Posts

An Introduction to Reamers & CNC Reaming

Most machinists are familiar with CNC drilling, but did you know that the common practice for holemaking is to always use a reamer? When done correctly, reaming can be a fast and highly accurate operation that results in precision holes.

Critical Reamer Geometries

reamers

By examining a Harvey Tool Miniature Reamer and its critical dimensions, we can better understand the functionality of this useful tool. In the above image of a straight flute reamer, D1 references the reamer diameter, the specific size intended for your hole; and D2 points to the shank diameter. At Harvey Tool, reamer shanks are oversized to help maintain tool strength, stiffness, and accuracy. Shanks also have an h6 tolerance, which is crucial for high precision tool holders, such as heat shrink collets. Other critical dimensions of a reamer include its overall length (L1), margin length (L2), overall reach (L3), and chamfer length (L4).

Harvey Tool also offers Miniature Reamers – Right Hand Spiral. This tool is designed to leave a superior part finish and help with chip evacuation in blind hole applications.

The Functions of Miniature Reamers

Reamers Provide Precision – As mentioned earlier, reamers are great for machining precision hole diameters. To use a reamer properly, you must first have a pre-drilled hole that’s between 90% and 94% of the final hole diameter. For example, if you need a finished a hole of .220″, your predrilled hole should be somewhere between .1980″ and .2068″. This allows the tool to take enough material off to leave a great finish, but does not overwork it, potentially causing damage. The tolerance for uncoated reamers is +.0000″/-.0002″, while the tolerance for AlTiN coating is +.0002″/-.0000″. These tolerances provide you the peace of mind of knowing that your hole will meet exact specifications.

Achieve a Quality CNC Finish – When a high surface finish is required of a hole, reamers should always be used to reach the desired tolerance. Both the pre-drilled hole and the tool’s margin help to keep the reamer centered while cutting, leading to a better finish.

Minimize Machining Production Runs – For machine shops, consistency is a priority. This is especially true in production runs. The last thing a machinist wants to see is an oversized hole on a part they have already preformed many operations on. Remember, reamers have the benefit of offering consistent hole size, preventing an out of tolerance finish. These consistent holes lead to valuable time savings and reduced scrap costs.

CNC Machining Exotic Alloys: When machining Inconel, titanium, and other high-cost materials, reaming your hole is important to ensure that the desired finish specification is met. With reamers, a machinists can better predict tool life, leading to a better finished product and less scrap ratios. It is important to note that Harvey Tool reamers are offered AlTiN coated and fully stocked in every .0005” increment from .0080” to .0640”.

Okluma – Featured Customer

Okluma is a small manufacturing business located in Oklahoma City focused primarily on creating high-quality flashlights that can stand up to the most extreme conditions. The company was founded in early 2015 out of owner Jeff Sapp’s garage, and has quickly gained a solid reputation as one of the best-built and most reliable flashlights on the market today.

We were able to steal a few moments of Jeff’s time to interview him for this Featured Customer post, where he shared his thoughts on topics like the importance of customer service, the reason to use higher quality tooling, and his transition into the world of CNC machining.

To get started, how did you first get involved in manufacturing?

In high school I actually worked in a machine shop. This is where I got my first exposure to big machines and manufacturing. I worked at the shop until I graduated, doing simple things like sweeping the floor and running errands. The work wasn’t very exciting, but it did give me some really good exposure to the world of machining. Every now and then one of the machinists would let me help out with a part, but that would be rare. I did manage to save up enough money to buy a small mill and lathe, which I took with me when I went off to college.

During college and after graduation, I made a living by writing software, which I did successfully for 15 years. Eventually I got tired of writing software after I had spent more than a decade in that space, and I wanted to try something new. I had picked up small jobs and worked on personal projects over the years, so I decided to enroll in a machine shop school in Oklahoma City to learn more about manufacturing and becoming a machinist, and graduated from there with a renewed sense of what I wanted to do. Technical schools are a great way to pick up new skills and advance your career. The manufacturing technology program at the Francis Tuttle Technology Center here in Oklahoma City was great and the instructors there, Dean and Julia, are talented and very patient people.

okluma

Did your background in writing software help you transition into CNC programming?

Absolutely. It was a tremendous help to understand some very strange programming concepts that came with writing software, and it all translated very well into CNC programming. These days, CNC machinists and programmers need to be as knowledgeable about the software and programs as they do the tools and parts, so having a background in software programming or development certainly translates well to the world of CNC machines.

Where did the idea to start Okluma stem from?

After graduation from the machine shop program, I took a few weeks off and went on a long, off-road motorcycle trip across the country. I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only there was no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry.

When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then 4, then 20. That was 4 years ago. Now I have my own business with one employee and two dogs, and we stay very busy.

okluma

What does your current product offering look like?

For our products, I currently have two flashlights models (the DC1 and DC2) and we are working on some cool new projects for 2019. With battery and LED technology advancing like it has, there are some interesting applications, way beyond just flashlights, that haven’t been possible until recently. Stay tuned for more information on those by following us on Instagram.

What do you think separates an Okluma flashlight from the competition?

The basic values behind Okluma all stem from me simply wanting a nice tool that won’t break easily and will be supported by the manufacturer. I offer a lifetime warranty and stand firmly behind that. I want an Okluma flashlight to last forever so you will never have to buy another flashlight.

The quality and hardiness of a flashlight is important to many outdoors types, homeowners, and collectors, but we also sell lots of our flashlights to the military and police. If their light goes out in a tough situation it could be really bad, so we have to make sure our flashlights can be dependable above all else. Like they always say, you get what you pay for. Our flashlights aren’t going to be the cheapest, but we stand behind them with our warranty and pride ourselves on the quality and reliability.

okluma

What sort of machines and software do you have in the shop?

Right now I have the old standards like a Bridgeport mill and an old LeBlond lathe, as well as my CNC machines – a Daewoo Lynx 220LC CNC Lathe and a Doosan DNM 4500 CNC Mill.

For software, I use Autodesk Fusion 360 for the mill, and I write the G-code by hand for the lathe. I was more familiar with the lathe, so I had an easier time writing my own code for it. Getting Fusion 360 for my milling has been a huge help.

Have you been using the Harvey Tool and Helical Solutions tool libraries in Fusion 360?

Yes! The tool library in Fusion 360 was a huge help for me. To be able to get the right tool and not model things incorrectly probably saved me a lot of broken tools. That was a big reason why I came to Harvey Tool and Helical for support in the first place.

It was cool to come from the software community, where we collaborated on a lot of open-source projects, and see companies like Autodesk opening up their software to manufacturers like Harvey Tool and Helical for these great partnerships.

What sort of operations/parts do you create on the lathe versus the mills?

As you can imagine (being a cylindrical shaped part) most of the flashlight manufacturing is done on the lathe. For a while I had been making them all by hand, until we got the CNC lathe. While most of the work is done on the lathe, for the more intense pieces we have to drill and tap and do some different slotting operations. We also drill and tap the clip holes for all of the flashlights, so the CNC mill is huge for those operations.

As Okluma started to grow, we realized that we had a huge bottleneck doing our secondary operations by hand on the manual milling machine. We solved that problem by buying the Doosan mill to help with secondary operations, but you still have to know how to use it to make it worth the purchase!

I was completely in the dark on the CNC milling side of things at that time, as I was much more familiar with the lathe. I actually called Harvey Tool with a few questions, and the Harvey Tech team really held my hand and walked me through all of the things I needed to know, which was huge. I also used the Machining Advisor Pro application to generate speeds and feeds for my Helical end mills. MAP helped save me a lot of broken end mills and increased my production times.

okluma

You are using almost exclusively Harvey Tool and Helical for milling operations on your Doosan VMC. Why is purchasing quality tooling important to you?

I can try to do things on my own and eventually get it, but it costs me money on broken tools and it costs me my time, which is even more valuable. I could go that route with any number of different tooling manufacturers, but the fact that I can call Harvey or Helical and get an answer to my questions the first time, usually in a few minutes, and know it will work is hugely helpful. I don’t really look at the cost of the tools so much, because I just know they work and I know I will get the support I need to make my milling operations a success.

Can you remember a crucial moment when Harvey Tool or Helical technical support helped you to be more productive?

As we try to get more creative with our designs, we plan to rely heavily on Harvey and Helical to explore some of these new applications. We actually build our own tool to work on the flashlights, and we are using Harvey and Helical exclusively to machine that. At first, I was making the tools in two operations; I was doing a radius on top and then flipping the part over to create a radius on the bottom. I was having a hard time lining it up. We moved the second radius on the first operation, and used an undercutting tool and everything matched up perfect. I wasn’t really sure how to do it, but I called you guys and you figured it out with me! We have some cool projects coming up which we are planning to rely on Helical tools for, but people will have to stay tuned for that one!

okluma

What have been some of your keys to success for your growing sales?

Good customer service is key. We are one of the few companies that will offer a lifetime warranty. I know there are a lot of flashlight collectors, and we can make fun stuff for those guys, but I want people to really use our flashlights and scratch them and do ridiculous things with them. We have had people use a flashlights in crazy ways (like as a hammer) but we will still fix them under our lifetime warranty. I don’t really care what people do to our flashlights, I just want them to always work.

We can also overnight replacement flashlights for professionals who rely on them for work, so they never have to be without one. That is huge for our customers in the military or in law enforcement who rely on our flashlights as an essential tool in their day-to-day lives.

Do you have plans to expand into retailers, either online or brick and mortar stores?

We only sell direct to consumers right now through our website so that we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.

I’ve noticed that you have gathered a rather large social media following. How has social media helped shape your business?

A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business. We have also had a lot of success collaborating with others in the EDC (Every Day Carry) community where makers are creating knives, wallets, keychains; anything you would carry on you “every day”, hence the name. We have collaborated to make flashlights out of other people’s materials, let other shops refinish our flashlights, and things of that nature. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.

I think social media is especially great for manufacturing because a lot of younger people don’t even know all this crazy cool stuff that is going on in the industry. I was lucky enough to see it first hand at a young age, but so many others never get the chance. It is awesome to share our work and try to inspire some of the younger generation to make their own products and participate in the world of manufacturing.

okluma


 Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Drill / End Mills: Drill Style vs. Mill Style

Drill / End Mills are one of the most versatile tools in a machinist’s arsenal. These tools can perform a number of different operations, freeing space on your carousel and improving cycle times by limiting the need for tool changes. These operations include:

  1. Drilling
  2. V-Grooving
  3. Milling
  4. Spot Drilling
  5. Chamfering

The ability of the Drill / End Mill to cut along the angled tip as well as the outer diameter gives it the range of operations seen above and makes it an excellent multi-functional tool.

drill mill operations

Drill Style vs. Mill Style

The main difference between Drill / End Mill styles is the point geometry.  They are defined by how the flutes are designed on the end of the tool, using geometry typically seen on either an end mill or a drill.  While mill style tools follow the features of an end mill or chamfer mill, the drill style geometry uses an S-gash at the tip.  This lends strength to the tip of the tool, while giving it the ability to efficiently and accurately penetrate material axially.  While both styles are capable of OD milling, mill style tools will be better for chamfering operations, while drill style will excel in drilling.  The additional option of the Harvey Tool spiral tipped Drill / End Mill is an unprecedented design in the industry.  This tool combines end geometry taken from our helical flute chamfer cutters with a variable helix on the OD for enhanced performance. Versatility without sacrificing finish and optimal performance is the result.

drill mills

Left to Right: 2 Flute Drill Style End, 2 Flute Mill Style End, 4 Flute Mill Style End

Drill Mills: Tool Offering

Harvey Tool currently offers Drill / End Mills in a variety of styles that can perform in different combinations of machining applications:

Mill Style – 2 Flute

This tool is designed for chamfering, milling, drilling non-ferrous materials, and light duty spotting. Drilling and spotting operations are recommended only for tools with an included angle greater than 60°. This is a general rule for all drill mills with a 60° point. Harvey Tool stocks five different angles of 2 flute mill-style Drill / End Mills, which include 60°, 82°, 90°, 100° and 120°. They are offered with an AlTiN coating on all sizes as well as a TiB2 coating for cutting aluminum with a 60° and 90° angle.

drill mill

Mill Style – 4 Flute

4 flute mill-style Drill / End Mills have two flutes that come to center and two flutes that are cut back. This Drill / End Mill is designed for the same operations as the 2 flute style, but has a larger core in addition the higher flute count. The larger core gives the tool more strength and allows it to machine a harder range of materials. The additional flutes create more points of contact when machining, leading to better surface finish. AlTiN coating is offered on all 5 available angles (60°, 82°, 90°, 100°, and 120°) of this tool for great performance in a wide array of ferrous materials.

drill mill

Drill Style – 2 Flute

This tool is specifically designed for the combination of milling, drilling, spotting and light duty chamfering applications in ferrous and non-ferrous materials. This line is offered with a 90°, 120°, and 140° included angle as well as AlTiN coating.

drill mills drill style

Helical Tip – 4 Flute

The Helically Tipped Drill / End Mill offers superior performance in chamfering, milling and light duty spotting operations. The spiral tip design allows for exceptional chip evacuation and surface finish. This combined with an OD variable helix design to reduce chatter and harmonics makes this a valuable tool in any machine shop. It is offered in 60°, 90°, and 120° included angles and comes standard with the latest generation AlTiN Nano coating that offers superior hardness and heat resistance.

 

Selecting the Right Harvey Tool Miniature Drill

Among Harvey Tool’s expansive holemaking solutions product offering are several different types of miniature tooling options and their complements. Options range from Miniature Spotting Drills to Miniature High Performance Drills – Deep Hole – Coolant Through. But which tools are appropriate for the hole you aim to leave in your part? Which tool might your current carousel be missing, leaving efficiency and performance behind? Understanding how to properly fill your tool repertoire for your desired holemaking result is the first step toward achieving success.

Pre-Drilling Considerations

Miniature Spotting Drills

Depending on the depth of your desired machined hole and its tolerance mandates, as well as the surface of the machine you will be drilling, opting first for a Miniature Spotting Drill might be beneficial. This tool pinpoints the exact location of a hole to prevent common deep-hole drilling mishaps such as walking, or straying from a desired path. It can also help to promote accuracy in instances where there is an uneven part surface for first contact. Some machinists even use Spotting Drills to leave a chamfer on the top of a pre-drilled hole. For extremely irregular surfaces, however, such as the side of a cylinder or an inclined plane, a Flat Bottom Drill or Flat Bottom Counterbore may be needed to lessen these irregularities prior to the drilling process.

spotting drill

Tech Tip: When spotting a hole, the spot angle should be equal to or wider than the angle of your chosen miniature drill. Simply, the miniature drill tip should contact the part before its flute face does.

spotting drill correct angle

Selecting the Right Miniature Drill

Harvey Tool stocks several different types of miniature drills, but which option is right for you, and how does each drill differ in geometry?

Miniature Drills

Harvey Tool Miniature Drills are popular for machinists seeking flexibility and versatility with their holemaking operation. Because this line of tooling is offered uncoated in sizes as small as .002” in diameter, machinists no longer need to compromise on precision to reach very micro sizes. Also, this line of tooling is designed for use in several different materials where specificity is not required.

miniature drill

Miniature High Performance Drills – Deep Hole – Coolant Through

For situations in which chip evacuation may be difficult due to the drill depth, Harvey Tool’s Deep Hole – Coolant Through Miniature Drills might be your best option. The coolant delivery from the drill tip will help to flush chips from within a hole, and prevent heeling on the hole’s sides, even at depths up to 20 multiples of the drill diameter.

miniature drill coolant through

Miniature High Performance Drills – Flat Bottom

Choose Miniature High Performance Flat Bottom Drills when drilling on inclined and rounded surfaces, or when aiming to leave a flat bottom on your hole. Also, when drilling intersecting holes, half holes, shoulders, or thin plates, its flat bottom tool geometry helps to promote accuracy and a clean finish.

flat bottom drill

Miniature High Performance Drills – Aluminum Alloys

The line of High Performance Drills for Aluminum Alloys feature TiB2 coating, which has an extremely low affinity to Aluminum and thus will fend off built-up edge. Its special 3 flute design allows for maximum chip flow, hole accuracy, finish, and elevated speeds and feeds parameters in this easy-to-machine material.

drill for aluminum

 

Miniature High Performance Drills – Hardened Steels

Miniature High Performance Drills – Hardened Steels features a specialized flute shape for improved chip evacuation and maximum rigidity. Additionally, each drill is coated in AlTiN Nano coating for hardness, and heat resistance in materials 48 Rc to 68 Rc.

drill for hardened steel

Miniature High Performance Drills – Prehardened Steels

As temperatures rise during machining, the AlTiN coating featured on Harvey Tool’s Miniature High Performance Drills – Prehardened Steels creates an aluminum oxide layer which helps to reduce thermal conductivity of the tool and helps to promote heat transfer to the chip, as well as improve lubricity and heat resistance in ferrous materials.

drill for prehardened steel

Post-Drilling Considerations

Miniature Reamers

For many operations, drilling the actual hole is only the beginning of the job. Some parts may require an ultra-tight tolerance, for which a Miniature Reamer (tolerances of +.0000″/-.0002″ for uncoated and +.0002″/-.0000″ for AlTiN Coated) can be used to bring a hole to size. miniature reamer

Tech Tip: In order to maintain appropriate stock removal amounts based on the reamer size, a hole should be pre-drilled at a diameter that is 90-94 percent of the finished reamed hole diameter.

Flat Bottom Counterbores

Other operations may require a hole with a flat bottom to allow for a superior connection with another part. Flat Bottom Counterbores leave a flat profile and straighten misaligned holes. For more information on why to use a Flat Bottom Counterbore, read 10 Reasons to Use Flat Bottom Tools.

flat bottom counterbores

Key Next Steps

Now that you’re familiar with miniature drills and complementary holemaking tooling, you must now learn key ways to go about the job. Understanding the importance of pecking cycles, and using the correct approach, is vital for both the life of your tool and the end result on your part. Read this post’s complement “Choosing the Right Pecking Cycle Approach,” for more information on the approach that’s best for your application.

Choosing The Right Pecking Cycle Approach

Utilizing a proper pecking cycle strategy when drilling is important to both the life of your tool and its performance in your part. Recommended pecking cycles vary depending on the drill being used, the material you’re machining, and your desired final product.

What are Pecking Cycles?

Rather than drill to full drill depth in one single plunge, pecking cycles involve several passes – a little at a time. Pecking aids the chip evacuation process, helps support tool accuracy while minimizing walking, prevents chip packing and breakage, and results in a better all around final part.

Recommended Pecking Cycles / Steps

Miniature Drills

miniature drill pecking cycles

High Performance Drills – Flat Bottom

pecking cycles

High Performance Drills – Aluminum & Aluminum Alloys

aluminum pecking cycles

Note: For hole depths 12x or greater, a pilot hole of up to 1.5X Diameter is recommended.

High Performance Drills – Hardened Steels

hardened steels pecking cycles
High Performance Drills – Prehardened Steels

prehardened steels pecking cycles

Key Pecking Cycle Takeaways

From the above tables, it’s easy to identify how recommended pecking cycles change based on the properties of the material being machined. Unsurprisingly, the harder the material is, the shorter the recommended pecking depths are. As always, miniature drills with a diameter of less than .010″ are extremely fragile and require special precautions to avoid immediate failure. For help with your specific job, contact the Harvey Tool Technical Team at 800-645-5609 or [email protected]

10 Reasons to Use Flat Bottom Tools

Flat bottom tools, or tools with flat bottom geometry, are useful in a variety of a situations and operations that tools with typical cutting geometry are not. The standard characteristics of drills or end mills are useful for their primary functions, but make them unsuitable for certain purposes. When used correctly, the following flat bottom tools can make the difference between botched jobs and perfect parts.

Flat Bottom Drills

Flat Bottom Drill

Flat bottom drills are perfect for tricky drilling situations or for creating flat bottom holes without secondary finishing passes. Consider using these specialized drills for the operations below.

 

Flat Bottom Drill Operations

Thin Plate Drilling

When drilling through holes in thin plates, pointed drills are likely to push some material out the exit hole and create underside burrs. Flat bottom drills are significantly less likely to experience this problem, as their flat bottom geometry generates more even downward forces.

Crosshole Drilling

When drilling a hole that crosses the path of another hole, it is important to avoid creating burrs, since they can be extremely difficult to remove in this kind of cross section. Unlike drills with points, flat bottom drills are designed to not create burrs on the other side of through holes.

Irregular/Rounded Surface Drilling

Flat bottom drills initially engage irregular surfaces with their outer edge. Compared to making first contact with a standard drill point, this makes them less susceptible to deflection or “walking” on inclined surfaces, and more capable of drilling straighter holes.

Angled Drilling

Even if the surface of a part is flat or regular, a pointed drill is susceptible to walking if it engages the part at an angle, known as angled or tilted drilling. For the same reason flat bottom drills are ideal for drilling on irregular surfaces, they are perfect for angled drilling.

Half Hole Drilling

When drilling a half hole on the edge of a part, the lack of material on either side of the drill makes the operation unstable In this situation, a pointed drill is susceptible to walking. A flat bottom drill makes contact with its entire cutting geometry, allowing for more versatility and stability when drilling half holes.

 

Flat Bottom Counterbores

Flat Bottom Counterbore

Flat bottom counterbores are an excellent choice when a flat bottom hole is needed and a tool without flat bottom geometry was used to create it. Keep some of these tools on hand to be prepared for the operations below.

 

Flat Bottom Counterbore Operations

Bore & Finish Drilled Holes

Drill geometry is designed first and foremost for factors like stability, rigidity, and chip evacuation. Some holes will need secondary finishing operations. Flat bottom counterbores are often designed with a slow helix and low rake, which help them avoid part engagement and control finish.

Straighten Misaligned Holes

Even experienced machinists may drill a less-than-perfectly-straight hole or two in new and unfamiliar jobs. Fortunately, flat bottom counterbores are well-suited for straightening misaligned holes.

Spot Face & Counterbore on Irregular Surfaces

The unique geometry of flat bottom counterbores makes them  effective at spotting on irregular surfaces. Standard drills and spot drills are susceptible to walking on these kinds of surfaces, which can potentially ruin an operation.

Remove Drill Points

When a standard drill creates a hole (other than a through hole) it leaves a “drill point” at the bottom due to its pointed geometry. This is fine for some holes, but holes in need of a flat bottom will need a secondary operation from a flat bottom counterbore to remove the drill point.

Remove End Mill Dish

The dish angle present on most standard end mills allows proper end cutting characteristics and reduces full diameter contact. However, these end mills will naturally leave a small dish at the bottom of a hole created by a plunging operation. As with drill points, flat bottom counterbores are perfect to even out the bottom of a hole.

What You Need to Know About Coolant for CNC Machining

Coolant in purpose is widely understood – it’s used to temper high temperatures common during machining, and aid in chip evacuation. However, there are several types and styles, each with its own benefits and drawbacks. Knowing which coolant – or if any – is appropriate for your job can help to boost your shop’s profitability, capability, and overall machining performance.

Coolant or Lubricant Purpose

Coolant and lubricant are terms used interchangeably, though not all coolants are lubricants. Compressed air, for example, has no lubricating purpose but works only as a cooling option. Direct coolants – those which make physical contact with a part – can be compressed air, water, oil, synthetics, or semi-synthetics. When directed to the cutting action of a tool, these can help to fend off high temperatures that could lead to melting, warping, discoloration, or tool failure. Additionally, coolant can help evacuate chips from a part, preventing chip recutting and aiding in part finish.

Coolant can be expensive, however, and wasteful if not necessary. Understanding the amount of coolant needed for your job can help your shop’s efficiency.

Types of Coolant Delivery

Coolant is delivered in several different forms – both in properties and pressure. The most common forms include air, mist, flood coolant, high pressure, and Minimum Quantity Lubricant (MQL). Choosing the wrong pressure can lead to part or tool damage, whereas choosing the wrong amount can lead to exhausted shop resources.

Air: Cools and clears chips, but has no lubricity purpose. Air coolant does not cool as efficiently as water or oil-based coolants. For more sensitive materials, air coolant is often preferred over types that come in direct contact with the part. This is true with many plastics, where thermal shock – or rapid expansion and contraction of a part – can occur if direct coolant is applied.

Mist: This type of low pressure coolant is sufficient for instances where chip evacuation and heat are not major concerns. Because the pressure applied is not great in a mist, the part and tool do not undergo additional stresses.

Flood: This low pressure method creates lubricity and flushes chips from a part to avoid chip recutting, a common and tool damaging occurrence.

High Pressure: Similar to flood coolant, but delivered in greater than 1,000 psi. This is a great option for chip removal and evacuation, as it blasts the chips away from the part. While this method will effectively cool a part immediately, the pressure can be high enough to break miniature diameter tooling. This method is used often in deep pocket or drilling operations, and can be delivered via coolant through tooling, or coolant grooves built into the tool itself. Harvey Tool offers Coolant Through Drills and Coolant Through Threadmills.

Minimum Quantity Lubricant (MQL): Every machine shop focuses on how to gain a competitive advantage – to spend less, make more, and boost shop efficiency. That’s why many shops are opting for MQL, along with its obvious environmental benefits. Using only the necessary amount of coolant will dramatically reduce costs and wasted material. This type of lubricant is applied as an aerosol, or an extremely fine mist, to provide just enough coolant to perform a given operation effectively.

To see all of these coolant styles in action, check out the video below from our partners at CimQuest.

In Conclusion

Coolant is all-too-often overlooked as a major component of a machining operation. The type of coolant or lubricant, and the pressure at which it’s applied, is vital to both machining success and optimum shop efficiency. Coolant can be applied as compressed air, mist, in a flooding property, or as high pressure. Certain machines also are MQL able, meaning they can effectively restrict the amount of coolant being applied to the very amount necessary to avoid being wasteful.

Most Common Methods of Tool Entry

Tool entry is pivotal to machining success, as it’s one of the most punishing operations for a cutter. Entering a part in a way that’s not ideal for the tool or operation could lead to a damaged part or exhausted shop resources. Below, we’ll explore the most common part entry methods, as well as tips for how to perform them successfully.


Pre-Drilled Hole

Pre-drilling a hole to full pocket depth (and 5-10% larger than the end mill diameter) is the safest practice of dropping your end mill into a pocket. This method ensures the least amount of end work abuse and premature tool wear.

tool entry predrill

 


Helical Interpolation

Helical Interpolation is a very common and safe practice of tool entry with ferrous materials. Employing corner radius end mills during this operation will decrease tool wear and lessen corner breakdown. With this method, use a programmed helix diameter of greater than 110-120% of the cutter diameter.

helical interpolation

 


Ramping-In

This type of operation can be very successful, but institutes many different torsional forces the cutter must withstand. A strong core is key for this method, as is room for proper chip evacuation. Using tools with a corner radius, which strengthen its cutting portion, will help.

ramping

Suggested Starting Ramp Angles:

Hard/Ferrous Materials: 1°-3°

Soft/Non-Ferrous Materials: 3°-10°

For more information on this popular tool entry method, see Ramping to Success.


Arcing

This method of tool entry is similar to ramping in both method and benefit. However, while ramping enters the part from the top, arcing does so from the side. The end mill follows a curved tool path, or arc, when milling, this gradually increasing the load on the tool as it enters the part. Additionally, the load put on the tool decreases as it exits the part, helping to avoid shock loading and tool breakage.


Straight Plunge

This is a common, yet often problematic method of entering a part. A straight plunge into a part can easily lead to tool breakage. If opting for this machining method, however, certain criteria must be met for best chances of machining success. The tool must be center cutting, as end milling incorporates a flat entry point making chip evacuation extremely difficult. Drill bits are intended for straight plunging, however, and should be used for this type of operation.

tool entry

 


Straight Tool Entry

Straight entry into the part takes a toll on the cutter, as does a straight plunge. Until the cutter is fully engaged, the feed rate upon entry is recommended to be reduced by at least 50% during this operation.

tool entry

 


Roll-In Tool Entry

Rolling into the cut ensures a cutter to work its way to full engagement and naturally acquire proper chip thickness. The feed rate in this scenario should be reduced by 50%.

tool entry

 

Overcoming Composite Holemaking Challenges

Harvey Tool’s Miniature High Performance Composite Drills are specifically designed with point geometry optimized for the unique properties of composite materials. Our Double Angle style is engineered to overcome common problems in layered composites and our Brad Point style is built to avoid the issues frequently experienced in fibrous composites.

Circular Interpolation: Machining Circular Tool Paths

When machining, proper speeds and feeds are very important to avoid breakage and maximize performance. Traditional end milling formulas use Surface Footage (SFM) and Chip Load (IPT) to calculate Speed (RPM) and Feed (IPM) rates. These formulas dictate the correct machining parameters for use in a linear path in which the end mill’s centerline is travelling in a straight line. Since not all parts are made of flat surfaces, end mills will invariably need to move in a non-linear path. In the case of machining circular tool paths, the path of the end mill’s centerline is circular. Not surprisingly, this is referred to as Circular Interpolation.

Cutting Circular Tool Paths

All rotating end mills have their own angular velocity at the outside diameter. But when the tool path is circular, there is an additional component that is introduced, resulting in a compound angular velocity. Basically, this means the velocity of the outside diameter is travelling at a substantially different velocity than originally expected. The cause of the compound angular velocity is seen in the disparity between the tool path lengths.

Internal Circular Tool Paths

Figure A shows the cross section of a cutting tool on a linear path, with the teeth having angular velocity due to tool rotation, and the center of the tool having a linear feed. Note that the tool path length will always be equal to the length of the machined edge. Figure B shows the same cutting tool on an internal circular path, as done when machining a hole. In this case, the angular velocity of the teeth is changed as a result of an additional component from the circular path of the tool’s center. The diameter of the tool path is smaller than that of the major diameter being cut. Or, in other words, the tool path length is shorter than the machined edge length, increasing the angular velocity of the teeth. To prevent overfeeding and the possibility of tool breakage, the increased angular velocity of the teeth must be made the same as in the linear case in Figure A. The formula below can be used to properly lower the feed rate for internal machining:

Internal Adjusted Feed = (Major Diameter-Cutter Diameter) / (Major Diameter) × Linear Feed

 

External Circular Tool Paths

Figure C shows the same cutting tool on an external circular path, as done when machining a post. In this case, the diameter of the tool path is larger than the major diameter being cut. This means that the tool path length is longer than the machined edge length, resulting in a decreased angular velocity. To prevent premature dulling and poor tool life due to over-speeding, use the formula below to properly raise the feed rate for external machining. In this way, the decreased angular velocity of the teeth is made the same as in the linear case in Figure A.

External Adjusted Feed = (Major Diameter+Cutter Diameter) / (Major Diameter) × Linear Feed

Optimize Your Performance

By adjusting the feed in the manner provided, internal applications can avoid tool breakage and costly down time. Further, external applications can enjoy optimized performance and shorter cycle times. It should also be noted that this approach can be applied to parts with radiused corners, elliptical features and when helical interpolation is required.