest and baddest machines on day one and try to cut corners. You need to learn what is behind machining; you can get easily lost in all the technology that is available, but you need to understand the core science behind it first. Take it slow, because if you go too fast, you might miss something important along the way.

Is there anything else you would like to share with the In The Loupe community?

The best thing is building relationships with companies like Haas, Harvey Tool, and Helical. Not only do they provide great service and support for you, but it quickly becomes a mutually beneficial relationship. As we give feedback to the tool and machine manufacturers, and even our metal supplier, it helps them improve their products, which in turn allows our shop to increase our production and efficiency.

Also, having a good team with good people makes all the difference. No matter how many machines you have and how automated you get, you still need good people on your side. I would put my guys up against any other machine shop out there in terms of skill, and it is a big part of what has made our business so successful.

aspex cnc

Photo Courtesy of: Aspex CNC


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.