Posts

The Geometries and Purposes of a Slitting Saw

When a machinist needs to cut material significantly deeper than wide, a Slitting Saw is an ideal choice to get the job done. A Slitting Saw is unique due to its composition and rigidity, which allows it to hold up in a variety of both straightforward and tricky to machine materials.

What is a Slitting Saw?

A Slitting Saw is a flat (with or without a dish), circular-shaped saw that has a hole in the middle and teeth on the outer diameter. Used in conjunction with an arbor, a Slitting Saw is intended for machining purposes that require a large amount of material to be removed within a small diameter, such as slotting or cutoff applications.

Other names for Slitting Saws include (but are not limited to) Slitting Cutters, Slotting Cutters, Jewelers Saws, and Slitting Knives. Both Jewelers Saws and Slitting Knives are particular types of Slitting Saws. Jewelers Saws have a high tooth count enabling them to cut tiny, precise features, and Slitting Knives are Slitting Saws with no teeth at all. On Jewelers Saws, the tooth counts are generally much higher than other types of saws in order to make the cuts as accurate as possible.

Key Terminology

Why Use a Slitting Saw?

These saws are designed for cutting into both ferrous and non-ferrous materials, and by utilizing their unique shape and geometries, they can cut thin slot type features on parts more efficiently than any other machining tool.

Common Applications:

  1. Separating Two Pieces of Material
    1. If an application calls for cutting a piece of material, such as a rod, in half, then a slitting saw will work well to cut the pieces apart while increasing efficiency.
  2. Undercutting Applications
    1. Saws can perform undercutting applications if mounted correctly, which can eliminate the need to remount the workpiece completely.
  3. Slotting into Material
    1. Capable of creating thin slots with a significant depth of cut, Slitting Saws can be just the right tool for the job!

When Not to Use a Slitting Saw

While it may look similar to a stainless steel circular saw blade from a hardware store, a Slitting Saw should never be used with construction tools such as a table or circular saw.  Brittle saw blades such as slitting saws will shatter when used on manual machines, and can cause injury when not used on the proper set up.

In Conclusion

Slitting Saws can be beneficial to a wide variety of machining processes, and it is vital to understand their geometries and purpose before attempting to utilize them in the shop. They are a great tool to have in the shop and can assist with getting jobs done as quickly and efficiently as possible.

Using Tool Libraries in Autodesk HSM & Fusion 360

The days of modeling your tools in CAM are coming to an end. Harvey Performance Company has partnered with Autodesk to provide comprehensive Harvey Tool and Helical Solutions tool libraries to Fusion 360 and Autodesk HSM users. Now, users can access 3D models of every Harvey and Helical tool with a quick download and a few simple clicks. Keep reading to learn how to download these libraries, find the tool you are looking for, how to think about speeds and feeds for these libraries, and more.

Downloading Tool Libraries

On the Autodesk HSM Tools page, you will find Harvey Tool and Helical Solutions tool libraries. Clicking either of the previous links will bring you to that brand’s tool libraries. Right now, all of the two brands more than 27,000 tools are supported in the tool libraries.

Once on the page, there will be a download option for both Fusion and HSM. Select which software you are currently using to be prompted with a download for the correct file format.

From there, you will need to import the tool libraries from your Downloads folder into Fusion 360 or HSM. These tool libraries can be imported into your “Local” or “Cloud” libraries in Fusion 360, depending on where you would like them to appear. For HSM, simply import the HSMLIB file you have downloaded as you would any other tool library.

Curt Chan, Autodesk MFG Marketing Manager, takes a deeper dive into the process behind downloading, importing, and using CAM tool libraries to Fusion in the instructional video below.

For HSM users, jump to the 2:45 mark in this video from Autodesk’s Lars Christensen, who explains how to download and import these libraries into Autodesk HSM.


Selecting a Tool

Once you have downloaded and imported your tool libraries, selecting a specific tool or group of tools can be done in several ways.

Searching by Tool Number

To search by tool number, simply enter the tool number into the search bar at the top of your tool library window. For example, if you are looking for Helical Tool EDP 00015, enter “00015” into the search bar and the results will narrow to show only that tool.

Fusion 360 Tool Libraries

In the default display settings for Fusion 360, the tool number is not displayed in the table of results, where you will find the tool name, flute count, cutter diameter, and other important information. If you would like to add the tool number to this list of available data, you can right click on the top menu bar where it says “Name” and select “Product ID” from the drop down menu. This will add the tool number (ex. 00015) to the list of information readily available to you in the table.

Harvey Tool Tool Libraries

Searching by Keyword

To search by a keyword, simply input the keyword into the search bar at the top of the tool library window. For example, if you are looking for metric tooling, you can search “metric” to filter by tools matching that keyword. This is helpful when searching for Specialty Profile tools which are not supported by the current profile filters, like the Harvey Tool Double Angle Shank Cutters seen in the example below.

Fusion 360 Tool Libraries

Searching by Tool Type

To search by tool type, click the “Type” button in the top menu of your tool library window. From there, you will be able to segment the tools by their profile. For example, if you only wanted to see Harvey Tool ball nose end mills, choose “Ball” and your tool results will filter accordingly.

Tool Libraries

As more specialty profiles are added, these filters will allow you to filter by profiles such as chamfer, dovetail, drill, threadmill, and more. However, some specialty profile tools do not currently have a supported tool type. These tools show as “form tools” and are easier to find by searching by tool number or name. For example, there is not currently a profile filter for “Double Angle Shank Cutters” so you will not be able to sort by that profile. Instead, type “Double Angle Shank Cutter” into the search bar (see “Searching by Keyword”) to filter by that tool type.

Searching by Tool Dimensions

To search by tool dimensions, click the “Dimensions” button in the top menu of your tool library window. From there, you will be able to filter tools by your desired dimensions, including cutter diameter, flute count, overall length, radius, and flute length (also known as length of cut). For example, if you wanted to see Helical 3 flute end mills in a 0.5 inch diameter, you would check off the boxes next to “Diameter” and “Flute Count” and enter the values you are looking for. From there, the tool results will filter based on the selections you have made.

Tool Libraries

Using Specialty Profile Tools

Due to the differences in naming conventions between manufacturers, some Harvey Tool/Helical specialty profile tools will not appear exactly as you think in Fusion 360/HSM. However, each tool does contain a description with the exact name of the tool. For example, Harvey Tool Drill/End Mills display in Fusion 360 as Spot Drills, but the description field will call them out as Drill/End Mill tools, as you can see below.

Below is a chart that will help you match up Harvey Tool/Helical tool names with the current Fusion 360 tool names.

Tool Name Fusion 360 Name
Back Chamfer Cutter Dovetail Mill
Chamfer Cutters Chamfer Mill
Corner Rounding End Mill – Unflared Radius Mill
Dovetail Cutter Dovetail Mill
Drill/End Mill Spot Drill
Engraving Cutter/Marking Cutter – Tip Radius Tapered Mill
Engraving Cutter – Tipped Off & Pointed Chamfer Mill
Keyseat Cutter Slot Mill
Runner Cutter Tapered Mill
Undercutting End Mill Lollipop Mill
All Other Specialty Profiles Form Mill

Speeds and Feeds

To ensure the best possible machining results, we have decided not to pre-populate speeds and feeds information into our tool libraries. Instead, we encourage machinists to access the speeds and feeds resources that we offer to dial accurate running parameters based on their material, application, and machine capabilities.

Harvey Tool Speeds & Feeds

To access speeds and feeds information for your Harvey Tool product, head to http://www.harveytool.com/cms/SpeedsFeeds_228.aspx to find speeds and feeds libraries for every tool.

If you are looking for tool specific speeds and feeds information, you will need to access the tool’s “Tech Info” page. You can reach these pages by clicking any of the hyperlinked tool numbers across all of our product tables. From there, simply click “Speeds & Feeds” to access the speeds and feeds PDF for that specific tool.

If you have further questions about speeds and feeds, please reach out to our Technical Support team. They can be reached Monday-Friday from 8 AM to 7 PM EST at 800-645-5609, or by email at [email protected].

Helical Solutions Speeds & Feeds

To access speeds and feeds information for your Helical Solutions end mills, we recommend using our Machining Advisor Pro application. Machining Advisor Pro (MAP) generates specialized machining parameters by pairing the unique geometries of your Helical Solutions end mill with your exact tool path, material, and machine setup. MAP is available free of charge as a web-based desktop app, or as a downloadable application on the App Store for iOS and Google Play.

machining advisor pro

To learn more about Machining Advisor Pro and get started today, visit www.machiningadvisorpro.com. If you have any questions about MAP, please reach out to us at [email protected].

If you have further questions about speeds and feeds, please reach out to our Technical Support team. They can be reached Monday-Friday from 8 AM to 7 PM EST at 866-543-5422, or by email at [email protected].


For additional questions or help using tool libraries, please send an email to [email protected]. If you would like to request a Harvey Performance Company tool library be added to your CAM package, please fill out the form here and let us know! We will be sure to notify you when your CAM package has available tool libraries.

Form Factory – Featured Customer

Form Factory is a machine shop located in Portland, Oregon focused primarily on prototype work, taking 3D CAD models and making them a physical reality through CNC precision machining. Over the past 14 years, Form Factory has grown from a one man operation with a single CNC mill into a highly respected shop in the Northwest US, making prototype models for clients all over the world. Harvey Tool customers may recognize the name Form Factory from their photo on the front cover of the Fall 2018 Catalog, as they were the first place winners of the #MachineTheImpossible Catalog Cover Contest!

We talked with Brian Ross, Founder/Owner of Form Factory, to learn about how he suggests entrepreneurs and inventors think about prototyping their ideas, his unique experience working on many different models, his winning part in the #MachineTheImpossible contest, and more!

Thanks for taking the time to talk with us for this Featured Customer post. To get started, tell us a little bit about Form Factory, how you got started, and what sort of products you manufacture.

Prior to starting my own business, I had worked as a machinist at 4 different prototyping firms which is where I learned the trade and got the itch to run my own shop. I started Form Factory myself just over 14 years ago with a single Haas VF1. I had no client base and a bunch of loans. It was a scary time for me to jump in to entrepreneurship. Now, we have three CNC machines, various other components and machines, and four full-time employees.

At Form Factory we focus primarily on industrial design models and prototypes. We do a lot of work in the electronics industry, making prototypes of cell phones, laptops, printers, and other consumer electronics. Many of our models are created for display at trade shows or in Kickstarter and other product announcement videos, but we also do a fair share of working prototypes as well. It all depends on what the client wants, and we pride ourselves on the ability to deliver exactly what they need.

form factory

What sort of machines and software do you use in your shop?

We currently have 3 CNC mills – a Haas VF1, Haas VF2, and Haas VF3. We like using machines made in the USA because we like making products in the USA. Haas is what I knew and had run predominantly, and Haas is fairly common in the Northwest so it was easier to find skilled employees in the area who knew these machines well.

We use Mastercam for our CAM software, which is what I learned on. It also seems to be very common in this area which makes for an easy transition for new employees.

form factory

What were some of the keys to success as you built Form Factory from the ground up?

I based much of Form Factory’s business model on my past experiences in manufacturing. Many of the other small companies I had worked for ended up closing, even though the guys on the shop floor would be working lots of overtime and we had plenty of business. What I realized was that these other places often closed because of greed, over-expansion, and rapid growth which they could not sustain. They ended up overextending themselves and they could not keep the doors open as a result.

I like the spot I am in now because while we can certainly expand, we have found a happy medium. We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Being a small company, word of mouth is one of our only forms of marketing. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty, which is key to running a good business.

form factory

Working Prototype of a “Smart Ball” Charger for Adidas

Prototype manufacturing is a very competitive segment of this industry. What sets Form Factory apart from the competition?

Understanding how model making relates to industrial design separates us from a typical machine shop. We can take a prototype design or simple drawing and we are able to implement all of the functionality into a prototype model. We do not deal much with the actual production run, which will come later, so we have the ability to focus more on the prototype and a customer’s exact needs to get a product off the ground. This level of expertise and focus sets us apart from your typical shop.

For example, if the model is for photography purposes, a trade show display, or a promotional video, appearance will be key. We will spend more time working on building what we consider to be a true work of art; something that will immediately stand out to the consumer, but may lack in complete functionality. If the client requires a fully functioning prototype, we will spend more time making sure that all of the components work as intended over multiple stages of design. The final result may be a bit “uglier” than a prototype designed for appearance alone, but it will work as intended.

Let’s say I have an idea for a new product. What should I know about getting my design manufactured?

Right now, especially with 3D printing and cheap overseas manufacturing, it can seem very easy to prototype a new product. However, these options are not always the best route to take to get a quality prototype. With 3D printing, you get a huge step down in resolution and quality, although you can save in cost. You can also save on cost by having things made overseas, but the communication can easily breakdown and the quality is often lower. The other factor is that virtually anyone can end up copying your product overseas and you have very little protection against that.

form factory

By going with a local machine shop and sticking with CNC-machined parts, you are guaranteed to get a higher quality finished product with better communication. We do a ton of back and forth communication with our clients to understand their exact design intent. With a prototype, there are often a lot of blanks that need to be filled in to completely understand the product, and we do our best to communicate with the client to deliver the perfect piece, and always on time. Sure, your cost may be higher, but the entire process will be smoother and the time saved on revisions or scrapping poor quality prototypes is invaluable.

It sounds like you guys take a lot of pride in the work you do, which is great!

Absolutely! Our models are all one of a kind works of art. We can take things from the early stages where a client might have an idea drawn on a napkin, all the way to a fully functional piece.

Our goal is always to make parts look like they grew that way. In my opinion, taking a solid block of material and making it into a finished part is truly a work of art. We work hard to determine where the burrs are, what the radiuses are, and how the finish should look, amongst many other variables. We take a lot of pride in the finished appearance and want everyone in the shop to produce the same level of quality as their co-workers. We hold all ourselves and our work to very high standards.

form factory

Finished Laptop Display Models

How has the online machinist community helped your business/changed your thinking/helped you grow as a machinist/business owner?

I follow tons of great machinists and other companies on Instagram.  It’s funny how quick you can get an idea from a simple picture or short video of another project somebody else is working on.  I love machining because after 25 years, I am still learning so much every day.  The machines, the software, and the tooling are changing so fast its hard to keep up.  Every day I see something on Instagram that makes me say “Oh WOW!” or “Hey, I can do my part that way!”  I was machining before there was an internet, so I really appreciate having an on-line community, and body of knowledge to draw from. You can find us on Instagram @FormFactory!

We loved the ball in chain part you created for our #MachineTheImpossible Fall 2018 Catalog Cover contest, and so did our followers, as they voted you into first place. Tell us a little more about that part.

So that piece was something I had been wanting to try for a while to challenge myself. It was not a part for a customer or part of a job, but simply a practice in more complex machining. The entire part was actually machined from one solid piece of aluminum on a 3 axis mill. With some clever fixturing and a few setups, I was able to make it work!

machine the impossible

Harvey Tool’s Tapered and Long Reach End Mills played a huge part in the creation. There would have been no way for me to get at those impossible angles or hard to reach areas without the multiple available dimensions and angles that you guys offer. In total, that piece took me about 20 hours, but it was a great piece to learn with and it definitely paid off in the end! As a small business, getting that exposure and marketing from being on your catalog cover was huge, and we appreciate the opportunity you gave us and the entire machinist community.

To a small business like yours, what did it mean to you to be highlighted on the Fall 2018 catalog cover?

I found out we had won when one of my customer’s emailed me congratulations! I was blown away! Even to be chosen as a finalist was exciting. The Harvey Tool Catalog is the ONE catalog we always have around the shop at the ready. I have been a Harvey fan for two decades, so making the cover of the catalog was pretty awesome!

In your career, how has Harvey Tool helped you #MachineTheImpossible?

Being able to overnight tools straight to the shop on a moment’s notice has saved us too many times to count. Harvey Tool makes some of the most impossible reach tooling; I still don’t know how they do it. ‘Back in the day” I would grind my own relief on an old Deckel. There’s nothing quite like looking for that extra 50 thou of reach and snapping off the tool! Now I let Harvey do ALL of that work for me, so I can focus on the machining. It takes nice tools to make nice parts. If you need tools that are always accurately relieved to just under the tool diameter, crazy sharp, and balanced, then look no further than Harvey Tool.

form factory

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Find the ‘Distance to Go’ setting or view on your machine’s control, and hit ‘feed hold’ with the first plunge of every new tool you set, and every new work offset, 100% of the time. It will save your mill and your parts from disaster. Machining is the art of doing thousands of simple things, exactly right and in the right order. The hard part is to keep your focus and pay keen attention through the entire process. Understand how easy it is to make a simple mistake, and how quickly you can be starting over. Allow yourself room for mistakes along the way by triple checking BEFORE your mill lets you know it’s too late. If you have other things on your mind, don’t machine parts.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Shank Tolerances, Collet Fits, & h6 Benefits

A cutting tool’s shank is one of the more vital parts of a tool, as it’s critical to the collet-tool connection. There are several types of shanks, each with their own tolerances and suitable tool holder methods. One of the most popular and effective tool holding styles is a shrink fit tool holder, which works with h6 shanks, but what does this mean and what are the benefits of it? How is this type of shank different from a shank with standard shank tolerances? To answer these questions, we must first explore the principals of tolerances.

The Principals of Tolerances

Defining Industry Standard Tolerances

There are two categories of shank tolerances that machinists and engineers operating a CNC machine should be familiar with: hole basis and shank (or shaft) basis. The hole basis system is where the minimum hole size is the starting point of the tolerance. If the hole tolerance starts with a capital “H,” then the hole has a positive tolerance with no negative tolerance. The shank basis system is where the maximum shank size is the starting point. This system is relatively the same idea as the hole basis system but instead, if the tolerance starts with a lowercase “h,” the shank has a negative tolerance and no positive tolerance.

Letter Designations

The limits of tolerance for a shank or hole are designated by the appropriate letter indicating the deviation. For instance, the letter “k” has the opposite minimum and maximum designations as “h”. Tolerances beginning with “k” are exclusively positive, while tolerances beginning with “h” are exclusively negative. The number following the given letter denotes the International Tolerance (IT) grade. For example, a tolerance with the number 6 will have a smaller tolerance range than the number 7, but larger than the number 5. This range is based on the size of the shank. A hole that has a 0.030” diameter will have an h6 tolerance of (+0.0000,-0.0002), while a 1.00” hole with have an h6 tolerance band of (+0.0000,-0.0005).

It is important to note that most sources list IT tolerances in millimeters, while the graph below has been translated to inches. Operations that require more precise manufacturing, such as reaming, will have lower IT grades. Operations that do not require manufacturing to be as precise will have higher IT grades.

shank tolerances

Preferred Collet Fits

Different types of combinations of hole basis and shank basis tolerances lead to different types of collet fits. The following table offers insight into a few different types of preferred fits and the shank tolerances that are required for each.

collet fits

Image: Machinery’s Handbook 29th Edition.

Shrink Fit Tool Holders

The shrink fit holder is one of the more popular styles of tool holders because of its ability to be more customizable, as evident in the chart above. In this method, a collet is heated to expand, then cooled to contract around the shank of a tool. At room temperature, a cutting tool should not be able to be inserted into a shrink fit holder – only when the holder has undergone thermal expansion due to the introduction of a significant amount of heat should the tool fit. As the holder cools, the tool is held tighter and tighter in place. Typically, a holder is heated through a ring of coils by an induction heater. It is important to heat the holder uniformly, paying mind to not overheat it. Doing so could cause the shank that is being held to expand within the holder and remain stuck.

 

Benefits of Shrink Fit Tool Holders

  1. Gripping power. The shank is held flush and uniform against the holder, resulting in a tighter connection.
  2. Low runout. A more secure connection will result in extended tool life, and a higher quality surface finish.
  3. Better balance for high RPM. With a tighter tool-to-holder connection, the opportunity exists for more aggressive running parameters.

Shank Tolerances Summarized

Understanding shank tolerances is an intricate part of the machining process as it impacts which tool holder is appropriate for your job. A secure holder connection is vital to the performance of the tool in your application. With an h6 shrink fit holder, the result is a secure connection with stronger gripping power. However, only certain shanks are able to be used with this type of holder. From the letter designation assigned to a shank, to whether that letter is upper or lowercase, each detail is vital to ensuring a proper fit between your tools shank and its corresponding shrink fit holder.