Posts

Simplify Your Cutting Tool Orders

With the launch of the new Helical Solutions website, Harvey Performance Company is proud to introduce a new way to order Helical cutting tools. Now, users of our new website are able to send a list of Helical tools they’re interested in directly to their distributor to place an order, or share lists with a colleague. Let’s dive into the details about this functionality and learn how you can take advantage of the time savings associated with sending a shopping list to your distributor for simplified ordering.

Get Started with a HelicalTool.com Account

First, you must create an account on HelicalTool.com. Having an account on the Helical website allows you to save and edit tool lists which can be sent to a distributor to place an order, choose a preferred distributor, auto-fill your information in any important forms, and gives you the ability to manage your shipping information.

Create Helical Account

Now that you have an account, it is time to start creating your first shopping list.

Creating a Shopping List

To begin creating a new shopping list simply click on the “My Lists” text in the top right menu. This will take you to the list management portal, where you can add a new list by selecting “Create New List.”

Helical Wish List

When creating a new list, you can name it anything you would like. One example might be creating lists for each of your jobs, or for different machines in the shop. In this case, we will name the list “Aluminum Roughing Job.” You can create as many different shopping lists as you would like; they’ll never be removed from your account unless you choose to delete them, allowing you to go back to past tooling orders whenever you’d like.

Helical Wish List

Now that you have a list created, it is time to start adding tools to the list!

Adding Tools to Your Shopping List

There are multiple ways to add tooling to your shopping list, but the easiest method is by heading to a product table. In this example, we will be adding tooling from our 3 Flute, Corner Radius – 35° Helix product line. We want to add a quantity of 5 of EDP #59032 to our list. To do this, simply click on the “Add To List” icon located in the table row next to pricing and tool descriptions. This will open up a small window where we can manage our selection. The first step will be to choose which list we want to add this tool to, so we will select our “Aluminum Roughing Job” shopping list.

Helical Tool Ordering

Since this tool is offered uncoated and Zplus coated, we need to select which option we would like from the drop down menu. For this example, we will select the Zplus coated tool. Now, we simply need to update our quantity to “5”, and click “Add To List.” That tool will now appear on your list in the quantity selected.

If you need more information on a tool, you can click on an EDP number to be brought to the tool details page, where you can also add that EDP to your list.

If you know the EDP number you need and want to check stock levels, use our Check Stock feature to check quantities on hand, and then add the tools to your list right from the Check Stock page.

Helical Check Stock

Now, it is time to send the shopping list to place an order with your distributor!

Placing An Order With Your Distributor

Once you have completed adding tools to your list, navigate back to the My Lists page to review it. From here, you can update quantities, see list pricing, and access valuable resources.

On the right side of the My List screen, you will see an option to “Send to Distributor.” Click on the text to expand the drop down. If you have previously added a preferred distributor from your account page and they are participating in our shopping list program, you will see their information in this area.

If you have not yet selected a preferred distributor, select “Update My Distributor.” This will bring you to a new page where you can select your state and see all participating distributors in your area. Select one distributor as your preferred distributor, and then head back to the My List page.

Now that you have a distributor selected, you can do a final review of the list, and then simply click “Send List.” This will send an email order directly to your distributor with all of your shipping information, your list of tools and requested quantities, and your contact information. You will also receive a copy of this email for your records.

Helical Wish List

Within 1 business day, the distributor will follow up with you to confirm the order, process payment, and get the tools shipped out and on the way to your shop. No more phone calls or emails – just a single click, and your order is in the hands of our distributor partners.

To get started with this exciting new way to shop for Helical cutting tools, click here to begin creating an account on HelicalTool.com!

Axis CNC Inc. – Featured Customer

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

Selecting the Right Chamfer Cutter Tip Geometry

A chamfer cutter, or a chamfer mill, can be found at any machine shop, assembly floor, or hobbyist’s garage. These cutters are simple tools that are used for chamfering or beveling any part in a wide variety of materials. There are many reasons to chamfer a part, ranging from fluid flow and safety, to part aesthetics.

Due to the diversity of needs, tooling manufacturers offer many different angles and sizes of chamfer cutters, and as well as different types of chamfer cutter tip geometries. Harvey Tool, for instance, offers 21 different angles per side, ranging from 15° to 80°, flute counts of 2 to 6, and shank diameters starting at 1/8” up to 1 inch.

After finding a tool with the exact angle they’re looking for, a customer may have to choose a certain chamfer cutter tip that would best suit their operation. Common types of chamfer cutter tips include pointed, flat end, and end cutting. The following three types of chamfer cutter tip styles, offered by Harvey Tool, each serve a unique purpose.

Three Types of Harvey Tool Chamfer Cutters

Type I: Pointed

This style of chamfer cutter is the only Harvey Tool option that comes to a sharp point. The pointed tip allows the cutter to perform in smaller grooves, slots, and holes, relative to the other two types. This style also allows for easier programming and touch-offs, since the point can be easily located. It’s due to its tip that this version of the cutter has the longest length of cut (with the tool coming to a finished point), compared to the flat end of the other types of chamfer cutters. With only a 2 flute option, this is the most straightforward version of a chamfer cutter offered by Harvey Tool.

Type II: Flat End, Non-End Cutting

Type II chamfer cutters are very similar to the type I style, but feature an end that’s ground down to a flat, non-cutting tip. This flat “tip” removes the pointed part of the chamfer, which is the weakest part of the tool. Due to this change in tool geometry, this tool is given an additional measurement for how much longer the tool would be if it came to a point. This measurement is known as “distance to theoretical sharp corner,” which helps with the programming of the tool. The advantage of the flat end of the cutter now allows for multiple flutes to exist on the tapered profile of the chamfer cutter. With more flutes, this chamfer has improved tool life and finish. The flat, non-end cutting tip flat does limit its use in narrow slots, but another advantage is a lower profile angle with better angular velocity at the tip.

Type III: Flat End, End Cutting

Type III chamfer cutters are an improved and more advanced version of the type II style. The type III boasts a flat end tip with 2 flutes meeting at the center, creating a center cutting-capable version of the type II cutter. The center cutting geometry of this cutter makes it possible to cut with its flat tip. This cutting allows the chamfer cutter to lightly cut into the top of a part to the bottom of it, rather than leave material behind when cutting a chamfer. There are many situations where blending of a tapered wall and floor is needed, and this is where these chamfer cutters shine. The tip diameter is also held to a tight tolerance, which significantly helps with programing it.

In conclusion, there could be many suitable cutters for a single job, and there are many questions you must ask prior to picking your ideal tool. Choosing the right angle comes down to making sure that the angle on the chamfer cutter matches the angle on the part. One needs to be cautious of how the angles are called out, as well. Is the angle an “included angle” or “angle per side?” Is the angle called off of the vertical or horizontal? Next, the larger the shank diameter, the stronger the chamfer and the longer the length of cut, but now, interference with walls or fixtures need to be considered. Flute count comes down to material and finish. Softer materials tend to want less flutes for better chip evacuation, while more flutes will help with finish. After addressing each of these considerations, the correct style of chamfer for your job should be abundantly clear.

How to Select a Spindle

When trying to develop efficient processes, many machinists and programmers turn to tool selection first. It is true that tooling can often make a big difference in machining time, and speeds and feeds, but did you know that your machine’s spindle can have an equally impactful effect? The legs of any CNC machine, spindles are comprised of a motor, a taper for holding tools, and a shaft that will hold all of the components together. Often powered by electricity, spindles rotate on an axis which receives its input from the machine’s CNC controller.

Why is Choosing the Right Spindle Important?

Choosing the right spindle to machine your workpiece with is of very high importance to a successful production run. As tooling options continue to grow, it is important to know what tooling your spindle can utilize. Large diameter tools such as large end mills or face mills typically require slower spindle speeds and take deeper cuts to remove vast amounts of material. These applications require supreme machine rigidity and require a spindle with high torque.

Contrastingly, smaller diameter tools will need a higher-speed spindle. Faster speeds and feeds deliver better surface finishes and are used in a variety of applications. A good rule of thumb is that an end mill that is a half inch or smaller will run well with lower torque.

Types of CNC Spindles

After finding out what you should look for in a spindle, it is time to learn about your different options. Spindles typically vary by the type, style of the taper, or its size. The taper is the conical portion of the tool holder that fits inside of the opening of the spindle. Every spindle is designed to mate with a certain taper style and size.

CAT and BT Holders

This is the most widely utilized holder for milling in the United States. Referred to as “V-flange holders,” both of these styles need a retention knob or pull stud to be secured within the machine spindle. The BT (metric style) is popular overseas.

HSK Holders

This type of holder is a German standard known as “hollow shank taper.” The tapered portion of the holder is much shorter than its counterparts. It also engages the spindle in a different way and does not require a pull stud or retention knob. The HSK holder is utilized to create repeatability and longer tool life – particularly in High Efficiency Milling (HEM) applications.

All of these holders have benefits and limitations including price, accuracy, and availability. The proper selection will depend largely on your application requirements.

Torque vs. Horsepower

Torque is defined as force perpendicular to the axis of rotation across a distance. It is important to have high torque capabilities when using an end mill larger than ½ inch, or when machining a difficult material such as Inconel. Torque will help put power behind the cutting action of the tool.

Horsepower refers to the amount of work being done. Horsepower is important for smaller diameter end mills and easy-to-machine materials like aluminum.

You can think of torque as a tractor: It can’t go very fast, but there is a lot of power behind it. Think of horsepower as a racecar: It can go very fast but cannot pull or push.

Torque-Horsepower Chart

Every machine and spindle should come with a torque horsepower chart. These charts will help you understand how to maximize your spindle for torque or horsepower, depending on what you need:

Image Source: HAAS Machine Manual

Proper Spindle Size

The size of the spindle and shank taper corresponds to the weight and length of the tools being used, as well as the material you are planning to machine. CAT40 is the most commonly used spindle in the United States. These spindles are great for utilizing tools that have a ½ inch diameter end mill or smaller in any material. If you are considering using a 1 inch end mill in a material like Inconel or Titanium, a CAT50 would be a more appropriate choice. The higher the taper angle is, the more torque the spindle is capable of.

While choosing the correct tool for your application is important, choosing a tool your spindle can utilize is paramount to machining success. Knowing the amount of torque required will help machinists save a lot of headaches.

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

An Introduction to Reamers & CNC Reaming

Most machinists are familiar with CNC drilling, but did you know that the common practice for holemaking is to always use a reamer? When done correctly, reaming can be a fast and highly accurate operation that results in precision holes.

Critical Reamer Geometries

reamers

By examining a Harvey Tool Miniature Reamer and its critical dimensions, we can better understand the functionality of this useful tool. In the above image, D1 references the reamer diameter, the specific size intended for your hole; and D2 points to the shank diameter. At Harvey Tool, reamer shanks are oversized to help maintain tool strength, stiffness, and accuracy. Shanks also have an h6 tolerance, which is crucial for high precision tool holders, such as heat shrink collets. Other critical dimensions of a reamer include its overall length (L1), margin length (L2), overall reach (L3), and chamfer length (L4).

The Functions of Miniature Reamers

Reamers Provide Precision – As mentioned earlier, reamers are great for machining precision hole diameters. To use a reamer properly, you must first have a pre-drilled hole that’s between 90% and 94% of the final hole diameter. For example, if you need a finished a hole of .220″, your predrilled hole should be somewhere between .1980″ and .2068″. This allows the tool to take enough material off to leave a great finish, but does not overwork it, potentially causing damage. The tolerance for uncoated reamers is +.0000″/-.0002″, while the tolerance for AlTiN coating is +.0002″/-.0000″. These tolerances provide you the peace of mind of knowing that your hole will meet exact specifications.

Achieve a Quality CNC Finish – When a high surface finish is required of a hole, reamers should always be used to reach the desired tolerance. Both the pre-drilled hole and the tool’s margin help to keep the reamer centered while cutting, leading to a better finish.

Minimize Machining Production Runs – For machine shops, consistency is a priority. This is especially true in production runs. The last thing a machinist wants to see is an oversized hole on a part they have already preformed many operations on. Remember, reamers have the benefit of offering consistent hole size, preventing an out of tolerance finish. These consistent holes lead to valuable time savings and reduced scrap costs.

CNC Machining Exotic Alloys: When machining Inconel, titanium, and other high-cost materials, reaming your hole is important to ensure that the desired finish specification is met. With reamers, a machinists can better predict tool life, leading to a better finished product and less scrap ratios. It is important to note that Harvey Tool reamers are offered AlTiN coated and fully stocked in every .0005” increment from .0080” to .0640”.

When To and Not To Use Drop Hole Allowance

Dovetail Cutters are cutting tools that create a trapezoidal-type shape, or a dovetail groove, in a part. Due to the form of these tools, special considerations need to be made in order to achieve long tool life and superior results. This is particularly true when machining O-ring grooves, as this operation requires the tool to drop into the part to begin cutting. Using an appropriate tool entry method, specifically understanding when drop hole allowance is (and is not) needed, is important to keep common dovetail mishaps from occurring.

What is a Drop-Hole?

When designing parts featuring O-ring grooves, the consideration of drop-hole allowance is a pivotal first step. A drop-hole is an off-center hole milled during the roughing/slotting operation. This feature allows for a significantly larger, more rigid tool to be used. This is because the cutter no longer has to fit into the slot, but into a hole with a diameter larger than its cutter diameter.

drop hole allowance

Why consider adding a Drop-Hole?

When compared to tools without drop-hole allowance, tools with drop-hole allowance have a much larger neck diameter-to-cutter diameter ratio. This makes the drop-hole tools far stronger, permitting the tool to take heavy radial depths of cut and fewer step-overs. Using a drop-hole will allow the use of the stronger tool, which will increase production rate and improve tool life.

Machining Operation with Drop-Hole Allowance

drop hole allowance

A maximum of 4 radial passes per side are needed.

When Not to Drop Hole

Drop-holes are sometimes not permitted in a design due to the added stress concentration point it leaves. Common examples for where a drop-hole would not be allowed include:

  • In high pressure applications
  • In seals requiring a high reliability
  • Where dangerous or hazardous fluids are being used

The issue with drop-hole allowance is that the additional clearance used for tool entry can create a weak spot in the seal, which can then become compromised under certain conditions. Ultimately, drop-hole allowance requires approval from the customer to ensure the application allows for it.

Machining Operation Without Drop-Hole Allowance

drop hole allowance

A maximum of 20 radial passes per side are needed.

Drop-Hole Placement

When adding a drop-hole to your part, it is important to ensure that the feature is placed correctly to maximize seal integrity. Per the below figure, the drop-hole should be placed off center of the groove, ensuring that only one side of the groove is affected.

drop hole allowance

It is also necessary to ensure that drop-hole features are put on the correct side of the groove. Since O-rings are used as a seal between pressures, it is important to have the drop-hole bordering the high pressure zone. As pressure moves from high to low, the O-ring will be forced into the fully supported side, allowing for a proper seal (See image below).

drop hole allowance

What To Know About Helical Solution’s Zplus Coating

Non-ferrous and non-metallic materials are not usually considered difficult to machine, and therefore, machinists often overlook the use of tool coatings. But while these materials may not present the same machining difficulties as hardened steels and other ferrous materials, a coating can still vastly improve performance in non-ferrous applications. For instance, materials such as aluminum and graphite can cause machinists headaches because of the difficulty they often create from abrasion. To alleviate these issues in non-ferrous machining applications, a popular coating choice is Helical Solution’s Zplus coating.

zplus coating

What is Helical Solutions’ Zplus Coating?

Helical’s Zplus is a Zirconium Nitride-based coating, applied by a Physical Vapor Deposition (PVD) process. This method of coating takes place in a vacuum and forms layers only microns thick onto the properly prepared tool. Zirconium Nitride does not chemically react to a variety of non-ferrous metals, increasing the lubricity of the tool and aiding in chip evacuation.

zplus coating

When Should a Machinist Use Helical Solution’s Zplus?

Working with Abrasive Materials

While Zplus was created initially for working in aluminum, its hardness level and maximum working temperature of 1,110°F enables it to work well in abrasive forms of other non-ferrous materials, as well. This coating decreases the coefficient of friction between the tool and the part, allowing it to move easier through more abrasive materials. This abrasion resistance decreases the rate of tool wear, prolonging tool life.

Concerns with Efficient Chip Evacuation

One of the primary functions of this coating is to increase the smoothness of the flutes of the tool, which allows for more efficient chip removal. By decreasing the amount of friction between the tool and the material, chips will not stick to the tool, helping to prevent chip packing. The increased lubricity and smoothness provided by the coating allows for a higher level of performance from the cutting tool. Zplus is also recommended for use in softer, gummy alloys, as the smooth surface encourages maximum lubricity within the material – this decreases the likelihood of those gummier chips sticking to the tool while machining.

Large Production Runs

Uncoated tools can work well in many forms of non-ferrous applications. However, to get a genuinely cost-effective tool for your job, the proper coating is highly recommended. Large production runs are known for putting a lot of wear and tear on tools due to their increased use, and by utilizing an appropriate coating, there can be a significant improvement in the tools working life.

When is Zplus Coating Not Beneficial to My Application?

Finishing Applications

When your parts finish is vital to its final application, a machinist may want to consider going with an uncoated tool. As with any coating, ZrN will leave a very minor rounded edge on the tip of the cutting edge. The best finish often requires an extremely sharp tool, and an uncoated tool will have a sharper cutting edge than its coated version.

 

John Force Racing – Featured Customer

John Force Racing has been dominating the motorsports world for over 30 years, winning 20 championships and hundreds of races in the National Hot Rod Association (NHRA) drag racing series. John Force Racing features both Funny Car and Top Fuel teams, and just recently in 2017 they won both the Funny Car and Top Fuel championships in the same season.

John Force Racing invested in Force American Made to develop and create parts and components that would help drive all the teams to success and safety. The 84,000 square foot shop is located in Brownsburg, Indiana (just outside of Indianapolis) and is the heartbeat of John Force Racing. Thousands of parts are forged by Force American Made and its team of employees every season giving the team a competitive edge that has led to the team’s on-track success.

The Force American Made team has relied on Helical Solutions tooling to get the best performance and quality out of their CNC mills for years. The Harvey Performance Company team was invited out to Indiana to take a tour of Force American Made and spend some time with Tom Warga, Lead Machinist, to talk with him about his experiences with Helical Solutions tooling, his first time trying Machining Advisor Pro, the success they have had using the new Helical tool libraries for Mastercam, and the value their distributor, Dolen Tool, brings to the shop. Check out the video interview below to see the inner-workings of Force American Made and how Helical Solutions tooling has contributed to the success of this motorsports dynasty.

Okluma – Featured Customer

Okluma is a small manufacturing business located in Oklahoma City focused primarily on creating high-quality flashlights that can stand up to the most extreme conditions. The company was founded in early 2015 out of owner Jeff Sapp’s garage, and has quickly gained a solid reputation as one of the best-built and most reliable flashlights on the market today.

We were able to steal a few moments of Jeff’s time to interview him for this Featured Customer post, where he shared his thoughts on topics like the importance of customer service, the reason to use higher quality tooling, and his transition into the world of CNC machining.

To get started, how did you first get involved in manufacturing?

In high school I actually worked in a machine shop. This is where I got my first exposure to big machines and manufacturing. I worked at the shop until I graduated, doing simple things like sweeping the floor and running errands. The work wasn’t very exciting, but it did give me some really good exposure to the world of machining. Every now and then one of the machinists would let me help out with a part, but that would be rare. I did manage to save up enough money to buy a small mill and lathe, which I took with me when I went off to college.

During college and after graduation, I made a living by writing software, which I did successfully for 15 years. Eventually I got tired of writing software after I had spent more than a decade in that space, and I wanted to try something new. I had picked up small jobs and worked on personal projects over the years, so I decided to enroll in a machine shop school in Oklahoma City to learn more about manufacturing and becoming a machinist, and graduated from there with a renewed sense of what I wanted to do. Technical schools are a great way to pick up new skills and advance your career. The manufacturing technology program at the Francis Tuttle Technology Center here in Oklahoma City was great and the instructors there, Dean and Julia, are talented and very patient people.

okluma

Did your background in writing software help you transition into CNC programming?

Absolutely. It was a tremendous help to understand some very strange programming concepts that came with writing software, and it all translated very well into CNC programming. These days, CNC machinists and programmers need to be as knowledgeable about the software and programs as they do the tools and parts, so having a background in software programming or development certainly translates well to the world of CNC machines.

Where did the idea to start Okluma stem from?

After graduation from the machine shop program, I took a few weeks off and went on a long, off-road motorcycle trip across the country. I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only there was no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry.

When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then 4, then 20. That was 4 years ago. Now I have my own business with one employee and two dogs, and we stay very busy.

okluma

What does your current product offering look like?

For our products, I currently have two flashlights models (the DC1 and DC2) and we are working on some cool new projects for 2019. With battery and LED technology advancing like it has, there are some interesting applications, way beyond just flashlights, that haven’t been possible until recently. Stay tuned for more information on those by following us on Instagram.

What do you think separates an Okluma flashlight from the competition?

The basic values behind Okluma all stem from me simply wanting a nice tool that won’t break easily and will be supported by the manufacturer. I offer a lifetime warranty and stand firmly behind that. I want an Okluma flashlight to last forever so you will never have to buy another flashlight.

The quality and hardiness of a flashlight is important to many outdoors types, homeowners, and collectors, but we also sell lots of our flashlights to the military and police. If their light goes out in a tough situation it could be really bad, so we have to make sure our flashlights can be dependable above all else. Like they always say, you get what you pay for. Our flashlights aren’t going to be the cheapest, but we stand behind them with our warranty and pride ourselves on the quality and reliability.

okluma

What sort of machines and software do you have in the shop?

Right now I have the old standards like a Bridgeport mill and an old LeBlond lathe, as well as my CNC machines – a Daewoo Lynx 220LC CNC Lathe and a Doosan DNM 4500 CNC Mill.

For software, I use Autodesk Fusion 360 for the mill, and I write the G-code by hand for the lathe. I was more familiar with the lathe, so I had an easier time writing my own code for it. Getting Fusion 360 for my milling has been a huge help.

Have you been using the Harvey Tool and Helical Solutions tool libraries in Fusion 360?

Yes! The tool library in Fusion 360 was a huge help for me. To be able to get the right tool and not model things incorrectly probably saved me a lot of broken tools. That was a big reason why I came to Harvey Tool and Helical for support in the first place.

It was cool to come from the software community, where we collaborated on a lot of open-source projects, and see companies like Autodesk opening up their software to manufacturers like Harvey Tool and Helical for these great partnerships.

What sort of operations/parts do you create on the lathe versus the mills?

As you can imagine (being a cylindrical shaped part) most of the flashlight manufacturing is done on the lathe. For a while I had been making them all by hand, until we got the CNC lathe. While most of the work is done on the lathe, for the more intense pieces we have to drill and tap and do some different slotting operations. We also drill and tap the clip holes for all of the flashlights, so the CNC mill is huge for those operations.

As Okluma started to grow, we realized that we had a huge bottleneck doing our secondary operations by hand on the manual milling machine. We solved that problem by buying the Doosan mill to help with secondary operations, but you still have to know how to use it to make it worth the purchase!

I was completely in the dark on the CNC milling side of things at that time, as I was much more familiar with the lathe. I actually called Harvey Tool with a few questions, and the Harvey Tech team really held my hand and walked me through all of the things I needed to know, which was huge. I also used the Machining Advisor Pro application to generate speeds and feeds for my Helical end mills. MAP helped save me a lot of broken end mills and increased my production times.

okluma

You are using almost exclusively Harvey Tool and Helical for milling operations on your Doosan VMC. Why is purchasing quality tooling important to you?

I can try to do things on my own and eventually get it, but it costs me money on broken tools and it costs me my time, which is even more valuable. I could go that route with any number of different tooling manufacturers, but the fact that I can call Harvey or Helical and get an answer to my questions the first time, usually in a few minutes, and know it will work is hugely helpful. I don’t really look at the cost of the tools so much, because I just know they work and I know I will get the support I need to make my milling operations a success.

Can you remember a crucial moment when Harvey Tool or Helical technical support helped you to be more productive?

As we try to get more creative with our designs, we plan to rely heavily on Harvey and Helical to explore some of these new applications. We actually build our own tool to work on the flashlights, and we are using Harvey and Helical exclusively to machine that. At first, I was making the tools in two operations; I was doing a radius on top and then flipping the part over to create a radius on the bottom. I was having a hard time lining it up. We moved the second radius on the first operation, and used an undercutting tool and everything matched up perfect. I wasn’t really sure how to do it, but I called you guys and you figured it out with me! We have some cool projects coming up which we are planning to rely on Helical tools for, but people will have to stay tuned for that one!

okluma

What have been some of your keys to success for your growing sales?

Good customer service is key. We are one of the few companies that will offer a lifetime warranty. I know there are a lot of flashlight collectors, and we can make fun stuff for those guys, but I want people to really use our flashlights and scratch them and do ridiculous things with them. We have had people use a flashlights in crazy ways (like as a hammer) but we will still fix them under our lifetime warranty. I don’t really care what people do to our flashlights, I just want them to always work.

We can also overnight replacement flashlights for professionals who rely on them for work, so they never have to be without one. That is huge for our customers in the military or in law enforcement who rely on our flashlights as an essential tool in their day-to-day lives.

Do you have plans to expand into retailers, either online or brick and mortar stores?

We only sell direct to consumers right now through our website so that we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.

I’ve noticed that you have gathered a rather large social media following. How has social media helped shape your business?

A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business. We have also had a lot of success collaborating with others in the EDC (Every Day Carry) community where makers are creating knives, wallets, keychains; anything you would carry on you “every day”, hence the name. We have collaborated to make flashlights out of other people’s materials, let other shops refinish our flashlights, and things of that nature. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.

I think social media is especially great for manufacturing because a lot of younger people don’t even know all this crazy cool stuff that is going on in the industry. I was lucky enough to see it first hand at a young age, but so many others never get the chance. It is awesome to share our work and try to inspire some of the younger generation to make their own products and participate in the world of manufacturing.

okluma


 Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.