Tag Archive for: cnc programming

Brick Tactical – Featured Customer

How and when did you learn how to operate CNC machines?

Flashback to 2012, I was 12 years old. I was doing YouTube for 2 years at this point and loved custom LEGO accessories and parts. I knew more than the average twelve-year-old on how they were made, but that wasn’t enough, I wanted to make my own. There were companies out there at the time making third-party LEGO accessories, but not what I wanted. I turned to my right-hand man, my grandpa, with any wild project I could think of. My grandpa was a mechanical engineer and manufactured products that required injection molding. By no means did we know a single thing. We both knew that you needed a mold and hot plastic was pushed into the mold, that’s about it. After doing some research, watching YouTube videos. I saw the Taig Desktop CNC and I knew I had to have it. At the time gathering $2,000 for a twelve-year-old was A LOT. I did anything I could to make a few bucks selling some old LEGO sets and hustling. We got the money and we got the machine.

There was this exciting moment of assembling it and getting to manually jog the machine around and see it move. Another moment that my grandpa and I had, where we just looked at each other like “now what”. You have to keep in mind, we didn’t know what an endmill, CAD/CAM, or even a parallel was. It took about a year of phone calls, YouTube videos, and learning to finally start making usable injection molds. My grandpa would be calling tool reps during business hours and writing down everything he learned. While I would go to school and design molds in my head and on my homework in class. Then we would meet up frequently and exchange knowledge and ideas, and then test it out on the machine.

What struggles did you encounter when you first started learning?

At the time learning all the terminology was difficult. The main thing we had to learn was the difference between an end mill and a ball mill. Sounds silly right? I know pretty pathetic. But making injection molds with nice 3d surfaces we kept getting “stair-step” tool paths and we couldn’t figure it out. Eventually, we realized what the benefits of both were. Back then another concept we both had to wrap our heads around was the concept of a thou. We as machinists have this idea in our heads of what .001″ is. That took some time to get the hang of. Lastly, in 2016 (at sixteen years old) I decided to start going to college for machining. I went to Lake Washington Institute of Technology, my local technical school. I graduated with my AA in Machine Technology and my High school diploma in 2018 when I turned 18. After going through school getting a more formal education on machining, I was hooked! It made me realize my drive for more accurate parts and tolerances. My desktop machine wasn’t enough. In 2018, I bought a Haas DM2 which was a HUGE deal at the time. I paid in cash for this machine. Worked on my company through the previous years. Invested money on the side, and also took on a second job as a CNC programmer. This allowed me to stash all the money away for this purchase. Being able to lean on the Z column of my machine and watch an indicator move .010″ was no longer an issue. I was set.

Where did your passion for Lego’s and Lego bricks come from?

As a kid, I was always around LEGO. Starting at age 5 I got my first LEGO Star Wars set, which I still have to this day. Ever since then I always loved the brick system. Being able to have FULL creative control is something I latched onto early on in my childhood. The rest is history. It turned from a childhood toy, into a hobby, into a small business, now into a real company. It’s crazy to think almost 12 years ago I was a ten-year-old kid starting my YouTube channel, clonetrooperx39. Now going into 2022 I’m looking to hire my first employee at twenty-one years old.

What’s your favorite Lego build you have ever made?

My favorite MOC (My Own Creation) has to be a World War II DDAY recreation. I build this over the course of ten months on my YouTube channel. In this series I started from scratch, looking at historical photos and documents of the world-famous battle known as DDAY. From there I started with some blank LEGO baseplates and got to work. Doing layout work, rock structures, bunkers, tanks, custom printed mini-figures the whole nine yards. Being a total history nerd, this is by FAR my favorite build. It was one of my favorite battles to study growing up in school.

What sets Brick Tactical apart from the rest of the competition?

BrickTactical is all American and I’m very proud of that. We manufacture everything in the United States. A few products I have injection molds for that are too large to run on my current machines, but I have a local Washington state company run them. With BrickTactical you’re not only getting quality products from people who care but you are supporting my story. BrickTactical is very passionate about what we do. We take serious pride in the attention to detail and quality we withhold. Most of the competitors in the custom LEGO accessory world produce all their products overseas. There is nothing wrong with that. I rather do it here and support my friends and family with work along with controlling all the quality myself.

Can you explain the process of creating a custom Lego brick or accessory?

Creating a new custom LEGO weapon/accessory is no easy task. Start off with the idea. Once I have an idea of an item I want to scale down and make into a LEGO mini-figure scale then I get a file designed of that part to scale. Sometimes I do this myself, other times I have one of my designers take care of that. Once I get the file, I normally do a high-resolution SLA 3D print of the part to make sure everything looks and feels right in the mini-figures hand. I might send pictures back and forth with my designer and make changes. This process can take a few weeks to many months depending on the part. Then I take the part file, and I start designing the injection mold. Once designed I program the mold myself and machine it out on my CNC mill. Machining the molds can take many hours, sometimes up to 48 hours straight of machining time to cut the cavities. Then it goes into the molding machine, and we start testing. Sometimes you can get to this step and find a problem and have to repeat this entire process. I do it more than I’m willing to admit, simply because I really care about the little things, some of the things NOBODY would EVER notice, but I notice, so it needs to be fixed. Period. If all is well then it goes into production, and we start cranking them out. The last step is to take photos to list them on the website and promote it!

What current product offerings do you have?

BrickTactical has well over 750+ products currently on the website. We are making dozens every month and plan to ramp up even more in 2022. We offer everything from custom injection-molded weapons/accessories or custom printed genuine LEGO parts with our own designs on mini-figures to create accurate representations of soldiers, video game characters, or movie characters from all time periods.

What sort of machines do you use in your shop?

Currently, we have our main Haas DM2 CNC mill along with our injection molding machines and UV printer. In 2022 we plan to add more UV printers, a robot arm for machine tending, and a 5th axis machine for more complex parts.

Which materials do you most often work with in your shop?

The most common materials that I work with are Aluminum and ABS plastic. Making molds almost every day and then running through the injection molding machines I have are the two materials I’ve gotten to know very well. I also have to occasionally modify steel molds, or make tooling and fixtures out of other materials. But who doesn’t like aluminum! Strong, lightweight, and fast to the machine! Not to mention a LOT cheaper than EDM cutting steel molds.

What is the coolest project you have worked on?

During the early stages of the pandemic, there was a huge need for face shields to protect health care workers. This was an extremely rushed situation, myself, another local machinist, and YouTuber John SL, worked together to fix this. John designed the face shield frame and I took care of the rest. I designed a full injection mold, machined it, and was making parts in less than 10 days. We made around 4,000 of these frames and donated them all to local workers. I always try to do the right thing where I can, this just felt right and I learned a lot from doing it.

Why is high quality tool performance important to you?

High-quality tools are very crucial to making high-quality injection molds. They go hand and hand. Being a solo entrepreneur I also don’t have the time to check lower grade tooling to make sure it’s up to my standards of run out, sharpness, etc. Buying from high-quality tooling companies takes those variables out of the equation. Also having speeds and feeds ready to go when buying new tools saves time and broken tools. It at least gives me a baseline of where to start playing with my numbers.

What is your favorite project you have worked on?

Once I got my Haas DM2 I knew I could make better injection molds. But I also was eager to make some other parts for companies and see how a job shop truly functions. Also, to be blunt I wanted to make some money! After blowing all that cash upfront on a machine my bank account could use it! I found some local customers through word of mouth and started making some small, complex, six-set-up parts on my 3 axis machine. Truth be told after doing work for this company for almost a year they later told me all the parts I had made went on the dashboards of Black Hawk Helicopters. That blew me away being a totally military nerd. That was pretty cool. It was also pretty rad when I’m working with the engineers at this company giving them feedback on how they could modify their designs to make them more machine friendly. Being eighteen years old talking to seasoned engineers, more or less changing THEIR parts, looking back on it was pretty bold.

One time I did a large batch of parts for this company, numerous part numbers, thousands of dimensions that they had to inspect each and everyone due to these being aerospace parts. I remember the head engineer came over to my parent’s house where I have my shop and he told me that every, single, part was perfect and that he hadn’t seen a success rate like that in all 30+ years of him doing this. There I was an 18-year-old fresh out of school, full-time working for myself crushing it.

What is your favorite part of your job?

Having ultimate creative freedom is something I love. Being able to solve problems my way, fix things my way and come up with crazy ideas and products on my own time is truly one of the perks of being self-employed in manufacturing. Knowing how everything around you is made is mind-blowing but also so much fun to think about. Coming up with systems and processes to execute a task is very rewarding to me.

Is there a time that Harvey Tool or Helical Solution products came through and helped your business?

Harvey Tool and Helical cutting tools are always in my shop. The quality you get when buying is unmatched for the price. It’s really that simple. Having a local distributor driving distance away also allows me to save on shipping time. I’ve also come across crazy features on parts when doing job shop work and calling up their customer service and sending them a part file we can go over it in real-time and they always help me find that special tool that can save on my cycle time or reduce setups.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Go for it! There are truly NO EXCUSES in this day and age. Even when I was learning all this, YouTube had nowhere near the amount of content on CNC machining that it does now. Back then I didn’t have Fusion 360 which is extremely powerful. If I can do it, so can you.

Is there anything else you would like to share with the In The Loupe community?

Anyone with passion and drive can do whatever you want in life. If you want to stick a CNC machine in your garage and someday have a giant shop full of machines and staff, you CAN do that. It takes time, grit, risk, and dedication, but look at me for an example. If anyone needs help with manufacturing of any kind feel free to reach out through my website or Instagram, I would be happy to help! Whether that’s trying to pick the right machine for you or even making parts for you I would love to talk!

If you want to get some kick-ass custom LEGO mini-figures and accessories feel free to check out my site BrickTactical.com or follow my Instagram @bricktactical and @bricktacticalmfg

Octane Workholding – Featured Customer

Located in Danville, Pennsylvania, Octane Workholding has a long history spanning back to 40 years. This family business started in the 1980s, welding farm equipment and doing general repairs. As time went on, Octane Workholding began shifting toward building bespoke equipment. As the equipment became more complex, machining became a larger part of their business, starting with manual machines and working towards CNC machining. They started to realize the amount of knowledge that they would need to learn to master CNC machining. After machining thousands of parts and gaining experience, they learned what tools were needed to succeed as Machinists and started their journey. They developed value-added products for their own use that are now available for everyone and provide educational materials that are aimed at lessening the steep learning curve of this trade.

Octane Workholding has dedicated years to mastering their CNC abilities. We were able to get in touch with Derek Pulsifer, President of Octane Workholding, to discuss how they got started, current business, and so much more!

How did you get started with Octane Workholding?

Basically, I grew up in our family shop but did not start working full time until after college. Things were heavily fabrication-oriented with only a few manual machines. After a few years running manuals myself, it was decided we would go the CNC route. Teaching myself to be a Machinist was often a struggle with no formal training or peers to reference. Being a family machine shop and working alongside Octane Sr., it could be a lot like an episode of Orange County Choppers. Most of what I share today was learned through thousands of hours of researching and learning the hard way. 

How did you get from welding farm equipment and doing repairs, to manufacturing workholding setups?

Like many things in life, things progressed and customers’ needs shifted. Our fabrication shop has built a lot of equipment for the food, pharmaceutical, and power generation industries for several years. As we gained more customers, things slowly shifted toward more job shop-oriented work. Jobshop work is a surefire way to gain experience quickly. As a Machinist, there were many times I went in search of a solution for common problems we faced. After finding solutions that didn’t fit us, I designed the products we now make today. Thousands of unique parts and decades of experience later, we knew what shops like us were probably encountering as well. Octane Workholding was created to provide solutions to common machining problems. We continue to offer quote-based work to customers through our machine shop in addition to Octane Workholding. We are Craftsmen.

What machines do you currently have in your shop?

We have several manual machines from the classic 1960’s Bridgeport to heavy-duty Cat50 verticals. The machine I actually began on is an old South Bend lathe. Production sawing, Roll Grooving, Shears, Press Brakes, Waterjet Cutting, Welding, and Rolling machines. We also have various new CNC machinery from lathes to verticals. 

What CAM/CAD softwares do you currently use?

I program with both Mastercam and Solidworks. We use Autocad products for 2D applications like Waterjet Cutting. The advent of Fusion 360 has really benefited the industry by bringing affordable software to everyone. I would like to experiment with more CAD/CAM systems to help those who come to us with specific programming questions related to Fusion 360 etc.

What materials are you most often working with?

We primarily work with stainless steel, but no material is too difficult to work with. Materials and SFM are a bit like speed limits on the road, Hastelloy is like a 25 MPH zone, and Aluminum is like the Autobahn. Superalloys require patience and the right recipe.

What sets Octane Workholding apart from the rest of the competition?

I think people appreciate honest companies that actually engage with their customers.  Treating every customer with the same respect, no matter the size of their company. Social media has made helping anyone that needs it, a message away. Whether individuals buy our products or not, we believe the whole industry benefits from the freely available educational materials.

Can you talk about the coolest/most interesting project you have worked on?

We do a lot of neat work but one project especially was great to work on. It is also one of the few that can be made public. Making 11.00″ Custom Scissors for the first time. These Scissors quickly became an obsession once work began on them. Programming them was the first step. Machining them without creating time-consuming custom fixtures was the next challenge. Once they were machined the real fun began.

Having never made Scissors or Knives professionally, I knew the next part would be a learning experience. After ordering some fine grit belts for our sanders, the polishing and sharpening had begun. To begin, I went about polishing the handles and rough sharpening to establish a reference edge on the blades.

Having some paper on hand it was time to give them a try. Success, they cut paper! Now for the real test, they were being created to cut plastic bags. Dread started to creep in as the first cut simply folded the bag in half. This was not good. Ok, what is wrong here? These feel razor-sharp, but they are paperweights at this point. Back to the drawing board. After doing some research on the great UK makers continuing this art, a hollow grind seemed like the solution.

What do we have that can do a hollow grind? A small wheel will put a deep radius if brought back to the blade. I have to make a large wheel so the hollow grind can be shallow. I’ve got it, a faceplate adapter mounted to the Old South Bend, some sandpaper glued to the outside should work! So it began, the journey into learning to hollow grind.

After hours of making things worse and worse, I cannot bring the grind from edge to edge smoothly. Some more research and it seems the technique is to “turn the key”. Wow, it feels unnatural but it works! Finally, a successful hollow grind is performed.

Now for the real art of Scissormaking, the Putter- (fine Scissor Craftsmen which I am not) must sharpen and skillfully assemble them. The final act is to bow the blades carefully such that the edges intersect. They must meet perfectly along the length of the blade as they cross.

One more test, they cut the plastic bag as it passed right through it. This was one of the best moments in my career as a Machinist.

What are your current product offerings?

Our best-selling product is our t-slot cover, The Octane Chip Guard. We also currently offer mounts that offset your Renishaw Tool Setter. Table space is a premium for any milling machine. When the Tool Setter is outside the work envelope, additional work holding or parts can be placed. 

We also offer a T-Slot Drop in Workstop, our drop in workstops can be added at any time, even when access to the end of the t-slot is blocked. This adds a lot of flexibility to set up parts, especially if you forgot to add them beforehand (has happened more than I care to admit). There are a lot of products waiting to be released, but the demand for our t-slot covers has taken priority for now.

Having machined thousands of parts with unique setups, a product that enabled quick changeovers was essential. Cleaning a t-slot is a job Machinists have dreaded for a very long time.  Being silicone, it is extremely easy to trim a piece to fit any setup. Setting up a job for production requires only a few extra minutes to place our t-slot covers. One big problem with vertical machining centers is chip evacuation. Not only does covering the t-slot prevent chips from ever entering the groove, but it actually promotes flushing of every corner of sheet metal. Flood coolant normally is trapped within the grooves, which prevents any chance of the chips being evacuated. Unattended operation is always the goal with any CNC machine, our Chip Guard allows an operator to open the doors to a clean machine. In-process chip fans or automatic washdowns are possible. Safety is also a big issue for any shop. Most Machinists have encountered a chip ricocheting from the t-slots back at their eyes. The color options add a sleek look to any machine. We also offer black for an incognito approach.

Why is high quality tool performance important to you?

Manufacturing is all about process reliability. You may save a few dollars on a tool, but end up paying dividends when said tool fails unexpectedly. A quality tool that increases performance or extends unattended operation, is critical.

Can you talk about a time that Harvey Tool or Helical products really came through and helped you?

Aside from Harvey having tools available as standard, which would be a custom item for the majority of companies. We buy chamfer mills regularly for finishing bevels. The angle being accurate is paramount for finishing. If the angle is off at all, a step can be felt on the finished face. Being confident that a tool that is programmed to cut a feature is accurate, saves us a lot of time. We also rough some heavy stainless steel beveled rings. The heavy chips accumulate due to the 2.00” length of cut., so the solution to this problem was the following chipbreaker endmill – 5 FLUTE, CORNER RADIUS – CHIPBREAKER ROUGHER, VARIABLE PITCH (APLUS).  We are all familiar with the corncob style roughing endmills, which actually create chips that are too small, causing those chips to end up getting into the coolant tank. Helical chipbreaker endmills create a swarf that is the perfect size, as it fits neatly into a container for recycling. The other added benefit is tool life. The bevel rings tend to trap the swarf inside themselves, which can lead to recutting chips that were destroying tool life. The chips were able to be evacuated easily which lead to a 4x’s increase in tool life and a process we could walk away from confidently.

We noticed the education section on your website, not too many companies will add these sections, why do you feel it is important to spread knowledge?

The world saw more technological advancement in 100 years than in all recorded history through manufacturing.  While I may not be part of the next great advancement for humanity, perhaps teaching an aspiring Engineer, will lead to one. Providing the tools for brilliant individuals to go out and make an idea a reality, is something we are committed to. Future generations need to understand how critical manufacturing is to our way of life. 

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Learn cad/cam first. Watching YouTube tutorials and educational content likes ours can help accelerate the learning curve. Becoming proficient as a programmer and designer can lead to higher starting salaries. If you can walk into a shop with some knowledge of programming, you may bypass a lot of the red tape companies might present to a new employee. Machining is often the easiest part, work holding and programming are often the biggest hurdles. Not everything has been invented yet, perhaps your niche will be making ornate pens, flashlights, knives, firearm parts, etc., creative designs are always in demand. Many successful businesses started in a garage with a hobby machine. Designing your own products can lead to a booming business that can sustain your family and eventually your employees’ families. 

Is there anything else you would like to share with the In The Loupe community?

We are adding more and more educational material to our website.  It’s definitely worth bookmarking for anyone interested in learning more about this trade.

  • Speeds and feeds for turning, drilling, surface finish charts, etc.
  • Threading data like you would find in the Machinist’s handbook, but easier to find and read.
  • Educational articles on topics like quoting, lathe education, mill education etc.
  • Fun DIY projects you can make, like a tap follower.
  • Programming examples and curriculum are in progress with more information being added.

To learn more about Octane Workholding find their website here. Also, you can follow them on Instagram @octane_workholding.

R & S Machining – Featured Customer

Featured Image Courtesy of R & S Machining

Located in St. Louis, Missouri, R & S Machining specializes in 4 & 5 axis machining and manufacturing of aerospace components. Since R & S was founded in 1992, they have instilled a spirit of hard work and determination to exceed customer expectations. Equipped with up-to-date machines and automation, R & S Machining has high-quality equipment to keep them as efficient as possible to stay ahead of the competition. The highly skilled men and women operating the manufacturing facility are committed to a high quality standard to meet all customer requirements. Because of this commitment, R & S Machining has been able to expand its facilities in the past four years by more than 225,000 square feet.

We were able to get in touch with Matthew Roderick, the lead programmer for R & S Machining. Matthew took some time out of his busy schedule to answer some questions about R & S Machining, and how the company continues to grow.

Photo Courtesy of: R & S Machining

Can you tell us a little about R & S Machining?

R & S Machining is dedicated to continual improvement and growth. We strive to buy very high quality machines and tooling. We also equip most of our machines with automation. Whether it is a bar feeder, pallet changer, FMS, or robot, nearly all our machines have some form of automation to increase our lights out production. In the past 4 years, we have built a new facility and purchased a new facility. We have grown by more than 225,000 square feet and 35 employees in this timespan. With the backing of our ownership, continued success and relationships with our customers, very dedicated employees, and high-quality reliable manufacturing equipment, we are in a league of our own and continue to strive towards our goal of becoming the powerhouse manufacturing company of the Midwest.

R & S Machining currently uses Hermie, Okuma, Makino, and Kenichi machines in the facility, while utilizing CAM/CAD software such as Siemens NX, Catia, and Mastercam.

How did R & S get into Aerospace and Defense Manufacturing?

Our president worked at Boeing for 10 years. When he left to start his own company, we were given an opportunity with the Boeing Company to manufacture aerospace and defense components based on the quality of work that our President produced during his time with them. We continued to produce high quality products with an emphasis on on-time delivery and the rest is history.

Photo Courtesy of: R & S Machining

What sets R & S apart from the rest of the competitors?

We take on all the work that our competitors no quote or refuse to do. The complexity of parts that flow through this shop is like no other place. We believe there is no other company that can produce the complexity level of parts that we make in the time frames we are given by our customers.

Customer satisfaction is maintained through effectively applying the quality system. Continued training and process review enable R & S Machining to meet customers’ ever-changing requirements. 

What is your favorite project you have had come through the shop?

We manufacture Inlet Ducts for a variety of Fighter Jets. The complexity of these parts is unmatched and the creativity in programming the parts in the CAM system has to be at its peak. Some of these parts require programs of 600+ toolpaths with a majority of them being full 5axis simultaneous paths. Then, when you get to see the machine throwing a 1,100 pound block around like it’s nothing at 2000 IPM in full 5axis simultaneous motion, it’s pretty humbling.

Photo Courtesy of: R & S Machining

What is your connection with the Missouri SkillsUSA Competition?

SkillsUSA is a nonprofit national education association that serves middle school, high school, and college/postsecondary students preparing for careers in trade, technical, and skilled service (including health) occupations. SkillsUSA’s mission is to empower its members to become world class workers, leaders, and responsible American citizens. It emphasizes total quality at work—high ethical standards, superior work skills, lifelong education, and pride in the dignity of work.

Over the past 4 years, we have had many of our employees participate and win in the competition. We have had 5 employees win the district championship, 5 employees win the state championship, and 3 employees win the national championship.

Photo Courtesy of: R & S Machining

Why is high quality tool performance important to you?

We rely on high quality tool performance to meet the tolerancing demands of our customers. Our tolerances range from hole tolerances of +.002″/-.001″, thickness tolerances of +-.01″, profile tolerances of .03″, critical hole tolerances of +-.0002″, and critical hole true position tolerances of .007″. We also rely heavily on lights-out run time overnight, so having a high quality tool that you know is still going to be cutting effectively in the morning and throughout the night is critical to our operation.

We had a 50+ quantity stainless steel job that we were only getting 2-3 parts per tool using tools from a different manufacturer. We changed our tool to a Helical endmill and left everything else the same and made over 30 parts before having to change out the tool.

Photo Courtesy of: R & S Machining

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

There are tons of cool and flashy things out there, but you can not skip the fundamentals. They are the building block to your entire career and they are the concepts you will use every single day. Use the technology to further your skills, not the basis of your skills. At the end of the day, you always have to know feeds and speeds, depth of cuts, work holding, and what you can get away with.

Is there anything else you would like to share with the In The Loupe community?

Helical tooling is unmatched in the HEM hard metal category. These tools have changed the way we manufacture parts and give us the confidence we need to accomplish our high precision and complex parts.

If you want to see what is next for R & S Machining or reach out and ask them some questions, you can follow them on Instagram @randsmachine.

Workshops for Warriors – Featured Customer

Featured Image Courtesy of Workshops for Warriors

In 2008, Hernán Luis y Prado, a United States Navy officer, noticed his fellow service members looking for a successful path in life after service. Hernán decided he needed to make a change. He set out to make a difference for his fellow service members by starting Workshops for Warriors, a state-licensed, board governed, fully audited, nonprofit school. Its mission is to provide quality training, accredited educational programs, and opportunities for its students to earn third-party nationally recognized credentials to enable Veterans, transitioning service members, and others to be successfully trained and placed in their chosen advanced manufacturing career field.

We had the honor of speaking with Marine Veteran Scott Leoncini, an instructor at Workshops for Warriors, about the accomplishments and amazing work Workshops for Warriors does for our Veterans.

What Does Workshops for Warriors Offer for Our Veterans?

Workshops for Warriors offers two primary tracks of training, both taught by Veterans: welding and machining, Scott explained. After choosing a track, students become a part of the 16-week accelerated program. Those with only a minimum of four months and one nationally-recognized certification can walk across the shipyards and gain employment. Workshops for Warriors remains committed to providing free training to Veterans who do not have access to living-wage jobs. U.S. Veterans often face challenges as they transition to civilian life, including significant barriers to civilian employment. In addition to the hard technical skills, our students are also learning soft skills such as attitude, communication, work ethic, teamwork, time management, problem-solving, critical thinking, and conflict resolution.

A proven path into a rewarding career can eliminate problems like unemployment, homelessness, broken families, and suicide. The problem of Veteran unemployment does not have easy, short-term solutions. Workshops for Warriors is uniquely positioned to expand proven innovative techniques to give Veterans marketable employment that will allow them to build careers and families. 

How Did You Find Workshops for Warriors and Become an Instructor?

After I left the Marines in 2009, after serving two tours in Iraq as a combat engineer, I desired an action-packed career. I thought my best option was to start a career in law enforcement. I got a job at a security company and worked there for a few years. During this time, a close friend of mine tragically passed away in a helicopter crash, leaving behind his pregnant wife. This made me reevaluate my current life with my wife and two children. I decided I didn’t need that action-packed career, and that my family comes before anything.

Another friend of mine actually told me about Workshops for Warriors and how it was giving him career skills in welding, and he talked about a machining program. When I showed up, I had no idea what was in store for me. I started learning all about CNC machines, and how to program and run these things. It was eye-opening and I was having a great time. After my first semester, I was asked to become a teacher’s assistant and I’ve been teaching here now for almost five years.

Where Does Your Passion for Teaching Come From?

I love teaching Veterans and helping them transition so they don’t have to go through the same five years I did of, “What am I going to do with my life?” I’ve gone through the same situation a lot of the people coming to us are currently in.

I think that there are three fundamentals that anyone looking for a career or path can apply to their lives and be successful. You have to show up on time, you have to work hard, and you have to be willing to learn. I didn’t know anything about machinery when I first got into this field. When I went through it as a student myself, I applied those three things to my work habits, and now I’m an instructor. I had pigeonholed myself for a long time. But you have to recognize that there’s always something else, something up next and that’s what I want to help teach the Veterans who come through here.

What Courses Does Workshops for Warriors Provide?

We offer many different courses, including CAD courses in Solidworks and CAM courses in Mastercam, and we offer welding courses for Gas Metal and Flux Cored Arc Welding. We also offer advanced training in Flowmaster Programming and Waterjet Operation, 3D Printing, and Robotics. With these courses, we offer many credentials to start a real career. The machining program is accredited by the National Institute for Metalworking Skills (NIMS). NIMS is recognized by the United States Department of Education. The welding program is accredited by the American Welding Society (AWS), which is the worldwide leader in certification programs for the welding industry.

Thanks to private donors, Veterans and transitioning service members are able to become trained and certified in our advanced manufacturing programs. Students can apply to enter one of our programs, or take specific classes that meet their needs.

What Jobs Have You Seen Veterans Acquire After Workshops for Warriors?

We have seen many success stories from Veterans once they leave Workshops for Warriors. One Veteran, in particular, visited us in search of direction in 2019. The machining program had one spot left for the semester, so he took it. He is now certified in machining and welding. He entered a job market that was struggling after his graduation. But he still had a job lined up with 5th Axis Machining in San Diego. His future plans are to own his own business to support his family.

How Could People Help Support Workshops for Warriors?

They can donate directly to us on our website, or on our Facebook page. Or, people looking to help support us can reach out to us by email, [email protected], or by calling us at 619-550-1620, with any questions. We also accept equipment donations for each program, welding, and machining. You can also support us by following on Facebook, Instagram, Twitter, LinkedIn, YouTube, or our newsletter.

What Advice Would you Give to Anyone Looking to Start a Career Path?

After leaving the service, I fell into a depression. I kept thinking, “I’ll never be as good as I was back then.” It was hard to not have “Marine” be the primary part of my identity, so I became blinded by my obsession with still being the superhero kicking down doors. Don’t paint yourself into a corner. Be flexible and make sure to show up on time, work hard, and be willing to have an open mind and ready to learn. Test your comfort zone. When I left the service, I only knew how to be the man with the gun. Workshops for Warriors gave me a chance to be more than that – it gave me a direction in life. I now get to do what I love and help my fellow Veterans.

To learn more about Workshops for Warriors and their mission you can visit their website or follow them on Instagram, Facebook, LinkedIn or Twitter.

Heavy Duty Racing – Featured Customer

Featured Image Courtesy of Pete Payne, Heavy Duty Racing

Heavy Duty Racing is a manufacturing company based in Stafford, VA, that specializes in motocross, off-road motorcycle suspension, and 2-stroke engine modification. Its owner, Pete Payne, grew up racing motorcycles. Later in life, he even taught classes on how to race. Simply, Motocross and motorcycles became Pete’s passion.

Pete always looked for ways to enhance his motorcycle’s engine, but quickly realized that no shops in his area could design what he was looking for. To get access to the parts he would need, he would have to rely upon companies from far away, and would oftentimes be forced to wait more than three weeks for them to arrive. Because of this, Pete decided he would need to take part manufacturing into his own hands. He purchased a manual lathe, allowing him to make modifications to his two-stroke engines exactly how he wanted them. Quickly thereafter, Heavy Duty Racing was born.

Pete discussed with us his love of racing, how he first got into machining, the parts his shop has designed, and tips and tricks for new machinists.

Pete Payne Heavy Duty Racing
Photo Courtesy of: Pete Payne, Heavy Duty Racing

How did you get started in machining?

Since I was a kid I have been riding motorcycles and racing motocross. I went to a tech school in the ’80s and learned diesel technologies. When I realized nobody in this area could help design the engines I wanted to make, I decided I needed to learn how to do it myself. I have a friend, George, who is a retired mold and die maker that also worked on motorcycle engines, I asked him for some advice on how to get started. George ended up teaching me all about machining and working on engines. I really learned from failures, by trying new things, and doing it every day. I started Heavy Duty Racing in 1997 and we have been modifying and designing the highest performing engines since then.

turning motorcycle part on lathe
Photo Courtesy of: Pete Payne, Heavy Duty Racing

What machines and softwares are you using in your shop?

We currently have a Thormach PCNC 1100 and a Daluth Puma CNC Lathe (we call it The Beast, it’s angry and grumpy but it gets the job done). We also have a Bridgeport Mill, Manual Lathe, and a Tiggwell. When we were choosing software to use, they had to be easy and quick to learn. We weighed our options and decided to use Autodesk Fusion 360 about 5 years ago. We mostly machine cast iron and steel since most engines are made from those materials.

What sets Heavy Duty Racing apart from competitions?

We have a small hands-on approach and treat every part with care. We don’t have a cookie-cutter process so we are very flexible when it comes to customer needs. Since each part is different, we don’t have set prices and have custom quoting on each part. We value our customers and tailor every build to the rider, based on the weight, fuel, and skill level of the rider. We make unique components for each rider so they can have the best experience when they hop on their bike. We are just focused on letting people do what they love.

metal racing parts made by Heavy Duty Racing
Photo Courtesy of: Pete Payne, Heavy Duty Racing

What is the coolest project you have worked on?

In 2016, MX Tech Suspension in Illinois gave us the opportunity to build an engine for them to display at their event. We got to go to California to watch them demo the engine in front of thousands of people. It was very nerve-racking to watch it live but the experience was amazing. The engine was later featured on the cover of Motocross Action magazine. It was very cool to see something we dedicated so much hard time toward get that much recognition.

Why is high quality tooling important to you?

We are making really difficult machine parts so we need tools that can last. Micro 100 tooling lasts and does the job. The thread mills we use are 3-4 mm and 14 mm and they last longer than any competition out there. The thread mills do not chip like the competition and the carbide is super strong. Breaking a tool is not cheap, so to keep one tool in the machine for how long we have has really saved me in the long run. We found Micro 100 one day looking through our distributor’s catalog and decided to try some of their boring bars. After about 5 holes, we realized that these tools are the best we have ever used! Micro has had everything I’ve been looking for in stock and ready to ship, so we have yet to need to try out their custom tools.

Most engine tolerances are no more than .0005” taper. You need the tooling to hold tight tolerances, especially in engines. Just like with tooling, minimizing vibration is key to getting the engine to last longer. We need tight tolerances to maintain high quality and keep engines alive.

machined metal racing part
Photo Courtesy of: Pete Payne, Heavy Duty Racing

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

The same advice I’ve given to my son: Don’t be ashamed to start from the bottom and learn from the ground, up. Everybody wants to make cool projects, but you need to learn what is going on around you to master the craft. Learn the processes and follow the steps. It’s very easy to break a tool, ruin a part, or even hurt yourself. Don’t be scared of quality tools! Buying the cheap stuff will help you with one job, but the quality tools last and will save you in multiple situations.

Follow Heavy Duty Racing on Instagram, and go check out their website to see more about them!

Rennscot LLC – Featured Customer

Featured Image Courtesy of David Bamforth, Rennscot LLC

David Bamforth is the founder and CEO of Rennscot LLC, a manufacturing company based out of Woburn, Massachusetts, which was created to meet product design demands of both individual and commercial clients. From idea to prototype, and eventually to final product, Rennscot LLC prides itself on its ability to make part ideas come to life. David took some time to talk with us about Rennscot LLC, his company’s machining capabilities, and much more.

Assortment of end mills and tool holders at Rennscott LLC
Photo Courtesy of: David Bamforth, Rennscot LLC

What capabilities does your shop have?

We are mostly a mill shop with two verticals and one 5-axis machine. We also have a small bar fed lathe, a larger sub-spindle live-tooling lathe, and some design tools like a Faro Design Scan Arm. We work predominantly with aluminum, but sometimes see brass, stainless, titanium, and steel alloy jobs come through. We use Fusion 360 for everything and currently all 4 of our machines are Haas.

What sets Rennscot LLC apart from the competition?

We are a bit different from most shops because, in addition to machining services, we also offer design services. A lot of our jobs are won because we are a one-stop-shop from idea to producing the final product. Recently we have been making a lot of parts for vehicle restoration. Typically, we are just handed a part and asked to reproduce it.

What is your favorite part of the job?

Problem solving and learning new skills. We are a pretty young team and love being challenged by new projects. We also pride ourselves on being pretty innovative with our machining strategies to help reduce lead times and cost for our customers.

cnc machined metal part from Rennscot LLC
Photo Courtesy of: David Bamforth, Rennscot LLC

Where did your passion for automobiles come from?

Like many, I have always been passionate about cars. I have some great memories of going to car shows with my dad and watching any TV show with a car in it as a kid. Nowadays, I spend my personal time taking our shop development car, a Porsche Cayman, to the track.

What is the coolest product you have made?

We have had some pretty unusual characters bring us some really cool projects. Currently, we are working with a guy from Connecticut on laser scanning a model Mercedes C10 Le Mans car that we will CAD model, so a full-sized car body can be reproduced. It’s a really interesting project, trying to take a 1:43 car and blow it up to full size. Eventually, we will help design and manufacture many of the machined components on this car. Also, we once made a custom billet alternator mount in just 5 days for a 996 Porsche GT3 with a Chevy LS engine in it. We really enjoyed being part of that project and the V8 sounded amazing on track!

cnc machined metal part from Rennscot LLC
Photo Courtesy of: David Bamforth, Rennscot LLC

What is the most difficult product you have made?

We once worked on an enclosure for a handheld x-ray machine. The part was only about 1”x 1.25” x4” and only had .040” walls all around. The main pocket was machined with our go-to Helical ¼” reduced shank end mill. It also had #0-80 taps all along the top edge of the enclosure, making for a few broken taps! It was a pain to get dialed in but once the process was proved out it was really rewarding to get consistent good parts off the will.

Why is high quality tool performance important to you?

Once we started using high quality end mills, we immediately saw an improvement in tool life and surface finish. We also really enjoy using tools that are backed by a company that puts out so much information and resources to help its customers out.

When was a time that Harvey Tool or Helical products really came through and helped your business?

We have had several moments when we hit a wall while building a process for a new part, and Helical’s phone support helped us find the perfect tool for the process. The combination of great phone support, having such a vast array of product offerings, and all of the tools always being in stock has helped my business tremendously.

Rennscot LLC machine shop assortment of harvey tool and helical end mills
Photo Courtesy of: David Bamforth, Rennscot LLC

Are you guys using High Efficiency Milling (HEM) techniques to improve cycle times?

Always! All our mills are spec’ed with HSM and 12k RPM spindles, and we take full advantage of this with chip breaking roughers. Honestly, we are so young that we have only ever used HEM techniques, so I’m honestly just confused by companies that don’t use it. Not using HEM is like not driving a car on the highway because it’s too fast.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Machining is probably the most in demand and most satisfying industries that someone can get into now-a-days. There are a lot of companies that are in demand for green machinists who are just eager to learn. I would recommend putting together and sending out a resume to local shops that shows that you have the ability to take on projects and complete them.

If anyone is interested in learning more about what we do our manufacturing website, rennscotmfg.com is a great resource. Also, check us our on Instagram at @rennscot.

TOMI Engineering INC – Featured Customer

Featured Image Courtesy of TOMI Engineering

Since its beginning in 1977, brothers Tony and Mike Falbo have made the focal point of TOMI Engineering to deliver quality, competitively-priced parts on time. TOMI Engineering has earned a reputation through the years as being a world-class manufacturer of precision machined components and assemblies for aerospace, defense, commercial and other advanced technology industries. They are fortunate to have the highest level of engineering, quality and programming personnel on staff, and, with over 40 years in the industry, there isn’t a problem TOMI hasn’t experienced.

With all the years of experience, TOMI Engineering has a lot of knowledge to share. We had the pleasure of sitting down with Tony and Mike Falbo to ask them about their experiences, techniques, tooling and a lot more.

green machined part from Tomi Engineering INC
Photo Courtesy of: TOMI Engineering

How was TOMI Engineering INC started?

TOMI Engineering, Inc. began in 1977 when we (Tony and Mike) teamed up and got a loan from our father to purchase our first machine.  The machine was used in the garage of our parents’ home, which still resides in Tustin, California.  Forty years, 20 current machines, and countless parts later, TOMI Engineering proudly serves the defense, airline, medical and commercial industries.  We machine just about any type of product thrown our way.  Over the years, we have made wing tips for the F16 fighter jet, enclosures for GPS housings, manifolds that help transport fluids, support frames for Gulfstream, cabin brackets for Airbus, ammunition feeders for tanks, and many, many others.

At TOMI Engineering, we aim to be a one-stop shop for our customers.  Once we receive blueprints, we can program, machine, deburr, inspect, process and assemble most parts.  We utilize a mixture of 3-and-4-axis machines in order to increase efficiency, which helps us to cut down costs to our customer.  In our temperature-controlled assembly room, we can assemble bearings, bushings, rivets, nut plates, gaskets and sealants.  We also hope to add additive machining to our repertoire soon.

What machines are you currently using in your shop?

Our 21,250 square foot facility houses 20 CNC machines.  Most of our machines are Kitamura, OKK and Okuma.  The purchase dates of these machines range from 1987 to December of 2019.  With our large machine diversity, we can machine parts smaller than a penny, and as large as 30 x 60 inches. Most of the material that makes its way through our shop is aluminum.  Whether it is 6061 or aircraft grade 7000 series, we aim to have most of our parts be aluminum.  However, we do see a large amount of 6AL-4V titanium, along with 17-4 and 15-5 steel. We are currently utilizing Mastercam 2020 for most of our programming needs and are staying up to date with software upgrades and progression.

Tomi Engineering CNC mill
Photo Courtesy of: TOMI Engineering

What sets TOMI Engineering apart from the rest of the competition?

We believe our greatest asset is our experience.  Here at TOMI, we have been machining parts since 1977.  In those 40-plus years, a lot of parts have come and gone through our doors and we have helped our customers solve a large array of problems.  Most of our machinists have been with us for over 10 years, while some are approaching 20 years!  Our programmers easily boast over 60 years of experience! With so many of our employees working together for so many years, it has really helped everyone to understand what helps us quickly machine our products, while being held accountable to the high standards of AS9100. 

Where did your passion for machining start?

We grew up with machines in our garage and it wasn’t until we needed money to pay for college that our dad realized he could show us the basics of operating a milling machine, which allowed us to pay our tuition while working at home in the evenings and weekends. Machining was more of a necessity than a passion at the time. However, after nearly 40 years in the business, it has been amazing to see the strides in technology from a Bridgeport Mill to the multi-axis lights-out machining that is available today.

My favorite part of the job has always been the flexibility it has allowed me. I had the opportunity to watch my kids grow up and be a part of their lives by going to their school plays, coaching them, and being home at night to help them with anything they needed. Most importantly, I’ve had the opportunity to work with my brother, my business partner, who also shares the same ideals about being with family, so we could always cover for each while the other was gone and spending time with their family. The business would not have worked without both of us understanding the importance of each other’s input. The challenge of running a business keeps me going, and working with all of the different personalities was an added bonus.

machined part from Tomi Engineering
Photo Courtesy of: TOMI Engineering

Who is the most famous contact that you have worked on a project with? What is the most interesting product you’ve made?

At TOMI, we do not work with specific individuals, so we can’t really name drop.  However, a vast majority of our work is for Airbus, Boeing, or the military. So it’s pretty gratifying to say that we supply parts to some of the biggest companies in the world and that our work helps to defend this country.

The most interesting product we have made here at TOMI is a GPS housing for a defense contractor.  This part encompasses everything that we can do at TOMI: precision machining, complex/multi detail assemblies, gasket assembly, and pressure testing fluid transportation components. 

Why is high quality tool performance important to you?

High quality tool performance is important to us in many ways.  Purchasing high quality tools allow us to constantly achieve premium surface finishes, push our machines to the high speeds and feeds that they are capable of, and enjoy noticeably longer tool life.

Every part, day-in and day-out, is different.   Because of our vast array of products, our tools are always changing.  But when we are picking out Helical End Mills for Aluminum, we always go with their 3-flute variable helix cutters, and we have always been happy with them.

machined part from Tomi Engineering
Photo Courtesy of: TOMI Engineering

What sort of tolerances do you work in on a daily basis?

The tolerances we typically work with are ± tenths of an inch, as well as very tight true position cal louts. We can hold and achieve these close tolerance dimensions through our very experienced Mastercam programmers, as well as our superior quality department.  Our quality inspectors have over 30 years of experience in the industry and utilize two Zeiss Contura G2 coordinate measuring machines (CMMs).  While in their temperature controlled environment, the CMMs are capable of measuring close tolerance dimensions and are used to generate data for inspection reports.

Are you guys using High Efficiency Milling (HEM) techniques to improve cycle times? What advice do you have for others who want to try HEM?

Yes, we are using HEM techniques to improve cycle times while roughing to increase our MRR while increasing tool life. If you have CAM/CAD software that supports HEM, then go for it!  Machining Advisor Pro (MAP) is VERY helpful with the suggested speeds and feeds as a starting point.  Over time though, and through experience, we have learned that every single machine is a bit different and often needs a different approach with speeds and feeds.  Start with a smaller than suggested RDOC and physically go out to your machine and see how it sounds and what is going on.  Then, start increasing and find that sweet spot that your particular machine runs well on.  Many programmers in the industry will not take the time to go out and watch how their part is sounding and cutting on the machine and going out and doing that is the best way to really find out what you and the machine are capable of achieving.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Ask questions!  Don’t be afraid to talk to programmers and fellow coworkers about what is trying to be achieved and WHY the programmer is holding tolerances a certain way.  Learn from them and watch what every cutter is doing during your cycles.  The more you learn, the more you can contribute to the machining process and move up in your business.  Sometimes it takes just one good suggestion about the machining approach that can change the set-up process from aggravating to very easy.  Lastly, be open minded to new ideas and approaches.  As we said earlier, there are a ton of ways to make good parts in a constantly evolving industry.

Please take the time to check out the TOMI Engineering INC website or follow them on social media!

Save Time With Quick Change Tooling

Making a manual tool change on any CNC machine is never a timely or rewarding process. Typically, a tool change in a standard holder can take up to 5 minutes. Add that up a few times, and suddenly you have added significant minutes to your production time.

As CNC machine tool and cutting tool technology has advanced, there are more multi-functional tools available to help you avoid tool changes. However, sometimes it just isn’t feasible, and multiple tool changes are needed. Luckily, Micro 100 has developed a revolutionary new method to speed up tool changes significantly.

What is the Micro-Quik Tooling System?

Developed in Micro 100’s world-class grinding facility in Meridian, Idaho, the Micro 100 Micro-Quik tooling system is held to the same standards and tight tolerances as all of the Micro 100 carbide tooling.

The quick change tooling system allows for highly repeatable tool changes that save countless hours without sacrificing performance. This system combines a unique tool holder with a unique tool design to deliver highly repeatable and accurate results.

Each quick change tool holder features a locating/locking set screw to secure the tool and a locating pin which helps align the tool for repeatability. Removing a tool is as simple as loosening the set screw and inserting its replacement.

removing tool from quick change system

During tool changes, the precision ground bevel on the rear of the tool aligns with a locating pin inside the tool holder. The distance from this locational point to the tip of the tool is highly controlled under tight tolerances, meaning that the Micro-Quik tooling system ensures a very high degree of tool length and centerline repeatability. The “L4” dimension on all of our quick change tools, as seen in the image above, remains consistent across the entire product line. Check out the video below for a demonstration of the Micro 100 Micro-Quik system in action!

Quick Change Tooling Benefits

quick change system with micro 100 boring bar

The most obvious benefit to using Micro 100’s Micro-Quik Quick Change Tooling System is the time savings that come with easier tool changes. By using the quick change holders in combination with quick change tooling, it is easy to reduce tool changes from 5 minutes to under 30 seconds, resulting in a 90% decrease in time spent swapping out tools. This is a significant benefit to the system, but there are benefits once the tool is in the machine as well.

As mentioned above, the distance from the locational point on each tool shank to the tip of the tool is highly controlled, meaning that regardless of which type of tool you insert into the holder, your stick out will remain the same. This allows you to have confidence in the tooling and does not require additional touch offs, which is another major time saver.

assortment of boring bars with quick change system

By removing additional touch-offs and tool changes from your workflow, you also reduce the chances for human or machine error. Improper touch-offs or tool change errors can cause costly machine crashes and result in serious repairs and downtime. With the Micro 100 Micro-Quik Quick Change Tooling System, initial setups become much easier, allowing you to hit the cycle start button with total confidence for each run.

By making a few simple changes to your tool holding configurations and adopting the Micro-Quik system, your shop can save thousands in time saved, with less machine downtime and increased part production. To learn more about the Micro 100 Micro-Quik cutting tools and tool holders, please visit Micro 100.

5 Things to Know About Helical’s High Feed End Mills

Helical Solutions‘ High Feed End Mills provide many opportunities for machinists, and feature a special end profile to increase machining efficiencies. A High Feed End Mill is a High Efficiency Milling (HEM) style tool with specialized end geometry that utilizes chip thinning, allowing for drastically increased feed rates in certain applications. While standard end mills have square, corner radius, or ball profiles, this Helical tool has a specialized, very specific design that takes advantage of chip thinning, resulting in a tool that can be pushed harder than a traditional end mill.

Below are 5 things that all machinists should know about this exciting Helical Solutions product offering.

1. They excel in applications with light axial depths of cut

A High Feed End Mill is designed to take a large radial depth of cut (65% to 100% of the cutter diameter) with a small axial depth of cut (2.5% to 5% diameter) depending on the application. This makes them perfect for face milling, roughing, slotting, deep pocketing, and 3D milling. Where HEM toolpaths involve light radial depths of cut and heavy axial depths of cut, these utilize high radial depths of cut and smaller axial depths of cut.

2. This tool reduces radial cutting forces

The end profile of this tool is designed to direct cutting forces upward along the axis of the tool and into the spindle. This reduces radial cutting forces which cause deflection, allowing for longer reach tools while reducing chatter and other issues that may otherwise lead to tool failure. The reduction of radial cutting forces makes this tool excellent for use in machines with lower horsepower, and in thin wall machining applications.

3. High Feed End Mills are rigid tools

The design and short length of cut of these end mills work in tandem with the end geometry to produce a tool with a strong core, further limiting deflection and allowing for tools with greater reach lengths.

Push Harder in HEM With Helical Solutions’ High Feed End Mills

4. They can reduce cycle times

In high RDOC, low ADOC applications, these tools can be pushed significantly faster than traditional end mills, saving time and money over the life of the tool.

5. High Feed End Mills are well suited for hard materials

The rigidity and strength of High Feed End Mills make them excellent in challenging to machine materials. Helical’s High Feed End Mills come coated with Tplus coating, which offers high hardness and extended tool life in high temp alloys and ferrous materials up to 45Rc.

In summary, these tools with specialized end geometry that utilizes chip thinning and light axial depths of cut to allow for significantly increased feed rates in face milling, slotting, roughing, deep pocket milling, and 3D milling applications. The end profile of a High Feed End Mill applies cutting forces back up into the spindle, reducing radial forces that lead to deflection in long reach applications. Combining this end geometry with a stubby length of cut results in a tool that is incredibly rigid and well suited for harder, difficult to machine materials.

Machining Advisor Pro Updated With New Improvements

Harvey Performance Company is excited to announce that Machining Advisor Pro, a cutting edge resource for generating custom CNC running parameters, has been updated with new features and improvements with the release of version 1.5.

Thousands of users have enjoyed the benefits of using Machining Advisor Pro (MAP) to dial in their running parameters for their Helical Solutions high-performance end mills, and with version 1.5, the Harvey Performance Company team has made customizing your speeds and feeds easier than ever. Much of the work done on MAP version 1.5 was the direct result of excellent user feedback, including some of the most innovative updates to the user experience since the launch of Machining Advisor Pro in 2018.

The new improvements to MAP include:

Improved Speed and Feed Sliders (Desktop)

The speed and feed sliders in the “Recommendations” section are now percentage-based. This allows users to more precisely adjust their running parameters while fine-tuning numbers for increased production or longer tool life. Previously, users could adjust their speed and feed values with dials, but without an exact measurement of the increase or decrease. With the new sliders, users can be more accurate, adjusting their speed and feed values by +/- 20% in one percent increments. Users can also type in percentage values to automatically adjust the sliders to their desired number.

machining advisor pro

Locking Depths of Cut

Inside of the “Parameters” section, users will now see a new button that allows them to lock their depths of cut. With this new feature, users have more control over the customization of their running parameters. In the past, the radial and axial depths of cut would adjust dynamically with each other based on the user adjustments to one of the values. Now users can lock the radial depth of cut (RDOC) and adjust the axial depth of cut (ADOC) without affecting the RDOC value, and vice versa.

Machining Advisor Pro Update

Enhanced Summary Section (Mobile)

On mobile devices, users will now see an enhanced “Summary” section at the completion of their job. The summary section will now include key metrics like material removal rate (MRR), as well as important parameters that apply to trochoidal slotting toolpaths. The summary section for chamfering toolpaths has also been updated to better reflect the necessary parameters for those tools.

Machining Advisor Pro Mobile

Smoother User Experience

In MAP version 1.5, users will be greeted with a much smoother user experience throughout the application. Due largely to user feedback, the Harvey Performance Company team has been hard at work to make sure that the major pain points within the application have been addressed. Much of the feedback centered around the “Tooling” section and the “Material” section and significant improvements have been made to each.

In the tooling section, MAP will now automatically select a tool for you if you enter a valid EDP once you navigate outside of that section. If an invalid EDP number is entered, the intrusive error message has been removed and now will display “no results found” in the drop-down menu.

In the material section, MAP requires that a material condition be selected in order to generate accurate running parameters. In the past, this was not immediately clear and could lead some users to believe that the application was malfunctioning. In version 1.5, once a user leaves the material section without selecting a condition, a message will display in the material section to alert users of the missing material condition.

Open in MAP from HelicalTool.com

On the new HelicalTool.com website, users can now import a tool into MAP from the Tool Details page. Users reach the Tool Details page by clicking on a SKU in a product table, or searching for an EDP in the search bar. Once on the Tool Details page, users can select “Open in Machining Advisor Pro” under the Resources section, and MAP will open in a new window and import the tool’s information directly into MAP.

Users will see these updates immediately upon their next log-in to the application on a desktop computer and will need to ensure their app is updated to the latest version from the App Store or Google Play to see these changes reflected on mobile.

To get started with Machining Advisor Pro, click here to create an account.

To stay up-to-date on all of the latest improvements and news on Machining Advisor Pro and the Harvey Performance Company brands, join our email list.

If you have any feedback or questions about MAP, please contact Harvey Performance Company at [email protected].