Posts

Axis CNC Inc. – Featured Customer

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

Selecting the Right Chamfer Cutter Tip Geometry

A chamfer cutter, or a chamfer mill, can be found at any machine shop, assembly floor, or hobbyist’s garage. These cutters are simple tools that are used for chamfering or beveling any part in a wide variety of materials. There are many reasons to chamfer a part, ranging from fluid flow and safety, to part aesthetics.

Due to the diversity of needs, tooling manufacturers offer many different angles and sizes of chamfer cutters, and as well as different types of chamfer cutter tip geometries. Harvey Tool, for instance, offers 21 different angles per side, ranging from 15° to 80°, flute counts of 2 to 6, and shank diameters starting at 1/8” up to 1 inch.

After finding a tool with the exact angle they’re looking for, a customer may have to choose a certain chamfer cutter tip that would best suit their operation. Common types of chamfer cutter tips include pointed, flat end, and end cutting. The following three types of chamfer cutter tip styles, offered by Harvey Tool, each serve a unique purpose.

Three Types of Harvey Tool Chamfer Cutters

Type I: Pointed

This style of chamfer cutter is the only Harvey Tool option that comes to a sharp point. The pointed tip allows the cutter to perform in smaller grooves, slots, and holes, relative to the other two types. This style also allows for easier programming and touch-offs, since the point can be easily located. It’s due to its tip that this version of the cutter has the longest length of cut (with the tool coming to a finished point), compared to the flat end of the other types of chamfer cutters. With only a 2 flute option, this is the most straightforward version of a chamfer cutter offered by Harvey Tool.

Type II: Flat End, Non-End Cutting

Type II chamfer cutters are very similar to the type I style, but feature an end that’s ground down to a flat, non-cutting tip. This flat “tip” removes the pointed part of the chamfer, which is the weakest part of the tool. Due to this change in tool geometry, this tool is given an additional measurement for how much longer the tool would be if it came to a point. This measurement is known as “distance to theoretical sharp corner,” which helps with the programming of the tool. The advantage of the flat end of the cutter now allows for multiple flutes to exist on the tapered profile of the chamfer cutter. With more flutes, this chamfer has improved tool life and finish. The flat, non-end cutting tip flat does limit its use in narrow slots, but another advantage is a lower profile angle with better angular velocity at the tip.

Type III: Flat End, End Cutting

Type III chamfer cutters are an improved and more advanced version of the type II style. The type III boasts a flat end tip with 2 flutes meeting at the center, creating a center cutting-capable version of the type II cutter. The center cutting geometry of this cutter makes it possible to cut with its flat tip. This cutting allows the chamfer cutter to lightly cut into the top of a part to the bottom of it, rather than leave material behind when cutting a chamfer. There are many situations where blending of a tapered wall and floor is needed, and this is where these chamfer cutters shine. The tip diameter is also held to a tight tolerance, which significantly helps with programing it.

In conclusion, there could be many suitable cutters for a single job, and there are many questions you must ask prior to picking your ideal tool. Choosing the right angle comes down to making sure that the angle on the chamfer cutter matches the angle on the part. One needs to be cautious of how the angles are called out, as well. Is the angle an “included angle” or “angle per side?” Is the angle called off of the vertical or horizontal? Next, the larger the shank diameter, the stronger the chamfer and the longer the length of cut, but now, interference with walls or fixtures need to be considered. Flute count comes down to material and finish. Softer materials tend to want less flutes for better chip evacuation, while more flutes will help with finish. After addressing each of these considerations, the correct style of chamfer for your job should be abundantly clear.

How to Select a Spindle

When trying to develop efficient processes, many machinists and programmers turn to tool selection first. It is true that tooling can often make a big difference in machining time, and speeds and feeds, but did you know that your machine’s spindle can have an equally impactful effect? The legs of any CNC machine, spindles are comprised of a motor, a taper for holding tools, and a shaft that will hold all of the components together. Often powered by electricity, spindles rotate on an axis which receives its input from the machine’s CNC controller.

Why is Choosing the Right Spindle Important?

Choosing the right spindle to machine your workpiece with is of very high importance to a successful production run. As tooling options continue to grow, it is important to know what tooling your spindle can utilize. Large diameter tools such as large end mills or face mills typically require slower spindle speeds and take deeper cuts to remove vast amounts of material. These applications require supreme machine rigidity and require a spindle with high torque.

Contrastingly, smaller diameter tools will need a higher-speed spindle. Faster speeds and feeds deliver better surface finishes and are used in a variety of applications. A good rule of thumb is that an end mill that is a half inch or smaller will run well with lower torque.

Types of CNC Spindles

After finding out what you should look for in a spindle, it is time to learn about your different options. Spindles typically vary by the type, style of the taper, or its size. The taper is the conical portion of the tool holder that fits inside of the opening of the spindle. Every spindle is designed to mate with a certain taper style and size.

CAT and BT Holders

This is the most widely utilized holder for milling in the United States. Referred to as “V-flange holders,” both of these styles need a retention knob or pull stud to be secured within the machine spindle. The BT (metric style) is popular overseas.

HSK Holders

This type of holder is a German standard known as “hollow shank taper.” The tapered portion of the holder is much shorter than its counterparts. It also engages the spindle in a different way and does not require a pull stud or retention knob. The HSK holder is utilized to create repeatability and longer tool life – particularly in High Efficiency Milling (HEM) applications.

All of these holders have benefits and limitations including price, accuracy, and availability. The proper selection will depend largely on your application requirements.

Torque vs. Horsepower

Torque is defined as force perpendicular to the axis of rotation across a distance. It is important to have high torque capabilities when using an end mill larger than ½ inch, or when machining a difficult material such as Inconel. Torque will help put power behind the cutting action of the tool.

Horsepower refers to the amount of work being done. Horsepower is important for smaller diameter end mills and easy-to-machine materials like aluminum.

You can think of torque as a tractor: It can’t go very fast, but there is a lot of power behind it. Think of horsepower as a racecar: It can go very fast but cannot pull or push.

Torque-Horsepower Chart

Every machine and spindle should come with a torque horsepower chart. These charts will help you understand how to maximize your spindle for torque or horsepower, depending on what you need:

Image Source: HAAS Machine Manual

Proper Spindle Size

The size of the spindle and shank taper corresponds to the weight and length of the tools being used, as well as the material you are planning to machine. CAT40 is the most commonly used spindle in the United States. These spindles are great for utilizing tools that have a ½ inch diameter end mill or smaller in any material. If you are considering using a 1 inch end mill in a material like Inconel or Titanium, a CAT50 would be a more appropriate choice. The higher the taper angle is, the more torque the spindle is capable of.

While choosing the correct tool for your application is important, choosing a tool your spindle can utilize is paramount to machining success. Knowing the amount of torque required will help machinists save a lot of headaches.

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

Liberty Machine – Featured Customer

Liberty Machine, Inc. is a small Aerospace and Defense-focused machine shop located out of owner Seth Madore’s garage in Gray, Maine. In just a few years, Liberty Machine has transformed from a side hustle into a full-fledged machine shop with customers all over the world.

We were given the chance to visit Seth at his shop in Maine and interview him for this post. We picked Seth’s mind about entrepreneurship, the online manufacturing community, some interesting home construction choices made to accommodate a machine shop, and more.

Thanks for having us come out and visit the shop for this Featured Customer post. To get started, tell us a little bit about Liberty Machine’s history, and what sort of products you typically manufacture.

I founded Liberty Machine, Inc. out of my garage about 6 years ago while I was still working full-time at one of Maine’s largest (and best) Aerospace and Defense shops. I was working close to around 80-100 hours a week, maintaining my full-time job as well as coming home and making chips in the evenings and weekends. At first, I was doing a lot of smaller pieces and one-off parts, such as fixtures and prototype work to help build up a customer base and make enough money to eventually upgrade my machine.

In the early years, I was using an old 1982 Matsuura MC-500 Mill that I picked up for around $6,000. I used that machine to generate enough cash flow and eventually pull the trigger on a 2015 DMG Mori Duravertical 5100 with a 4th axis, probing and high-pressure coolant which really allowed me to take on the type of aerospace and defense work I had been doing at my day job and make the leap into full time entrepreneurship in my own shop. Now, we have the capabilities to focus on aerospace and defense work for major clients all over the country.

We are still working out of my garage, with myself and one other employee, but there are hopes for further expansion in the future as we acquire more work and expand our customer base. If you want to keep up with our shop, follow us on Instagram @liberty_machine!

Liberty Machine

You have a great shop here and are definitely maximizing the space. How much square footage are you working with?

Currently, we are working out of a 940 sq/ft shop. We “technically” have room for one more CNC mill if we really squeezed things together. I don’t think that is in the cards though; it is more likely that we will move to a larger space if and when the time comes for expansion. Heat management and air quality are real issues when working in small spaces with low ceilings, which is something we deal with currently.

What sort of machines and software do you have here in the shop?

For now, we have two VMC’s and a decent amount of inspection equipment. We have the DMG Mori machine I previously mentioned, as well as a 2016 Kitamura-3XD. Both machines have 12k spindles, Renishaw probes, and feature coolant through spindles.

For inspection equipment, we have a 2014 Mitutoyo QM-Height 350 Digital Height Gage, a 2003 Brown & Sharpe Gage 2000 CMM with Renishaw MIP Articulating Probe Head, and a 2003 Mitutoyo PH-A14 Optical Comparator. We also recently acquired a Scienscope Stereo/Digital microscope. This allows us to perform visual inspection of our parts at an extreme amount of detail.

Liberty Machine

There are still holes in our inspection lineup, so we are always looking at adding onto what we do to provide our customers with quality machined products.

For CAD/CAM software, we use Autodesk’s Fusion 360 as well as Inventor HSM.

You mentioned using Fusion 360 for CAD/CAM. Some of our readers may know you from the Autodesk CAM forums as an “Autodesk Expert Elite.” How did that come together?

About 4-5 years ago, I knew I needed a legal, supported, capable CAM solution. After several “30-day trials” of the more affordable packages, I stumbled upon Fusion 360. Having a fair amount of experience with Esprit and MasterCAM, I taught myself Fusion 360 in between running my shop and trying to spend what little time I had with my wife and children. Even though I had prior experience in other CAM packages, I still had lots of questions. I turned to the Fusion CAM Forums for assistance. The employees and other users were excellent to work with and got me sorted out quickly.

Liberty Machine

After I became more comfortable with the Fusion 360 software, I decided to spend some of my free time helping others by answering their questions on the forums. I wanted to give back to the community that had helped me learn. Autodesk eventually took notice of my constant presence on the forums and granted me the title of “Autodesk Expert Elite,” an honor given to some of their most prolific community members and advocates. Now I work with them to help test new features, provide insight from a user’s point of view, and participate in events like Autodesk University.

How did you first get involved in manufacturing?

I will be honest – I never meant to end up working in manufacturing. When I was a teen, I had glamorous ideas about law enforcement, federal work and so forth. But, life doesn’t always work out that way (I met a wonderful girl and goals shifted, so I started looking for alternate career paths).

My friend (future brother-in-law) was a machinist, so I started asking about his work and what it involved. He was working in a “job shop” using all sorts of cool machines and technology I had never really heard about. I was very excited about this career shift and I pursued it with fervor. 19 years later and I still LOVE this trade. The thing that intrigued me most about manufacturing, and the real reason I became so fixated on the trade, was the integral role the machinist plays in every aspect of manufactured society. I believe it is the most fundamental profession there is, and I take great pride in it. The evolution of the trade from manual machining to skilled programmers running CNC machines has always fascinated me as well and has kept pushing me to learn more and continue growing as a machinist.

Liberty Machine

Is it true that you built an addition to your garage specifically for the DMG Mori machine?

That is true! Before I bought the machine, I knew it was going to be too tall for my existing space, and was also going to need a solid foundation to sit on (it weighs 7 tons). Before the machine arrived, I had a concrete slab poured right against the side wall of the existing garage, and placed the DMG Mori on that slab.

After a couple days of unfortunate rain and multiple layers of tarps covering the machine, I had several family members (carpenters by trade) help me build the addition. Ok…I helped them. They were able to get it all framed and covered in just one day, breaking down the side wall of the garage and literally building the new space around the dimensions of the machine. Like they say, if there is a will, there is a way!

Running a shop out of your garage must have been a challenge to startup. What were some of the growing pains you experienced as this shop was built out?

On a professional level, the struggle was real. Two jobs, huge payments on the horizon, wondering where all the work (and money) is going to come from… As I mentioned, at that point, I was working 100 hours a week between the two jobs, and really feeling wiped out at the end of each week. However, the hard work did eventually pay off. Once I was able to get the DMG Mori and prove to customers that I had the capabilities to go full-time on my own, it was all worth it.

Liberty Machine

Outside of that, there were the literal growing pains, like cutting holes in my garage ceiling to fit the column on the Kitamura machine, and of course, building an addition to house the DMG. But like I said, it was all worth it in the end to own my own shop.

What is the best thing about working for yourself?

I’d say the best thing about working out of my shop (and for myself) is seeing my family on a daily basis. Yes, I still work 60-70 hours a week, but to have breakfast with them each morning before our day starts and have the flexibility to shift schedules around for doctor visits and other “life stuff” is worth its weight in gold. We are all so busy in life and I think we suffer as a society because of it. I want my children to know what it’s like to have a parent that is around. Busy, yes. But still present.

You mentioned that you had used a lot of Harvey and Helical tools at your last job. However, once you were on your own, you could choose any tooling you wanted to use. What made you stick with the Harvey Performance Company brands as your go-to tools?

The thing with Harvey Tool and Helical products that keep me coming back is the consistency of quality. I know that when I buy one of these tools, I am going to get a high-performing tool that has gone through multiple levels of inspection and is consistently ground within the tight tolerances that were promised. I honestly cannot remember a single time I have had to send any Harvey or Helical tools back for quality issues.

Liberty Machine

I tell friends and others in the manufacturing community about the tools, and the hurdle is always getting them to look past the slightly higher cost. That additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance.

Can you remember a key moment where Harvey Tool/Helical products really saved the day?

Truthfully, Harvey and Helical are my first thought when I’m looking at a challenging feature on a new part. If they offer something that looks like it will work, I don’t even look for an alternative. Order it, get it in house. I’d say where Harvey helps the most is their awesome selection of long reach/stub flute end mills for stainless steel. I cut so much of that, so it’s great to have a vendor stock what is truly needed.

Liberty Machine

Would you recommend entrepreneurship to other young machinists hoping to open their own shop some day?

Yes! But like all things in life, “It depends.” Entrepreneurship is certainly not for everyone. The amount of work required to get a shop rolling and out of “crisis-mode” is insane. There is no other term for it. If you have a significant other in your life, MAKE SURE they are on the same page as you. I am blessed to have a wife by my side who sees the end goal and is understanding of the sacrifice needed in the short-term for the long-term benefit of our family.

What advice might you want to give to someone starting in this trade?

Don’t stop learning. Keep your ears open and your mouth shut. That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.

Form Factory – Featured Customer

Form Factory is a machine shop located in Portland, Oregon focused primarily on prototype work, taking 3D CAD models and making them a physical reality through CNC precision machining. Over the past 14 years, Form Factory has grown from a one man operation with a single CNC mill into a highly respected shop in the Northwest US, making prototype models for clients all over the world. Harvey Tool customers may recognize the name Form Factory from their photo on the front cover of the Fall 2018 Catalog, as they were the first place winners of the #MachineTheImpossible Catalog Cover Contest!

We talked with Brian Ross, Founder/Owner of Form Factory, to learn about how he suggests entrepreneurs and inventors think about prototyping their ideas, his unique experience working on many different models, his winning part in the #MachineTheImpossible contest, and more!

Thanks for taking the time to talk with us for this Featured Customer post. To get started, tell us a little bit about Form Factory, how you got started, and what sort of products you manufacture.

Prior to starting my own business, I had worked as a machinist at 4 different prototyping firms which is where I learned the trade and got the itch to run my own shop. I started Form Factory myself just over 14 years ago with a single Haas VF1. I had no client base and a bunch of loans. It was a scary time for me to jump in to entrepreneurship. Now, we have three CNC machines, various other components and machines, and four full-time employees.

At Form Factory we focus primarily on industrial design models and prototypes. We do a lot of work in the electronics industry, making prototypes of cell phones, laptops, printers, and other consumer electronics. Many of our models are created for display at trade shows or in Kickstarter and other product announcement videos, but we also do a fair share of working prototypes as well. It all depends on what the client wants, and we pride ourselves on the ability to deliver exactly what they need.

form factory

What sort of machines and software do you use in your shop?

We currently have 3 CNC mills – a Haas VF1, Haas VF2, and Haas VF3. We like using machines made in the USA because we like making products in the USA. Haas is what I knew and had run predominantly, and Haas is fairly common in the Northwest so it was easier to find skilled employees in the area who knew these machines well.

We use Mastercam for our CAM software, which is what I learned on. It also seems to be very common in this area which makes for an easy transition for new employees.

form factory

What were some of the keys to success as you built Form Factory from the ground up?

I based much of Form Factory’s business model on my past experiences in manufacturing. Many of the other small companies I had worked for ended up closing, even though the guys on the shop floor would be working lots of overtime and we had plenty of business. What I realized was that these other places often closed because of greed, over-expansion, and rapid growth which they could not sustain. They ended up overextending themselves and they could not keep the doors open as a result.

I like the spot I am in now because while we can certainly expand, we have found a happy medium. We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Being a small company, word of mouth is one of our only forms of marketing. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty, which is key to running a good business.

form factory

Working Prototype of a “Smart Ball” Charger for Adidas

Prototype manufacturing is a very competitive segment of this industry. What sets Form Factory apart from the competition?

Understanding how model making relates to industrial design separates us from a typical machine shop. We can take a prototype design or simple drawing and we are able to implement all of the functionality into a prototype model. We do not deal much with the actual production run, which will come later, so we have the ability to focus more on the prototype and a customer’s exact needs to get a product off the ground. This level of expertise and focus sets us apart from your typical shop.

For example, if the model is for photography purposes, a trade show display, or a promotional video, appearance will be key. We will spend more time working on building what we consider to be a true work of art; something that will immediately stand out to the consumer, but may lack in complete functionality. If the client requires a fully functioning prototype, we will spend more time making sure that all of the components work as intended over multiple stages of design. The final result may be a bit “uglier” than a prototype designed for appearance alone, but it will work as intended.

Let’s say I have an idea for a new product. What should I know about getting my design manufactured?

Right now, especially with 3D printing and cheap overseas manufacturing, it can seem very easy to prototype a new product. However, these options are not always the best route to take to get a quality prototype. With 3D printing, you get a huge step down in resolution and quality, although you can save in cost. You can also save on cost by having things made overseas, but the communication can easily breakdown and the quality is often lower. The other factor is that virtually anyone can end up copying your product overseas and you have very little protection against that.

form factory

By going with a local machine shop and sticking with CNC-machined parts, you are guaranteed to get a higher quality finished product with better communication. We do a ton of back and forth communication with our clients to understand their exact design intent. With a prototype, there are often a lot of blanks that need to be filled in to completely understand the product, and we do our best to communicate with the client to deliver the perfect piece, and always on time. Sure, your cost may be higher, but the entire process will be smoother and the time saved on revisions or scrapping poor quality prototypes is invaluable.

It sounds like you guys take a lot of pride in the work you do, which is great!

Absolutely! Our models are all one of a kind works of art. We can take things from the early stages where a client might have an idea drawn on a napkin, all the way to a fully functional piece.

Our goal is always to make parts look like they grew that way. In my opinion, taking a solid block of material and making it into a finished part is truly a work of art. We work hard to determine where the burrs are, what the radiuses are, and how the finish should look, amongst many other variables. We take a lot of pride in the finished appearance and want everyone in the shop to produce the same level of quality as their co-workers. We hold all ourselves and our work to very high standards.

form factory

Finished Laptop Display Models

How has the online machinist community helped your business/changed your thinking/helped you grow as a machinist/business owner?

I follow tons of great machinists and other companies on Instagram.  It’s funny how quick you can get an idea from a simple picture or short video of another project somebody else is working on.  I love machining because after 25 years, I am still learning so much every day.  The machines, the software, and the tooling are changing so fast its hard to keep up.  Every day I see something on Instagram that makes me say “Oh WOW!” or “Hey, I can do my part that way!”  I was machining before there was an internet, so I really appreciate having an on-line community, and body of knowledge to draw from. You can find us on Instagram @FormFactory!

We loved the ball in chain part you created for our #MachineTheImpossible Fall 2018 Catalog Cover contest, and so did our followers, as they voted you into first place. Tell us a little more about that part.

So that piece was something I had been wanting to try for a while to challenge myself. It was not a part for a customer or part of a job, but simply a practice in more complex machining. The entire part was actually machined from one solid piece of aluminum on a 3 axis mill. With some clever fixturing and a few setups, I was able to make it work!

machine the impossible

Harvey Tool’s Tapered and Long Reach End Mills played a huge part in the creation. There would have been no way for me to get at those impossible angles or hard to reach areas without the multiple available dimensions and angles that you guys offer. In total, that piece took me about 20 hours, but it was a great piece to learn with and it definitely paid off in the end! As a small business, getting that exposure and marketing from being on your catalog cover was huge, and we appreciate the opportunity you gave us and the entire machinist community.

To a small business like yours, what did it mean to you to be highlighted on the Fall 2018 catalog cover?

I found out we had won when one of my customer’s emailed me congratulations! I was blown away! Even to be chosen as a finalist was exciting. The Harvey Tool Catalog is the ONE catalog we always have around the shop at the ready. I have been a Harvey fan for two decades, so making the cover of the catalog was pretty awesome!

In your career, how has Harvey Tool helped you #MachineTheImpossible?

Being able to overnight tools straight to the shop on a moment’s notice has saved us too many times to count. Harvey Tool makes some of the most impossible reach tooling; I still don’t know how they do it. ‘Back in the day” I would grind my own relief on an old Deckel. There’s nothing quite like looking for that extra 50 thou of reach and snapping off the tool! Now I let Harvey do ALL of that work for me, so I can focus on the machining. It takes nice tools to make nice parts. If you need tools that are always accurately relieved to just under the tool diameter, crazy sharp, and balanced, then look no further than Harvey Tool.

form factory

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Find the ‘Distance to Go’ setting or view on your machine’s control, and hit ‘feed hold’ with the first plunge of every new tool you set, and every new work offset, 100% of the time. It will save your mill and your parts from disaster. Machining is the art of doing thousands of simple things, exactly right and in the right order. The hard part is to keep your focus and pay keen attention through the entire process. Understand how easy it is to make a simple mistake, and how quickly you can be starting over. Allow yourself room for mistakes along the way by triple checking BEFORE your mill lets you know it’s too late. If you have other things on your mind, don’t machine parts.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

University of Michigan Formula SAE Racing Team – Featured Customer

Formula SAE is a student design competition that began in 1980. The competition was founded by the SAE (Society of Automotive Engineers) branch at the University of Texas. Each year, hundreds of universities across the world spend months designing and manufacturing their best Formula style car before putting them to the test in competitions.

Alex Marshalek is the Team Captain of the University of Michigan’s Formula SAE team, MRacing. The team was originally founded in 1986, and has been very successful over the years. In the 2017 season, they finished 5th at the Formula SAE Michigan event, and took home a 1st place finish at Formula North. They are hoping to continue riding that momentum into another successful season in 2018.

Mracing

Alex reached out to Harvey Tool and Helical earlier this year, and after some conversation, the decision was made to sponsor their team’s efforts by supplying cutting tools and providing technical support. With competitions on the horizon and a new build coming over the summer, Alex was kind enough to find some time to talk with us about his experiences as a student learning the ropes in engineering, manufacturing, and design, the importance of quality tooling and maintaining a superior part finish for competition, and challenges he has faced during this process.

Hi Alex. Thanks for taking the time to talk with us today. When you were looking into college degree programs, what initially interested you in manufacturing and engineering?

I have always had an interest in Aerospace Engineering, but it was nothing more than a personal interest until I started college. My high school unfortunately did not have any machine shop or manufacturing type classes, so a lot of what I knew, I learned from my dad. My dad worked as a Mechanical Engineer at an axle manufacturing company, and he used to always be doing things around the house and showing me the basics of engineering and design.

When it came time to choose a school, I knew that Michigan had an impressive Aerospace Engineering department, and I liked the feel of the campus and community better than other schools I had toured.

How did you first get involved with the Formula SAE team?

I knew going into school that I wanted to get involved in a design team and advance my learning in that way. We have about a dozen different design teams at Michigan, but the Formula SAE team really stood out to me as a really cool project to get involved in.

I started with the team in Fall of 2016, helping out with the design and manufacturing of the vehicle’s suspension. Now, for the upcoming 2018 season, I am taking over the role of Team Captain. There will be a little bit less hands-on design and manufacturing work for me as it is more of an administrative/outreach role.

michigan racing

How does a typical FSAE season run?

So FSAE seasons are constantly running, and nearly overlapping with each other. For example, we are currently finishing up competitions from the 2018 season, but at the same time we are beginning the design of the vehicle for the 2019 season. Typically, the design work is done over the summer, and finalized in October. After that, the major manufacturing begins and lasts until about March, with spare parts and additions being added as we go. Testing begins in March, where we fine tune the vehicle and optimize the design for performance. Then, the rest of the Spring and early Summer is competition time, and the process starts all over again!

What sort of machines do you have in the shop?

Right now, we have three manual Bridgeport mills, two retro-fit CNC Bridgeport mills, 2 manual lathes, 1 retro-fit CNC lathe, and a Haas VF-2SS and Haas SL-20. For the vast majority of what we are machining, we are using the Haas. We do most of our work in Aluminum, with some parts made out of steel or titanium, and the Haas has been great for everything.

We are also using AutoDesk’s Fusion 360 software for our CAD/CAM, and we love it.

What has been the most difficult part of the build?

Time is really the biggest challenge. We are all full-time students, so time is already hard to find, but we also don’t have an overabundance of machinists so the operators can get overburdened. It all works out in the end and our machinists are great, but time management is truly the biggest challenge.

michigan formula sae

The composite materials we work with are also very challenging to machine. We constructed the vehicle’s monocoque (the structural “skin”, often seen in Formula One cars) out of carbon fiber. While we cut a lot of it on the water jet machine, we needed more precise holes than a water jet could offer, so we went to the Haas for that. We were using HSS drills and only getting 10-12 holes at a time before they wore out. However, we had Don Grandt (Harvey Performance Company Application Engineer) stop in the shop and he sent us a few Harvey Tool diamond coated drills, which should make this a much faster and more precise process!

You mentioned Don stopped in to give you guys a visit. What were some of your biggest takeaways?

Don was great. He stopped by and we gave him a tour of the facility and showed off some of the parts we were designing. We talked shop for quite a bit, and he gave us a bunch of great tips and tricks we could use to really optimize our machining. As I mentioned, he also went through the catalogs with us and helped us find exactly what we need for tooling. The Harvey Tool diamond coated drills are going to be a life saver for carbon fiber. I guess the biggest takeaway was just all of the knowledge we received from Don and how helpful that was to have someone direct from the tooling manufacturer sharing everything we knew with us.

Now that you have the Harvey and Helical tools in the shop, how have they helped you complete this project and get a leg up on your competition?

One of the most impressive things for us have been the finishing end mills we received. The Helical finishers for Aluminum are giving us some of the best finishes we have ever seen. For us, that is a point of pride. We not only want to have the fastest and most well-designed vehicle, but we also want to have the best looking parts. Subpar finishes reflect poorly on the entire build, and first impressions mean a lot in these competitions.

We have also been blown away by the Chipbreaker roughers. We absolutely love those tools and push them to the limits with great results. In fact, the first time we ran them, we used Machining Advisor Pro to dial in our speeds and feeds, and the numbers seemed insane to us. We were nervous, but we pushed the button and let it run. It was amazing to see that we could push a tool that fast without tool failure.

How has your experience been using Machining Advisor Pro?

We use Machining Advisor Pro every time we picked up the Helical end mills. MAP was actually one of the main reasons we were looking for Helical to sponsor us. We had heard a lot about MAP and your level of technical support, which was important to us as we are learning more about manufacturing and machining. Machining Advisor Pro has quickly become one of our best learning tools in the shop.

The nice thing about MAP is that is takes a look at all of the parameters. A lot of applications only give you numbers on your speeds and feeds, but MAP takes a look at the depth of cut, chip thinning, engagement angle, and all of the other parameters that are so essential to a successful run. As a result, we have been able to get very aggressive with the end mills. We are not a huge production shop, so cycle times are not as important, but we still want to get the most out of our tools in the least amount of possible time.

So, let’s break down some specs. What are you all working with on this year’s build?

Right now our car features a 4 cylinder Honda 600 CBR engine, with a Turbo and 600cc displacement. We are one of the few teams that run a turbo in competition. As we mentioned, the monocoque is completely carbon fiber, and the car features a full aero package with an undertray. The max speed is around 80 MPH, and the car weighs 420 pounds without the driver.

Once the build is complete, how does a typical competition work?

Most of the Formula SAE competitions are multi-day events, with a few static events, and then dynamic events where the car is running. For static events, we first have a Design portion. We validate and argue for our design in front of judges who are engineers in the industry. Then, we get into a Cost presentation, as one of the goals is to build the cheapest possible car with a high level of performance. That balance of cost vs. performance is a critical part of the build. The last static event is a Business presentation, where we introduce a business/manufacturing plan on how to get this design to a production level of 100 units in a year.

For the dynamic events, we have 4 different tests. First, we have the Accel Run, which is a 75 meter sprint, and the fastest cars win. From there we go to the Skip Pad event, which is centered on turning radius and the stiffness of the chassis as we do tight figure eight turns with the car.

University of Michigan FSAE

Then we have the AutoCross, a one lap race, which determines our placement in the final event; Endurance. For the Endurance event, we drive the cars around a 22km track, and the goal is to finish the race without any mechanical or design failures in the quickest time possible. Only around 50% of participants actually complete this event. If a single part falls off, or breaks, you are disqualified. Many times we see things like the suspension, powertrain, or wings falling off. It is disappointing when it happens, but it allows us to easily identify any flaws and fix them for the next event.

What is next for you after school? Any future plans or goals?

I am currently majoring in Aerospace Engineering, and would like to stay within that industry. I am leaning towards working on aircraft. Designing either aircraft structures or the aerodynamics would be very cool. I really like the size and scale of working on commercial aircraft, but I could see myself doing something more specialty like working in Defense as well.


Alex and his team had a very successful 2018 season. They recently placed 9th overall in a competition at the Michigan International Speedway. In the dynamic events, they placed 4th in Skidpad, and 7th in Autocross. The high placement in the Autocross event allowed them to race head to head against top teams in the world, and they ended up placing 4th in Endurance out of 104 cars!

The MRacing team also competed at Formula North, a competition in Ontario, Canada, where they achieved a top ranking of 2nd place overall. They passed all of the technical inspections on the first try and placed 1st in Acceleration, 2nd in Skidpad and Endurance, 3rd in Autocross, and 4th in Efficiency.

michigan fsae

Harvey Tool: Behind The Scenes

Many of our end users have had great questions about our manufacturing process, how we keep all of our tools in stock, and more. Now for the first time, we decided to open our doors and show you how we manufacture and fulfill the Harvey Tool product. We partnered with John Saunders from NYC CNC to create a “Factory Tour” video, covering topics like our CNC grinding machines and setups, tool manufacturing, and our warehouse organization and fulfillment procedures.

In the video below, we first toured our Rowley, MA warehouse and fulfillment center with Fulfillment Manager Megan Townsley. After that, we head up to Maine to check out how the Harvey Tool product is manufactured and inspected with VP of Operations Brian McKahan.

 

 

7 Facts Revealed in Our Factory Tour (Plus 3 More That Didn’t Make the Cut)

We know you’re busy making amazing parts, and might not have time for the entire video. To save you time, here are some of the highlights and facts you should know about Harvey Tool.

When We Say Miniature, We Mean Miniature

Our miniature end mills are in stock in diameters down to .001″. In fact, our Stub and Standard end mills cover every diameter from .001″ to .120″, meaning we will always have you covered when it comes to micro-machining. Although it is hard to see with the naked eye, you can get an up-close look at the famed .001″ end mill by jumping to the 35 minute mark in the tour video.

Micro-Tools Require Precision Grinding

We utilize advanced CNC grinding technology to manufacture our miniature tools at our plant in Maine. Brian MacKahan, VP of Operations, does an excellent job of breaking down our manufacturing process beginning at the 21 minute mark of the tour video. If you just want to see some miniature CNC grinding in action, jump ahead to the 26 minute mark.

Our Inspection Process is Rigourous

All of our tools are sent through an extensive inspection process, both at our plant in Maine and at our headquarters in Massachusetts. To check out the Massachusetts inspection room, head to the 19 minute mark of the video. If you want to see some more in-depth inspection at our facility in Maine, you can jump to the 35 minute mark.

Yes, We Have It In Stock

If you need it, we have it. All 20,000+ tools from our catalog are kept stocked and ready to ship to you the same day. If you need more proof, jump to 15:30 in the tour video, where you will see John Saunders choose a randomly selected Undercutting End Mill from our catalog and find it in our warehouse, in stock and ready to head out to a shop.

We Maintain a 99.8% Order Accuracy Rate

Our fulfillment team handles all of your orders with precision and accuracy. We maintain a 99.8% order accuracy rate, with fulfillment team members checking every order multiple times to ensure you receive exactly what you need. You can learn more about our order fulfillment process and accuracy rates by moving to the 5 minute mark in the video.

We Sell More Than Miniature

Miniature end mills have always been our bread and butter, but did you know that we have many larger diameter tools in stock as well? At the 9 minute mark in the video, you can see John pull out a 3/4″ Long Reach Ball Nose End Mill from our shelves. If you are interested in larger diameter specialty tooling, jump to 12:15 in the video to check out one of our large diameter Corner Rounding End Mills.

When You Call, You’ll Always Talk to An Experienced Tech Expert

Though we didn’t catch it on tape, John Saunders was blown away by our tech team during his visit. He got a chance to pick their brains about a problem he was having and a few minutes later, he received a recommendation for the right compression cutter to tackle his unique operation. This tool was later showcased in one of his “Widget Wednesday” videos.

When you choose Harvey Tool, you will never get an automated system or countless steps before you are able to talk to a real person about your applications. Our industry-leading technical support team is available over the phones or via email every Monday-Friday from 8 AM EST to 7 PM EST. You can reach them by calling 800-645-5609, or by sending an email to [email protected].

We Value Our Distributor Network

We value our large distributor network, and we ask that all orders are placed with your local dealer. To find the closest distributor to you, use the “Find a Distributor” tool on our website.

We’re Hiring!

We are currently hiring for many different positions, including open CNC Machinists positions for all shifts at our manufacturing plant. If you want to be a part of the Harvey Performance Company team, check out our Opportunities page for more information.

Helical Solutions: Behind the Scenes

We have shown our end users bits and pieces of our manufacturing process on our website and via social media, but for the first time we decided to open our own doors to the public and show you every step behind how we manufacture and fulfill the Helical Solutions product. We partnered with John Saunders from NYC CNC to create a “Factory Tour” video, covering topics like our CNC grinding machines and setups, tool manufacturing, and our warehouse organization and fulfillment procedures.

In the video below, we first toured our Gorham, Maine manufacturing plan with Plant Manager Adam Martin. Then, we ran a few tests with the Helical tools on our Haas machine, before heading back to our warehouse in Massachusetts to talk about fulfillment and new products with Fulfillment Manager Megan Townsley.

 

 

7 Facts Revealed in Our Factory Tour (Plus 3 More That Didn’t Make the Cut)

We know you’re busy making amazing parts, and might not have time for the entire video. To save you time, here are some of the most important facts you should know about Helical.

We Take Quality Control Seriously

Our high performance end mills go through an extensive inspection and quality assurance process before they end up in your machine, with multiple inspection points along the manufacturing journey. At the 17 minute mark of the video, you can learn more about how we monitor the quality of the tools in batches as they are manufactured. If you skip ahead to the 29 minute mark, you can see some of our more advanced inspection machines in action.

We Stand Behind Our Tools with Our Renewal Services

Our Tool Renewal service is a great way to maximize your cost-savings and avoid having to re-purchase new tools without sacrificing any aspects of the original design. At Helical, we do not re-sharpen tools. Rather, we restore your tools to their original geometry. We will review the condition of your used tools and return the cutting edge to its original sharpness and strength, allowing the tool to retain its outstanding performance. The renewed tools go through the same rigorous inspection, edge prep, and coating process that we follow for all our of our new tools. To learn more about our Tool Renewal services, head to the 23:30 mark in the video.

Our Tool Coating Is Done In-House

We have multiple tool coating machines in-house which allow us to take the ground tools right off the line and transfer them to our coating room to have Aplus, Zplus, or Tplus coatings added. These machines also have the capability to create roughly 20 different coatings, which are reserved for specials and custom orders. If you want a close-up look at the coating room and learn how the PVD coating process actually works, head to the 35 minute mark.

Our Standard Catalog Items Are Stocked and Ready for Your Machine

We don’t make our standard catalog tools to order. All of our standard tools are stocked and ready to make some chips in your machine. We also introduce hundreds of new tools to our annual catalog to keep providing our customers with the latest in high performance tooling technology. You can check out our new tools for 2018, including our new High Balance Tools and Metric Tooling, by heading to 52:20, or take quick look at our rows of stocked tools in our warehouse by jumping to 56:55.

Diamond Wheels Grind Carbide Tools

Diamond grinding wheels are the essential tool (outside of the machine) when it comes to grinding carbide. We have a unique management system for our diamond wheels, and a redressing process which can see these wheels last up to a year or more before they need replacement. Adam goes through our “frozen wheel” room with John at the 32:45 mark in the video above.

We Track Every Batch of Tools With Laser Etching

Our tools are all laser etched on-site with our logo, phone number, and tool description, but also with a specific batch number. These batch numbers allow us full track-ability of every tool so we can quickly asses any questions or concerns a customer may have about a tool. With these numbers, we are able to track the tool’s journey all the way back to which machine it was made on, which grinding wheel was used, and who ran the program. We have a couple of these laser etching machines in Maine, which you can see in action at the 42 minute mark.

If You Can Dream It, We Have Probably Made It

We have had some crazy tool drawings come in to our custom tool program over the years, including oddly shaped form tools, tools with a crazy long length of cut, “paper cutters”, and more. You can see some cool examples of custom tools we have manufactured by jumping to the 20 minute mark. If you are more interested in how we actually make them, head to the 27 minute mark to see one of our large custom tools being ground on our Walter machines.

Our Technical Resources Are Second To None

We don’t leave you hanging after your purchase of Helical tools. We have a multitude of technical resources and How-Tos available here on our blog, and we also offer the HEM Guidebook, a complete guide to High Efficiency Milling techniques.

If you are looking for information on speeds and feeds, we suggest you try our Machining Advisor Pro application. This application is designed to increase metal removal rates and shop productivity by generating customizable running parameters optimized for your Helical Solutions end mills. You can click here to get started with Machining Advisor Pro today.

You Will Always Get a Real Person When You Call Helical

If you have technical questions about an upcoming job, a special application, or tooling selection, you can contact Helical by phone at 866-543-5422. Our technical experts are available over the phone Monday-Friday from 8 AM to 5 PM EST, and you will always get a real person to talk to with no automated systems to navigate through. You can also reach our team by email at [email protected].

Questions about where to buy Helical tools? You can give our team a call, or you can find your local distributor by using the “Find a Distributor” tool on our website. Simply choose your state to see a complete list of authorized distributors in your area.

We’re Hiring!

We have a current list of our open opportunities on our website! Open jobs include CNC Machinist, Quality Control Inspector, and Customer Service Representative.

Milling Machines vs. Lathe Machines

Most modern manufacturing centers have both milling machines and lathe machines. Each machine follows the same machining principle, known as subtractive machining, where you begin with a block of material and then shape that material into the desired specifications. How the part is actually shaped is the key difference between the two machines. Understanding the differences in more depth will help in putting the right part in the right machine to maximize their capabilities.

 

cnc lathe

An Example of a Lathe Machine

cnc milling machine

An Example of a Milling Machine

Operation

The major difference between a milling machine and a lathe machine is the relationship of the workpiece and the tool.

Lathe Machines

In a lathe, the workpiece that is being machined spins about it’s axis, while the cutting tool does not. This is referred to as “turning”, and is effective for creating cylindrical parts. Common operations done on a lathe include drilling, boring, threading, ID and OD grooving, and parting. When looking to create quick, repeatable, and symmetrical cylindrical parts, the lathe machine is the best choice.

cnc lathe

Milling Machines

The opposite is true for milling machines. The tool in a milling machine rotates about its axis, while the workpiece does not. This allows the tool to approach the workpiece in many different orientations that more intricate and complex parts demand. If you can program it, you can make it in a milling machine as long as you have the proper clearance and choose the proper tooling.

milling machines

Best Practice

The best reason to use a milling machine for an upcoming project is the versatility. The tooling options for a milling machine are endless, with hundreds of available specialty cutting tools and various styles of end mills which make sure you are covered from start to finish on each job. A mill can also cut more complex pieces than a lathe. For example, it would impossible to efficiently machine something like an intake manifold for an engine on a lathe. For intricate parts like that, a milling machine would be required for successful machining.

While lathe machines are more limited in use than a milling machine, they are superior for cylindrical parts. While a mill can make the same cuts that a lathe does, it may need multiple setups to create the same part. When continuous production of cylindrical parts is necessary, a lathe will outperform the mill and increase both performance and efficiency.