## How Boring Bar Geometries Impact Cutting Operations

Boring is a turning operation that allows a machinist to make a pre-existing hole bigger through multiple iterations of internal boring. It has a number of advantages over traditional drilling methods:

• The ability to cost-effectively produce a hole outside standard drill sizes
• The creation of more precise holes, and therefore tighter tolerances
• A greater finish quality
• The opportunity to create multiple dimensions within the bore itself

Solid carbide boring bars, such as those offered by Micro 100,  have a few standard dimensions that give the tool basic functionality in removing material from an internal bore. These include:

Minimum Bore Diameter (D1): The minimum diameter of a hole for the cutting end of the tool to completely fit inside without making contact at opposing sides

Maximum Bore Depth (L2): Maximum depth that the tool can reach inside a hole without contact from the shank portion

Shank Diameter (D2): Diameter of the portion of the tool in contact with the tool holder

Overall Length (L1): Total length of the tool

Centerline Offset (F): The distance between a tool’s tip and the shank’s centerline axis

## Tool Selection

In order to minimize tool deflection and therefore risk of tool failure, it is important to choose a tool with a max bore depth that is only slightly larger than the length it is intended to cut. It is also beneficial to maximize the boring bar and shank diameter as this will increase the rigidity of the tool. This must be balanced with leaving enough room for chips to evacuate. This balance ultimately comes down to the material being bored. A harder material with a lower feed rate and depths of cut may not need as much space for chips to evacuate, but may require a larger and more rigid tool. Conversely, a softer material with more aggressive running parameters will need more room for chip evacuation, but may not require as rigid of a tool.

## Geometries

In addition, they have a number of different geometric features in order to adequately handle the three types of forces acting upon the tool during this machining process. During a standard boring operation, the greatest of these forces is tangential, followed by feed (sometimes called axial), and finally radial. Tangential force acts perpendicular to the rake surface and pushes the tool away from the centerline. Feed force does not cause deflection, but pushes back on the tool and acts parallel to the centerline. Radial force pushes the tool towards the center of the bore.

### Defining the Geometric Features of Boring Bars:

Nose Radius: the roundness of a tool’s cutting point

Side Clearance (Radial Clearance): The angle measuring the tilt of the nose relative to the axis parallel to the centerline of the tool

End Clearance (Axial Clearance): The angle measuring the tilt of the end face relative to the axis running perpendicular to the centerline of the tool

Side Rake Angle: The angle measuring the sideways tilt of the side face of the tool

Back Rake Angle: The angle measuring the degree to which the back face is tilted in relation to the centerline of the workpiece

Side Relief Angle: The angle measuring how far the bottom face is tilted away from the workpiece

End Relief Angle: The angle measuring the tilt of the end face relative to the line running perpendicular to the center axis of the tool

### Effects of Geometric Features on Cutting Operations:

Nose Radius: A large nose radius makes more contact with the workpiece, extending the life of the tool and the cutting edge as well as leaving a better finish. However, too large of a radius will lead to chatter as the tool is more exposed to tangential and radial cutting forces.

Another way this feature affects the cutting action is in determining how much of the cutting edge is struck by tangential force. The magnitude of this effect is largely dependent on the feed and depth of cut. Different combinations of depth of cuts and nose angles will result in either shorter or longer lengths of the cutting edge being exposed to the tangential force. The overall effect being the degree of edge wear. If only a small portion of the cutting edge is exposed to a large force it would be worn down faster than if a longer portion of the edge is succumb to the same force. This phenomenon also occurs with the increase and decrease of the end cutting edge angle.

End Cutting Edge Angle: The main purpose of the end cutting angle is for clearance when cutting in the positive Z direction (moving into the hole). This clearance allows the nose radius to be the main point of contact between the tool and the workpiece. Increasing the end cutting edge angle in the positive direction decreases the strength of the tip, but also decreases feed force. This is another situation where balance of tip strength and cutting force reduction must be found. It is also important to note that the angle may need to be changed depending on the type of boring one is performing.

Side Rake Angle: The nose angle is one geometric dimension that determines how much of the cutting edge is hit by tangential force but the side rake angle determines how much that force is redistributed into radial force. A positive rake angle means a lower tangential cutting force as allows for a greater amount of shearing action. However, this angle cannot be too great as it compromises cutting edge integrity by leaving less material for the nose angle and side relief angle.

Back Rake Angle: Sometimes called the top rake angle, the back rake angle for solid carbide boring bars is ground to help control the flow of chips cut on the end portion of the tool. This feature cannot have too sharp of a positive angle as it decreases the tools strength.

Side and End Relief Angles: Like the end cutting edge angle, the main purpose of the side and end relief angles are to provide clearance so that the tools non-cutting portion doesn’t rub against the workpiece. If the angles are too small then there is a risk of abrasion between the tool and the workpiece. This friction leads to increased tool wear, vibration and poor surface finish. The angle measurements will generally be between 0° and 20°.

## Boring Bar Geometries Summarized

Boring bars have a few overall dimensions that allow for the boring of a hole without running the tool holder into the workpiece, or breaking the tool instantly upon contact. Solid carbide boring bars have a variety of angles that are combined differently to distribute the 3 types of cutting forces in order to take full advantage of the tool. Maximizing tool performance requires the combination of choosing the right tool along with the appropriate feed rate, depth of cut and RPM. These factors are dependent on the size of the hole, amount of material that needs to be removed, and mechanical properties of the workpiece.

## 4 Essential Corner Rounding End Mill Decisions

A Corner Rounding End Mill is typically used to add a specific radius to a workpiece, or in a finishing operation to remove a sharp edge or burr. Prior to selecting your Corner Rounding End Mill, mull the following considerations over. Choosing the right tool will result in a strong tool with a long usable life, and the desired dimensional qualities on your part. Choosing wrong could result in part inaccuracies and a subpar experience.

## Selecting the Right Pilot Diameter

The pilot diameter (D1 in the image above) determines the tool’s limitations. When pilot diameters are larger, the tool is able to be run at lower speeds. But with smaller pilot diameters, the tool can be run faster because of its larger effective cutter radius. The effective cutter diameter is determined by the following equations depending on the radius to pilot ratio:

### For a Radius/Pilot Ratio < 2.5, Effective Cutter Diameter = Pilot Diameter + Radius For a Radius/Pilot Ratio ≥ 2.5, Effective Cutter Diameter = Pilot Diameter + .7x Radius

Larger pilot diameters also have more strength than smaller pilot diameters due to the added material behind the radius. A smaller pilot may be necessary for clearance when working in narrow slots or holes. Smaller pilots also allow for tighter turns when machining an inside corner.

## Flared or Unflared

Putting a full radius on a part has the potential to leave a step or an over-cut on a workpiece. This can happen if the tool isn’t completely dialed in or if there is minor runout or vibration. A slight 5° flare on the pilot and shoulder blends the radius smoothly on the workpiece and avoids leaving an over-cut.

A flared Corner Rounding End Mill leaves an incomplete radius but allows for more forgiveness. Additionally, this tool leaves a clean surface finish and does not require a second finishing operation to clean leftover marks. An unflared corner radius leaves a complete radius on the workpiece, but requires more set-up time to make sure there is no step.

## Front or Back

Choosing between a Corner Rounding End Mill and a Back Corner Rounding End Mill boils down to the location on the part you’re machining. A Back Corner Rounding End Mill should be utilized to put a radius on an area of the part facing the opposite direction as the spindle. While the material could be rotated, and a front Corner Rounding End Mill used, this adds to unnecessary time spent and increased cycle times. When using a Back Corner Rounding End Mill, ensure that you have proper clearance for the head diameter, and that the right reach length is used. If there is not enough clearance, the workpiece will need to be adjusted.

## Flute Count

Corner Rounding End Mills are often offered in 2, 3, and 4 flute styles.  2 flute Corner Rounding End Mills are normally used for aluminum and non-ferrous materials, although 3 flutes is quickly becoming a more popular choice for these materials, as they are softer than steels so a larger chip can be taken without an impact on tool life. 4 flutes should be chosen when machining steels to extend tool life by spreading out the wear over multiple teeth. 4 flute Corner Rounding End Mills can also be run at higher feeds compared to 2 or 3 flute tools.

## Corner Rounding End Mill Selection Summarized

The best corner rounding end mill varies from job-to-job. Generally speaking, opting for a tool with the largest pilot diameter possible is your best bet, as it has the most strength and requires less power due to its larger effective cutter diameter. A flared Corner Rounding End Mill is preferred for blending purposes if the workpiece is allowed to have an incomplete radius as this allows more forgiveness and can save on set up time. If not, however, an unflared Corner Rounding End Mill should be utilized. As is often the case, choosing between number of flutes boils down to user preference, largely. Softer materials usually require fewer flutes. As material gets harder, the number of flutes on your tool should increase.

## Composite Materials

A material is classified as a composite if it is made up of at least two unique constituents that when combined yield beneficial physical and mechanical properties for a number of different applications. A binding agent that is the matrix material is filled with either particles or fibers of a second material that act as reinforcements. The combination of strength, weight, and rigidity make composites extremely useful for the automotive, aerospace, and power generation industry. Often the matrix material of particulate-reinforced composites is some form of plastic, and the reinforcement material is either glass or carbon particles. These are sometimes called “filled plastics,” and are typically very abrasive materials. Many composites are layered with varying fiber orientations, which increase the strength of the material and are called fiber-reinforced composites.

## Common Problems When Machining Composites

1. Delamination of composite layers
2. Uncut Fibers
3. Fiber tear-out
4. Uneven tool wear
5. Poor surface finish due to “competing” materials

These problems are all caused by unique conditions created by composite materials, and can be very tricky to correct.  The simple fact of cutting a combination of multiple materials at the same time introduces many factors that make it difficult to strike the right balance of the proper tool for the job and appropriate running parameters.  The following tool styles provide solutions for a wide array of composite concerns.  Composite Drilling Applications can face the same issues, and proper drill choice can help as well.

## Straight Flute End Mill

Straight Flute Composite Cutters are designed to prevent delamination of layered materials by applying all cutting forces radially, eliminating axial forces from a typical helical cutting edge. Cutting action is improved with a high positive rake angle for shearing fibers and eccentric relief for improved edge life. Shallow ramping operations can be performed with this tool, but the largest benefits are seen in peripheral milling applications.

## Compression Cutters

The Compression Cutter consists of an up cut and down cut helix. The top portion of the length of cut has right-hand cutting teeth with a left-hand spiral. The lower portion of the length of cut has right-hand cutting teeth with a right-hand spiral. This creates opposing cutting forces to stabilize the material removal process when cutting layered composites to prevent delamination, fiber pullout, and burs along the surface. Compression of the top and bottom of the workpiece keeps the layered bonded together.

## Chipbreaker Cutter

The Chipbreaker Cutter is ideally suited for roughing and profiling composites with a high percentage of fiber fill. The notch-like chipbreakers shear fibers and shorten chips for improved material evacuation. This specialized geometry is great for keeping chips small and avoiding “nesting” of stringy fibrous chips around the cutter.

## Diamond Cut End Mill

Diamond Cut Composite Cutters come in two different geometries: End Mill Style and Drill Mill Style. Although the end mill style tool is center cutting, the drill mill style has a 140° point angle, making it more suitable for plunge cutting. This is great for clearing out pockets in the middle of composite sheets.

End Mills for Composites – Diamond Cut – End Mill Style

End Mills for Composites – Diamond Cut – Drill Mill Style

Both the end mill and drill mill style share the same downcut geometry on the outside diameter. This diamond cut tool receives its name from the combination of left-hand and right-hand teeth. The tool is predominantly a downcut style – a geometry that allows for these tools to effectively rough and profile high fiber reinforced or filled composites, breaking up chips and shearing through fibers.

## Diamond Cut vs. Chipbreaker Style

The diamond cut tools have a higher flute count, which some may intuitively think would lead to a better finish, but this is not the case as this line of tools contains right-hand and left-hand teeth. There is a trade-off between an increased ability to shear fibers and leaving a poorer finish. The chipbreaker style tool, although not as effective as shearing fibers, is ultimately designed for the same purpose but leaves a better finish as all of the flutes are facing the same direction.

## Composite Finisher

The Composite Finisher has optimized geometry for finishing in composite. A slow helix and high flute count for more contact points ultimately renders a smooth finish by minimizing fraying of fiber-reinforced and layered materials.

## Coating or No Coating?

Composite materials, especially those with glass or carbon fiber, can be particularly abrasive and have a tendency to wear down the cutting edge of carbide tools. If one is looking to achieve the best tool life and maintain a sharp cutting edge, then choosing an Amorphous Diamond coated tool is the best option. This thin coating improves lubricity and wear resistance over its uncoated counterpart. Using a tool with CVD diamond coating can be very beneficial in extreme cases, when fiber fill percentage is very large. This is a true diamond coating, and offers the best abrasion resistance, but a slightly less sharp cutting edge as it is a thicker coating. PCD diamond tooling offers the best tool life. If it a solid diamond wafer brazed to a carbide shank, and can maintain the sharpest edge of any diamond tooling. However, PCD is limited to straight flutes, and can come at a higher price.

Composite materials are being increasingly utilized in today’s manufacturing world for their impressive strength to weight ratio. This growth has stimulated innovative techniques of cutting composites seen in the tool choices above. Harvey Tool’s variety of geometries helps any machine shop tackle composite cutting applications and will continue to offer groundbreaking solutions to these types of manufacturing problems.

## Tips for Machining Gummy Materials

Machinists face many problems and challenges when manufacturing gummy materials. These types of materials include low carbon steels, stainless steels, nickel alloys, titanium, copper, and metals with high chromium content. Gummy materials have a tendency to produce long, stringy chips, and are prone to creating built-up edge. These common problems can impact surface finish, tool life, and part tolerances.

View this post on Instagram

A post shared by Helical Solutions (@helicaltools) on

## Continuous Chip With a Built-Up Edge

Continuous chips are long, ribbon-like chips that are formed when the tool cuts through a material, separating chips along the shear plane created by the tool’s cutting edge. These chips slide up the tool face at a constant flow to create a long and stringy chip. The high temperatures, pressures, and friction produced when cutting are all factors that lead to the sticky chips that adhere to the cutting edge. When this built up edge becomes large enough, it can break off leaving behind some excess material on the workpiece, or gouge the workpiece leaving a poor surface finish.

## Coolant

Using large amounts of coolant can help with temperature control and chip evacuation while machining gummy materials. Temperature is a big driving force behind built-up edge. The higher the temperature gets, the easier and faster a built-up edge can form. Coolant will keep local temperatures lower and can prevent the material from work hardening and galling. Long, stringy chips have the potential to “nest” around the tool and cause tool failure. Coolant will help break these chips into smaller pieces and move them away from the cutting action by flash cooling them, resulting in fracturing of the chip into smaller pieces. Coolant should be applied directly to the contact area of the tool and workpiece to have the maximum effect.

## Tool Engagement

### Running Parameters

The tool should be constantly fed into the workpiece. Allowing the tool to dwell can cause work hardening and increase the chance of galling and built up edge. A combination of higher feed rates and lower speeds should also be used to keep material removal rates at a reasonable level. An increase in feed rates will raise the temperature less than an increase in speed. This relates to chip thinning and the ability of a tool to cut the material rather than rub against it.

### Climb Milling

Climb milling is the preferred method as it directs more heat into the chip than the tool. Using climb milling, the largest chip cross section is created first, allowing the tool to cut through the material much easier. The heat generated from friction when the tool penetrates the workpiece is transferred to the chip rather than the tool because the thickest part of the chip is able to hold more heat than the thinnest.

### Initial Workpiece Engagement

Sudden, large changes in force, like when a tool initially engages a workpiece, have a negative impact on tool life. Using an arc-in tool path to initially engage the material allows for increased stability with a gradual increase in cutting forces and heat. A gradual tool entry such as this is always the preferred method over an abrupt straight entry.

## Tool Selection

A tool with a sharp and robust cutting edge should be selected to machine gummy materials. Helical has tooling specifically designed for Titanium and Stainless Steel to make your tool selection process easy.

Additionally, choosing a tool with the correct coating for the material you are machining will help to protect the cutting edge and result in a far lower chance of built up edge or galling than an uncoated tool. A tool with a higher flute count can spread tool wear out over multiple cutting edges, extending tool life. Tool wear is not always linear in gummy materials; as soon as a little bit of wear appears, tool failure will happen relatively quickly. Changing the tool at the first sign of wear may be necessary to ensure that parts are not scrapped.

## Gummy Materials Summarized

Every material machines somewhat differently, but understanding what is happening when the tool cuts the workpiece and how this affects tool life and finish will go a long way to successfully completing any job.  Built-up edge and excess heat can be minimized by selecting the correct tool and coating for the material, and following the tips and techniques mentioned above. Finally, be sure to check your machine’s runout and ensure maximum rigidity prior to beginning your machining operation.

## Tips for Maintaining Tight Tolerances

In manufacturing large production runs, one of the biggest difficulties machinists experience is holding tooling to necessary tolerances in holes, walls, and threads. Typically, this is an iterative process that can be tedious and stressful, especially for inexperienced machinists. While each job presents a unique set of challenges, there are rules of thumb that can be followed to ensure that your part is living up to its accuracy demands.

## What is a Tolerance?

A tolerance is an allowable amount of variation in a part or cutting tool that a dimension can fall within. When creating a part print, tolerances of tooling can’t be overlooked, as tooling tolerances can result in part variations. Part tolerances have to be the same, if not larger, than tool tolerances to ensure part accuracy.

Cutting tool tolerances are oftentimes applied to a tool’s most critical dimensions, such as Cutter Diameter, Length of Cut, Shank Diameter, and Overall Length. When selecting a cutting tool for a job, it’s critical to choose a brand that adheres to strict tolerance standards and reliable batch-to-batch consistency. Manufacturers like Harvey Tool and Helical Solutions prominently display tolerances for many critical tool dimensions and thoroughly inspect each tool to ensure that it meets the tolerances specified. Below is the table header for Harvey Tool’s line of Miniature End Mills – Square – Stub & Standard.

Tolerances help to create repeatability and specificity, especially in an industry in which even a thousandth of an inch can make or break a final product. This is especially true for miniature tooling, where Harvey Tool is experienced in the designing and manufacturing of tooling as small as .001” in diameter.

## How are Tolerances Used?

When viewing a tolerance, there’s an upper and lower dimension, meaning the range in which the dimension of the tool can stray – both above and below what its size is said to be. In the below example, a .030″ cutter diameter tool’s size range would be anywhere between .0295″ and .0305.”

## Maintaining Tolerances in Holemaking Operations

Holes oftentimes mandate the tightest dimensional tolerances, as they generally are meant to align perfectly with a mating part. To maintain tolerances, start first by testing the runout of both your machine and your tool. This simple, yet often overlooked step can save machinists a great amount of time and frustration.

### Spotting Drills

Spotting Drills allow for drills to have a very precise starting point, minimizing walking or straying from a desired path. This can be especially beneficial when machining irregular surfaces, where accessing a hole’s perfect location can be more difficult.

### Reamers

Reaming is great for any very tight tolerance mandate, because many Miniature Reamers have much tighter tolerances than a drill. Harvey Tool’s Miniature Reamers, for example, have tolerances of +.0000″/-.0002. for uncoated options and +.0002″/-.0000″ for AlTiN coated tools. Reamers cut on their chamfered edge, removing a minimal amount of material within a hole with the ultimate goal of bringing it to size. Because the cutting edge of a reamer is so small, the tool has a larger core diameter and is thus a more rigid tool.

## Maintaining Tight Tolerances While Machining Walls

### Be Wary of Deflection

Maintaining tolerances when machining walls is made difficult by deflection, or the curvature a tool experiences when a force is applied to it. Where an angle is appearing on a wall due to deflection, opt for a reached tool to allow for less deflection along the tool’s neck. Further, take more axial depths of cut and machine in steps with finishing passes to exert less pressure on the tool. For surface finish tolerances, a long fluted tool may be required to minimize evidence of a tool path left on a part. For more information on ways to minimize deflection, read Tool Deflection & Its Remedies.

Corner radius End Mills, because they do not feature a sharp edge, will wear slower than a square end mill would. By utilizing corner radius tooling, fracturing on the tool edge will be minimized, resulting in an even pressure distribution on each of the cutting edges. Because the sharper edge on a square tool is less durable and more prone to cracking because of the stress concentration on that point, a corner radius tool would be much more rigid and thus less susceptible to causing a tolerance variation. For this reason, it’s recommended to use a roughing tool with a corner radius profile and a finisher with a square profile for an edge tolerance. When designing a part and keeping manufacturing in mind, if there is a potential for a wall with a radius as opposed to a wall with a square edge, a wall with a radius allows for easier machineability and fewer tool changes.

## Maintaining Tight Tolerances While Threading

Making threads to tolerance is all about chip evacuation. Evacuating chips is an issue commonly overlooked; If chips within a hole have not been removed before a threading operation, there could be interference in the tool tip that leads to vibration and chatter within a thread. This would decrease the continuity of the thread while also altering the points of contact. Discontinuity of a thread could be the difference between passing and failing a part, and because threading is typically the last application when machining to decrease damaging the threads, it also increases the likelihood of chips remaining within the hole from other applications.

## Tolerances Summarized

If you continue to experience troubles maintaining tight tolerances despite this blog post, consult the Harvey Tool or Helical Solutions tech team, as the problem may exist outside of your machine. Temperature and humidity can vary how gummy a material is, and can lead to workpiece expansion and contraction. Additionally, the foundation of buildings can expand and contract due to outside temperature, which can result in upped runout and irregular vibration in a spindle.

## What is Contouring?

Contouring a part means creating a fine finish on an irregular or uneven surface. Dissimilar to finishing a flat or even part, contouring involves the finishing of a rounded, curved, or otherwise uniquely shaped part.

## Contouring & 5-Axis Machining

5-axis machines are particularly suitable for contouring applications. Because contouring involves the finishing of an intricate or unique part, the multiple axes of movement in play with 5-axis Machining allow for the tool to access tough-to-reach areas, as well as follow intricate tool paths.

Advanced CAM software can now write the G-Code (the step-by-step program needed to create a finished part) for a machinists application, which has drastically simplified contouring applications. Simply, rather than spend several hours writing the code for an application, the software now handles this step. Despite these advances, most young machinists are still required to write their own G-Codes early on in their careers to gain valuable familiarity with the machines and their abilities. CAM software, for many, is a luxury earned with time.

#### Benefits of Advanced CAM Software

1. Increased Time Savings
Because contouring requires very specific tooling movements and rapidly changing cutting parameters, ridding machinists of the burden of writing their own complex code can save valuable prep time and reduce machining downtime.

2. Reduced Cycle Times
Generated G-Codes can cut several minutes off of a cycle time by removing redundancies within the application. Rather than contouring an area of the part that does not require it, or has been machined already, the CAM Software locates the very specific areas that require machining time and attention to maximize efficiency.

3. Improved Consistency
CAM Programs that are packaged with CAD Software such as SolidWorks are typically the best in terms of consistency and ability to handle complex designs. While the CAD Software helps a machinist generate the part, the CAM Program tells a machine how to make it.

## Contouring Tips

#### Utilize Proper Cut Depths

Prior to running a contouring operation, an initial roughing cut is taken to remove material in steps on the Z-axis so to leave a limited amount of material for the final contouring pass. In this step, it’s pivotal to leave the right amount of material for contouring — too much material for the contouring pass can result in poor surface finish or a damaged part or tool, while too little material can lead to prolonged cycle time, decreased productivity and a sub par end result.

The contouring application should remove from .010″ to 25% of the tool’s cutter diameter. During contouring, it’s possible for the feeds to decrease while speeds increases, leading to a much smoother finish. It is also important to keep in mind that throughout the finishing cut, the amount of engagement between the tool’s cutting edge and the part will vary regularly – even within a single pass.

#### Use Best Suited Tooling

Ideal tool selection for contouring operations begins by choosing the proper profile of the tool. A large radius or ball profile is very often used for this operation because it does not leave as much evidence of a tool path. Rather, they effectively smooth the material along the face of the part. Undercutting End Mills, also known as lollipop cutters, have spherical ball profiles that make them excellent choices for contouring applications. Harvey Tool’s 300° Reduced Shank Undercutting End Mill, for example, features a high flute count to benefit part finish for light cut depths, while maintaining the ability to reach tough areas of the front or back side of a part.

#### Fact-Check G-Code

While advanced CAM Software will create the G-Code for an application, saving a machinist valuable time and money, accuracy of this code is still vitally important to the overall outcome of the final product. Machinists must look for issues such as wrong tool call out, rapids that come too close to the material, or even offsets that need correcting. Failure to look G-Code over prior to beginning machining can result in catastrophic machine failure and hundreds of thousands of dollars worth of damage.

Inserting an M01 – or a notation to the machine in the G-Code to stop and await machinist approval before moving on to the next step – can help a machinist to ensure that everything is approved with a next phase of an operation, or if any redundancy is set to occur, prior to continuation.

## Contouring Summarized

Contouring is most often used in 5-axis machines as a finishing operation for uniquely shaped or intricate parts. After an initial roughing pass, the contouring operation – done most often with Undercutting End Mills or Ball End Mills, removes anywhere from .010″ to 25% of the cutter diameter in material from the part to ensure proper part specifications are met and a fine finish is achieved. During contouring, cut only at recommended depths, ensure that G-Code is correct, and use tooling best suited for this operation.

## Why You Should Stop Deburring By Hand

Deburring is a process in which sharp edges and burrs are removed from a part to create a more aesthetically pleasing final product. After milling, parts are typically taken off the machine and sent off to the Deburring Department. Here, the burrs and sharp points are removed, traditionally by hand. However, an operation that takes an hour by hand can be reduced to mere minutes by deburring parts right in the machine with high precision CNC deburring tools, making hand deburring a thing of the past.

## High Precision Tools

Hand deburring tools often have a sharp hook-shaped blade on the end, which is used to scrape/slice off the burrs as it passes along the edge of the part. These tools are fairly simple and easy to use, but much less efficient and precise than CNC deburring tools.

CNC deburring tools are also held to much tighter tolerances than traditional hand-deburring tools. Traditional cylindrical deburring tools typically have a diameter-tolerance window of +/- .008 versus a CNC deburring end mill which has a diameter tolerance of +/-.0005. The tighter tolerance design eliminates the location issues found in traditional deburring tools with loose tolerances, allowing them to be programmed like a traditional end mill.

While hand deburring tools often have just a single blade, CNC deburring tools feature double cut patterns and a high number of flutes. The double cut pattern contains both right hand and left hand teeth, which results in an improved finish. These tools leave completed parts looking far superior to their hand-deburred counterparts, with more consistent and controlled edge breaks. Additionally, there is a large variety of CNC deburring tools available today which can take full advantage of multi-axis machines and the most complex tool paths. For example, Harvey Tool’s 270° Undercutting End Mill is a great choice for multi-axis and more complex deburring options. Further, Deburring Chamfer Cutters are multi-use tools that can perform both chamfering and deburring accurately with no need for a tool change.

## Reduce Production Costs and Increase Profits

Having an entire department dedicated to deburring can be costly, and many smaller businesses may have pulled employees off other jobs to help with deburring, which hampers production. Taking employees off the deburring station and asking them to run more parts or man another department can help keep labor costs low while still increasing production rates.

Stop Deburring By Hand and Increase Your Profits

By deburring right in the CNC machine, parts can be completed in one machining operation. The double-cut pattern found on many deburring tools also allows for increased speeds and feeds. This helps to reduce cycle times even further, saving hours of work and increasing production efficiency. Deburring in the machine is a highly repeatable process that reduces overall cycle times and allows for more efficient finishing of a part. In addition, CNC machines are going to be more accurate than manual operations, leading to fewer scrapped parts due to human error and inconsistencies.

Simply put, the precision and accuracy of the CNC machine, along with the cost and time savings associated with keeping the part in the machine from start to finish, makes deburring in the CNC machine one of the easiest way to increase your shop’s efficiency.

## Zootility – Featured Customer

Zootility prides themselves on designing products that blend art and function for everyday use. Everything from design to manufacturing to distribution is done at their custom shop in Portland, Maine. Utilizing laser-cutters, laser-etchers, and CNC Machines, their skilled team works 15 hours a day to carry out their mission to get their incredibly thin, extremely useful “zootilitarian” tools into pockets everywhere. Zootility was founded by Nate Barr and was launched on the back of a successful Kickstarter campaign for their first tool, the PocketMonkey. Nate has now expanded Zootility and grown into several more products and brands, including the “WildCard” Wallet (Pocket) Knife, “Open Beer Season” bottle openers, the popular “Headgehog” Wallet Comb, and their new line of “Tülry” multi-tools that disguise as fashionable jewelry.

We visited Zootility at their shop in Maine and talked to Nate and Chris, one of their CNC Machinists, about using Kickstarter campaigns to launch new products, the state of the Manufacturing Industry, machining in very tight tolerances, and more in this latest Featured Customer blog.

## Thanks for having us, Nate! Tell us a little bit about your shop and how you got started with Zootility.

Nate: Zootility really started as a maker shop for our first product, PocketMonkey. The goal was always to take the idea behind the PocketMonkey and grow it from just a Kickstarter project so that I could expand the business. I also wanted to make sure that I was learning something new myself every step of the way; I wanted to understand how to make our products, so we could keep production in-house and use our knowledge to expand the business in the future. When we started, I was re-investing all of our proceeds back into the business, allowing us to buy more equipment and really build out the shop. Our shop is fairly unique, where we now have nearly total vertical integration across the board. The only thing we need to do now is buy an iron mine and get our own materials!

## How did you come up with the idea for the original Pocket Monkey?

Nate: I came up with the idea for the Pocket Monkey one day while I was locked out of my apartment. I was living in Boston at the time, and I would run out every night to the stores around the corner to buy food for dinner, typically only taking my wallet with me. One night, the door locked behind me, and I was locked out, sitting on my front steps and wishing I had some sort of a shim to slip the lock. I started thinking what that would look like and how it could fit in a wallet for easy carrying and realized that I could add on more tools like bottle openers and screwdrivers while still keeping it slim enough to fit in my wallet. I had studied Mechanical Engineering in college, so I had the background to create what I was envisioning.

## You have used Kickstarter campaigns very successfully, not only to launch Zootility, but also to further your product line and expand the business. How was the Kickstarter experience, and would you recommend it to other entrepreneurs looking to launch a new business?

Nate: Our Kickstarter experience was great. We have raised up to \$90,000 in a single campaign, and we have figured out a strategy that works for us. We found that if you set a reasonable goal that will allow you to cover start-up costs, say \$25,000 rather than \$100,000, people are more willing to take the time to invest. A reasonable goal gives people more confidence that the project will be funded, and that it will be successful, leading to more backers and more exposure; it is a great Marketing tool in that regard.

Kickstarter also levels the playing field for smaller companies like Zootility – I consider it to be “The Great Equalizer”. There is no longer a need to have tens of thousands of dollars for upfront costs when starting a business. You can spend a little bit of time creating the campaign and invest a small amount of money into that without taking the huge risk of throwing your life savings into an unproven idea. When I started Zootility, I was still working my day job and did not have the money to put up front, so Kickstarter was a natural fit. We have continued to use Kickstarter for new product lines because we are committed to manufacturing our products in the US, so Kickstarter campaigns allow us to validate new ideas and collect funds up front as we continue to grow the business. I do recommend it for all the entrepreneurs out there, and it has been a great tool that has contributed to our success.

## You mentioned your commitment to manufacturing Zootility products in the US. What makes this ideal so important to you?

Nate: Let me start by saying that I think that Globalization is a good thing; it has pulled huge numbers of people across the world out of poverty. However, American policies have essentially allowed large corporations to gut the middle class by moving jobs overseas, especially in more rural areas. This has created unbalanced manufacturing and retail sectors. Personally, I believe things have gone too far, and standing behind our belief in American-made goods allows us to contribute to a more balanced approach to manufacturing. As with all things in life, a balanced approach is the best option. There will never be a time when 100% of goods can be feasibly made in America, so overseas manufacturing will continue, but bringing back more jobs to the middle class here in America is a good thing for the entire industry.

We have definitely made an effort to re-invest in our local community and the people who live here by manufacturing our products right here in Maine. Offshoring has resulted in a loss of knowledge and a real disconnect from the products that we use every day. Products that were previously considered to be of a high quality are now losing their shine, as less care is put into them and there is less appreciation and understanding of how these things are made. By investing in our local community and ourselves by learning something new every day, we believe we are doing our part to bring this knowledge back and instill more of a sense of pride in our employees and the products that they help to create.

## You are originally from the Boston area. What made you decide to move the company and shop to Maine?

Nate: I had originally looked at a few places in the Boston-area, but it just didn’t make sense financially. There is a lot of great technology being developed in Boston by the innovative companies in the area, but to set up a manufacturing business in Boston was cost-prohibitive. By moving our shop to Portland, Maine we were able to save a lot on the space, which helped us in the early stages of the business.

The other thing was the lifestyle change. Portland has a great downtown area with lots of small businesses. There are restaurants, breweries, coffee shops, and plenty of locally-owned shops. It is also easy to get around, either by car or bike, and there is very little traffic throughout the city. I also wanted to locate our shop so that it felt like part of a community. We were able to find a great spot in downtown Portland surrounded by other manufacturers and small businesses. It makes for a great place to come to work every day.

## What does the future hold for Zootility?

Nate: Right now, we do as much business in Q4 around the holidays as we do the entire rest of the year, so we have been exploring ways to make better use of the machines during the slower months. As we have completed installing and setting up our new machines, we have begun to do contract manufacturing to fill out the rest of the year. We have the unique ability to create small parts with extremely tight tolerances, and we are willing to do small volume, small batch manufacturing that other shops may turn down. We have been getting business from companies in Boston, who are looking for the “just in time” manufacturing which we can provide. The extra revenue from these projects will allow us to take off the Kickstarter training wheels and expand the business faster on our own.

From a product standpoint, we are looking to launch more “serious” tools for the outdoor enthusiast. Right now we are in the process of launching our new RNGR brand, which will be a line of minimalist every day carry products, without the whimsical nature of the Zootility Tools products. We also are on the verge of shipping our new TÜLRY brand, which is a series of jewelry infused with every day carry tools.

## Chris, you create a lot of very thin products. How does that affect your workholding when working in materials that thin?

Chris: Our workholding has been built entirely custom for our CNC machine, due to the nature of the products. For example, we are currently working on our WildCard knives, which are only .040″ thick. There really isn’t much on the workholding market that will work well for something that small, so our team actually machined our own metal strips on the CNC, held the knives down with small bolts, added some rubber bumpers so we do not have metal on metal contact, and it has worked really well for us so far. We also created custom workholding for the new TÜLRY line tools, which are also extremely thin.

The biggest challenge with our custom workholding is the additional time it adds to each job. Right now, we can run batches of 72 knives per cycle, with a cycle time of 28 minutes. Then, we need 20-25 minutes to unscrew each of the bolts, remove the finished knives, and then insert the new knives and screw the bolts back in. However, it is the only way we can machine products this thin with our tight tolerances, and we can still finish around 600 knives per day.

## You mentioned your tight tolerances. What are some of the tolerances you are working in every day?

Chris: Right now, all of our tolerances are in the thousandths. For example, the WildCard knives have a tolerance of just +/- .003″, and the screwdriver tools on the TÜLRY necklace, while one of our highest tolerances, stick to just +/- .005″. The tightest tolerance we are currently working in is on the hex wrench tools for the TÜLRY necklace. The hex wrench tools have to be spot on, or they will be too loose when they go to be used on a hex nut. Right now, we like to keep those tools to a tolerance of +/- .001″.

## How has your experience been using Harvey and Helical tools on these projects?

Chris: The Harvey and Helical tools have been great for us. When I started, we had another brand of end mills in stock, and they simply weren’t cutting it (no pun intended) in the types of heat-treated stainless steel which we were working in. We switched over to the Helical 7 flute end mills for roughing and finishing of the knives. Each knife has a very small shelf on it, which allows it to be a removable piece of the WildCard tool. We use a 3/8″ 7 flute Helical end mill with a .020″ corner radius for this cut, with a 3/8″ 7 flute square end mill for finishing. One interesting part of this job is that it requires a very low ADOC because the tools are already so thin, that the roughing we do removes only a very small amount of material.

We also use both Harvey and Helical chamfer mills to create all of the box cutter and hex wrench TÜLRY tools. With the hex wrenches, we have found that the 60° tipped off chamfer mill has been great for creating those intricate cuts. With the box cutters, we needed an edge sharp enough to cut through tape and cardboard, but not sharp enough to cut through the skin. We have found that the 2 flute 120° chamfer mills work best for those cuts.

## What is the biggest challenge you face at the CNC machine?

Chris: Right now, we laser cut all of the outlines for the knives from a thin sheet of steel. Then the knives come to us right off the laser cutter for machining. The laser cutting does create a rough finish on some of the knives, which can make them hard to lock down when machining. This can result in some movement, which can lead to the occasional scrapped part. The laser cutter can also leave burrs at the start and stop points, or leave a scorch mark or some slag on the knives, which can make them tougher to machine.

## The Zootility shop uses a lot of different equipment. How has the CNC machine in particular impacted the shop as a whole?

Chris: Our CNC machine comes in handy for a lot of different things around the shop. As I previously mentioned, we used it to create our own custom workholding, which has worked very well for us. We also used the CNC machine to create all of our forming dies, which are used to create all of our tools from scratch. As we move into more contract manufacturing for other companies, these machines will get even more use when we are working on the small batch jobs we will (hopefully) be getting.

Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

## What You Need to Know About Coolant for CNC Machining

Coolant in purpose is widely understood – it’s used to temper high temperatures common during machining, and aid in chip evacuation. However, there are several types and styles, each with its own benefits and drawbacks. Knowing which coolant – or if any – is appropriate for your job can help to boost your shop’s profitability, capability, and overall machining performance.

## Coolant or Lubricant Purpose

Coolant and lubricant are terms used interchangeably, though not all coolants are lubricants. Compressed air, for example, has no lubricating purpose but works only as a cooling option. Direct coolants – those which make physical contact with a part – can be compressed air, water, oil, synthetics, or semi-synthetics. When directed to the cutting action of a tool, these can help to fend off high temperatures that could lead to melting, warping, discoloration, or tool failure. Additionally, coolant can help evacuate chips from a part, preventing chip recutting and aiding in part finish.

Coolant can be expensive, however, and wasteful if not necessary. Understanding the amount of coolant needed for your job can help your shop’s efficiency.

## Types of Coolant Delivery

Coolant is delivered in several different forms – both in properties and pressure. The most common forms include air, mist, flood coolant, high pressure, and Minimum Quantity Lubricant (MQL). Choosing the wrong pressure can lead to part or tool damage, whereas choosing the wrong amount can lead to exhausted shop resources.

Air: Cools and clears chips, but has no lubricity purpose. Air coolant does not cool as efficiently as water or oil-based coolants. For more sensitive materials, air coolant is often preferred over types that come in direct contact with the part. This is true with many plastics, where thermal shock – or rapid expansion and contraction of a part – can occur if direct coolant is applied.

Mist: This type of low pressure coolant is sufficient for instances where chip evacuation and heat are not major concerns. Because the pressure applied is not great in a mist, the part and tool do not undergo additional stresses.

Flood: This low pressure method creates lubricity and flushes chips from a part to avoid chip recutting, a common and tool damaging occurrence.

High Pressure: Similar to flood coolant, but delivered in greater than 1,000 psi. This is a great option for chip removal and evacuation, as it blasts the chips away from the part. While this method will effectively cool a part immediately, the pressure can be high enough to break miniature diameter tooling. This method is used often in deep pocket or drilling operations, and can be delivered via coolant through tooling, or coolant grooves built into the tool itself. Harvey Tool offers Coolant Through Drills and Coolant Through Threadmills.

Minimum Quantity Lubricant (MQL): Every machine shop focuses on how to gain a competitive advantage – to spend less, make more, and boost shop efficiency. That’s why many shops are opting for MQL, along with its obvious environmental benefits. Using only the necessary amount of coolant will dramatically reduce costs and wasted material. This type of lubricant is applied as an aerosol, or an extremely fine mist, to provide just enough coolant to perform a given operation effectively.

To see all of these coolant styles in action, check out the video below from our partners at CimQuest.

## In Conclusion

Coolant is all-too-often overlooked as a major component of a machining operation. The type of coolant or lubricant, and the pressure at which it’s applied, is vital to both machining success and optimum shop efficiency. Coolant can be applied as compressed air, mist, in a flooding property, or as high pressure. Certain machines also are MQL able, meaning they can effectively restrict the amount of coolant being applied to the very amount necessary to avoid being wasteful.

## Optimize Roughing With Chipbreaker Tooling

Chipbreaker End Mills feature unique notch profiles, creating a serrated cutting edge. These dividers break otherwise long, stringy chips into small, easily-managed swarf that can be cleanly evacuated from the part. But why is a chipbreaker necessary for some jobs, and not others? How does the geometry of this unique tool impact its proper running parameters? In this post, we’ll answer these questions and others to discover the very real benefits of this unique cutting geometry.

## How Chipbreaker Tooling Works

As a tool rotates and its cutting edge impacts a workpiece, material is sheared off from a part, creating chips. When that cutting process is interrupted, as is the case with breaks in the cutting portion of the tool, chips become smaller in length and are thus easier to evacuate. Because the chipbreakers are offset flute-to-flute, a proper, flat surface finish is achieved as each flute cleans up any excess material left behind from previously passed flutes.

## Benefits of Chipbreaker Tooling

### Machining Efficiency

When chips are removed from the part, they begin to pile in the machine. For extensive operations, where a great deal of material is hogged out, chip accumulation can very rapidly get in the way of the spindle or part. With larger chips, accumulation occurs much faster, leaving machinists to stop their machine regularly to remove the waste. As any machinist knows, a stopped machine equates to lost money.

### Prolonged Tool Life

Inefficient chip evacuation can lead to chip recutting, or when the the tool impacts and cuts chips left behind during the machining process. This adds stresses on the tool and accelerates rate of wear on the cutting edge. Chipbreaker tooling creates small chips that are easily evacuated from a part, thus minimizing the risk of recutting.

### Accelerated Running Parameters

A Harvey Performance Company Application Engineer recently observed the power of a chipbreaker tool firsthand while visiting a customer’s shop in Minnesota. The customer was roughing a great amount of 4340 Steel. Running at the parameters below, the tool was able to run uninterrupted for two hours!

 Helical Part No. 33737 Material 4340 Steel ADOC 2.545″ RDOC .125″ Speed 2,800 RPM Feed 78 IPM Material Removal Rate 24.8 Cubic In/Min

## Chipbreaker Product Offering

Chipbreaker geometry is well suited for materials that leave a long chip. Materials that produce a powdery chip, such as graphite, should not be machined with a chipbreaker tool, as chip evacuation would not be a concern. Helical Solutions’ line of chipbreaker tooling includes a 3-flute option for aluminum and non-ferrous materials, and its reduced neck counterpart. Additionally, Helical offers a 4-flute rougher with chipbreaker geometry for high-temp alloys and titanium. Harvey Tool’s expansive product offering includes a composite cutting end mill with chipbreaker geometry.

## In Summary

Chipbreaker geometry, or grooves within the cutting face of the tool, break down chips into small, manageable pieces during the machining process. This geometry can boost shop efficiency by minimizing machine downtime to clear large chips from the machining center, improve tool life by minimizing cutting forces exerted on the tool during machining, and allow for more accelerated running parameters.