Posts

Octane Workholding – Featured Customer

Located in Danville, Pennsylvania, Octane Workholding has a long history spanning back to 40 years. This family business started in the 1980s, welding farm equipment and doing general repairs. As time went on, Octane Workholding began shifting toward building bespoke equipment. As the equipment became more complex, machining became a larger part of their business, starting with manual machines and working towards CNC machining. They started to realize the amount of knowledge that they would need to learn to master CNC machining. After machining thousands of parts and gaining experience, they learned what tools were needed to succeed as Machinists and started their journey. They developed value-added products for their own use that are now available for everyone and provide educational materials that are aimed at lessening the steep learning curve of this trade.

Octane Workholding has dedicated years to mastering their CNC abilities. We were able to get in touch with Derek Pulsifer, President of Octane Workholding, to discuss how they got started, current business, and so much more!

How did you get started with Octane Workholding?

Basically, I grew up in our family shop but did not start working full time until after college. Things were heavily fabrication-oriented with only a few manual machines. After a few years running manuals myself, it was decided we would go the CNC route. Teaching myself to be a Machinist was often a struggle with no formal training or peers to reference. Being a family machine shop and working alongside Octane Sr., it could be a lot like an episode of Orange County Choppers. Most of what I share today was learned through thousands of hours of researching and learning the hard way. 

How did you get from welding farm equipment and doing repairs, to manufacturing workholding setups?

Like many things in life, things progressed and customers’ needs shifted. Our fabrication shop has built a lot of equipment for the food, pharmaceutical, and power generation industries for several years. As we gained more customers, things slowly shifted toward more job shop-oriented work. Jobshop work is a surefire way to gain experience quickly. As a Machinist, there were many times I went in search of a solution for common problems we faced. After finding solutions that didn’t fit us, I designed the products we now make today. Thousands of unique parts and decades of experience later, we knew what shops like us were probably encountering as well. Octane Workholding was created to provide solutions to common machining problems. We continue to offer quote-based work to customers through our machine shop in addition to Octane Workholding. We are Craftsmen.

What machines do you currently have in your shop?

We have several manual machines from the classic 1960’s Bridgeport to heavy-duty Cat50 verticals. The machine I actually began on is an old South Bend lathe. Production sawing, Roll Grooving, Shears, Press Brakes, Waterjet Cutting, Welding, and Rolling machines. We also have various new CNC machinery from lathes to verticals. 

What CAM/CAD softwares do you currently use?

I program with both Mastercam and Solidworks. We use Autocad products for 2D applications like Waterjet Cutting. The advent of Fusion 360 has really benefited the industry by bringing affordable software to everyone. I would like to experiment with more CAD/CAM systems to help those who come to us with specific programming questions related to Fusion 360 etc.

What materials are you most often working with?

We primarily work with stainless steel, but no material is too difficult to work with. Materials and SFM are a bit like speed limits on the road, Hastelloy is like a 25 MPH zone, and Aluminum is like the Autobahn. Superalloys require patience and the right recipe.

What sets Octane Workholding apart from the rest of the competition?

I think people appreciate honest companies that actually engage with their customers.  Treating every customer with the same respect, no matter the size of their company. Social media has made helping anyone that needs it, a message away. Whether individuals buy our products or not, we believe the whole industry benefits from the freely available educational materials.

Can you talk about the coolest/most interesting project you have worked on?

We do a lot of neat work but one project especially was great to work on. It is also one of the few that can be made public. Making 11.00″ Custom Scissors for the first time. These Scissors quickly became an obsession once work began on them. Programming them was the first step. Machining them without creating time-consuming custom fixtures was the next challenge. Once they were machined the real fun began.

Having never made Scissors or Knives professionally, I knew the next part would be a learning experience. After ordering some fine grit belts for our sanders, the polishing and sharpening had begun. To begin, I went about polishing the handles and rough sharpening to establish a reference edge on the blades.

Having some paper on hand it was time to give them a try. Success, they cut paper! Now for the real test, they were being created to cut plastic bags. Dread started to creep in as the first cut simply folded the bag in half. This was not good. Ok, what is wrong here? These feel razor-sharp, but they are paperweights at this point. Back to the drawing board. After doing some research on the great UK makers continuing this art, a hollow grind seemed like the solution.

What do we have that can do a hollow grind? A small wheel will put a deep radius if brought back to the blade. I have to make a large wheel so the hollow grind can be shallow. I’ve got it, a faceplate adapter mounted to the Old South Bend, some sandpaper glued to the outside should work! So it began, the journey into learning to hollow grind.

After hours of making things worse and worse, I cannot bring the grind from edge to edge smoothly. Some more research and it seems the technique is to “turn the key”. Wow, it feels unnatural but it works! Finally, a successful hollow grind is performed.

Now for the real art of Scissormaking, the Putter- (fine Scissor Craftsmen which I am not) must sharpen and skillfully assemble them. The final act is to bow the blades carefully such that the edges intersect. They must meet perfectly along the length of the blade as they cross.

One more test, they cut the plastic bag as it passed right through it. This was one of the best moments in my career as a Machinist.

What are your current product offerings?

Our best-selling product is our t-slot cover, The Octane Chip Guard. We also currently offer mounts that offset your Renishaw Tool Setter. Table space is a premium for any milling machine. When the Tool Setter is outside the work envelope, additional work holding or parts can be placed. 

We also offer a T-Slot Drop in Workstop, our drop in workstops can be added at any time, even when access to the end of the t-slot is blocked. This adds a lot of flexibility to set up parts, especially if you forgot to add them beforehand (has happened more than I care to admit). There are a lot of products waiting to be released, but the demand for our t-slot covers has taken priority for now.

Having machined thousands of parts with unique setups, a product that enabled quick changeovers was essential. Cleaning a t-slot is a job Machinists have dreaded for a very long time.  Being silicone, it is extremely easy to trim a piece to fit any setup. Setting up a job for production requires only a few extra minutes to place our t-slot covers. One big problem with vertical machining centers is chip evacuation. Not only does covering the t-slot prevent chips from ever entering the groove, but it actually promotes flushing of every corner of sheet metal. Flood coolant normally is trapped within the grooves, which prevents any chance of the chips being evacuated. Unattended operation is always the goal with any CNC machine, our Chip Guard allows an operator to open the doors to a clean machine. In-process chip fans or automatic washdowns are possible. Safety is also a big issue for any shop. Most Machinists have encountered a chip ricocheting from the t-slots back at their eyes. The color options add a sleek look to any machine. We also offer black for an incognito approach.

Why is high quality tool performance important to you?

Manufacturing is all about process reliability. You may save a few dollars on a tool, but end up paying dividends when said tool fails unexpectedly. A quality tool that increases performance or extends unattended operation, is critical.

Can you talk about a time that Harvey Tool or Helical products really came through and helped you?

Aside from Harvey having tools available as standard, which would be a custom item for the majority of companies. We buy chamfer mills regularly for finishing bevels. The angle being accurate is paramount for finishing. If the angle is off at all, a step can be felt on the finished face. Being confident that a tool that is programmed to cut a feature is accurate, saves us a lot of time. We also rough some heavy stainless steel beveled rings. The heavy chips accumulate due to the 2.00” length of cut., so the solution to this problem was the following chipbreaker endmill – 5 FLUTE, CORNER RADIUS – CHIPBREAKER ROUGHER, VARIABLE PITCH (APLUS).  We are all familiar with the corncob style roughing endmills, which actually create chips that are too small, causing those chips to end up getting into the coolant tank. Helical chipbreaker endmills create a swarf that is the perfect size, as it fits neatly into a container for recycling. The other added benefit is tool life. The bevel rings tend to trap the swarf inside themselves, which can lead to recutting chips that were destroying tool life. The chips were able to be evacuated easily which lead to a 4x’s increase in tool life and a process we could walk away from confidently.

We noticed the education section on your website, not too many companies will add these sections, why do you feel it is important to spread knowledge?

The world saw more technological advancement in 100 years than in all recorded history through manufacturing.  While I may not be part of the next great advancement for humanity, perhaps teaching an aspiring Engineer, will lead to one. Providing the tools for brilliant individuals to go out and make an idea a reality, is something we are committed to. Future generations need to understand how critical manufacturing is to our way of life. 

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Learn cad/cam first. Watching YouTube tutorials and educational content likes ours can help accelerate the learning curve. Becoming proficient as a programmer and designer can lead to higher starting salaries. If you can walk into a shop with some knowledge of programming, you may bypass a lot of the red tape companies might present to a new employee. Machining is often the easiest part, work holding and programming are often the biggest hurdles. Not everything has been invented yet, perhaps your niche will be making ornate pens, flashlights, knives, firearm parts, etc., creative designs are always in demand. Many successful businesses started in a garage with a hobby machine. Designing your own products can lead to a booming business that can sustain your family and eventually your employees’ families. 

Is there anything else you would like to share with the In The Loupe community?

We are adding more and more educational material to our website.  It’s definitely worth bookmarking for anyone interested in learning more about this trade.

  • Speeds and feeds for turning, drilling, surface finish charts, etc.
  • Threading data like you would find in the Machinist’s handbook, but easier to find and read.
  • Educational articles on topics like quoting, lathe education, mill education etc.
  • Fun DIY projects you can make, like a tap follower.
  • Programming examples and curriculum are in progress with more information being added.

To learn more about Octane Workholding find their website here. Also, you can follow them on Instagram @octane_workholding.

Olson Manufacturing – Featured Customer

Featured Image Courtesy of Logan Olson, Olson Manufacturing

Located in northern California, Olson Manufacturing specializes in handcrafted, customizable golf products that are made with utmost attention to detail from the highest quality materials. Logan Olson, its owner, was introduced to the game of golf by his grandparents at a young age and fell in love with the sport, especially how individualized it is, and how one’s own effort and dedication is paramount. It is because of this love of golf that Logan began designing, and making, his own putters. Soon after, Olson Machining was born.

Now with years under his belt, Logan took time to reflect about Olson Manufacturing, his passion for golf, high-quality tooling, and where his inspiration for his designs originated.

Photo Courtesy of: Logan Olson, Olson Manufacturing

How did you get started and learn how to machine?

I got started in manufacturing coincidentally with making putters: A project that went from a solely digital design to learning a CAD program. It turned into something I wanted to bring into tangible space. A friend of mine introduced me to a manual machinist that had a small machine shop at his house. He had just purchased a personal hobby-sized CNC machine and was kind enough to let me hobble my way through learning the fundamentals of machining on it to design a putter. A year later, I held a barely recognizable chattery mess of a putter and my journey was just beginning.

Where does your passion for golf come from?

I was introduced to the game of golf early on by my grandparents. The individual nature of the game, surrounded by the need to depend on your own effort and dedication as a means to success, has really paved the way for me as a business owner. The need for honesty and integrity, even when it might be easier to take the other road out, has allowed me to stick through the challenging aspects of creating a machine shop and allow my business to thrive in this fast pace, ever-changing world.

What is the inspiration in your designs?

From a design aspect, my number one priority is to do my absolute best to execute the task of creating the best putter I can for the end-user. Customization, additional design aspects, as well as other details, are a welcome addition to a putter that will perform at the highest level. When it comes to the design of creating a custom build, I try to forget that the piece I am working on is a putter altogether and pull my inspiration from other places and different crafts.

It’s always fun when people ask what I do as a machinist to tell them I make golf clubs. There’s always a hesitant humorous laugh as they respond with an, “oh that’s nice, or good for you”. That always seems to change as soon as I show them what I actually make.  The following response is usually more on the stream of “you seriously make these, or wow, that’s not at all what I expected.” The detailed craftsmanship of sword makers, clockmakers, and jewelers is where I try to pull my main inspiration from.

 I do a lot of commissioned work for customers ordering a specific putter that they themselves design, however, I think my true voice as an artist and machinist lies with the putters I make where the designs can flow out of my own imagination with no guidelines or restrictions.

What is your favorite putter you’ve designed?

I’ve had the opportunity to create a ton of really cool and unique projects in my years as a putter maker. It’s really hard to pick out a favorite. I try to say that my favorite putter I’ve ever made is the one I’m currently working on or excited about. I could probably make a list of the top 20 maybe, but picking an individualistic favorite would be tough.

Who is the most famous contact that you have worked on a project with?

I’ve been lucky enough to work with a handful of professionals on the PGA tour as well as the LPA tour and Web.com tours. Feedback from this caliber of players is really the driving force of development for what I do. They can offer some of the most keynotes that help drive changes every year. I have a hard time picking apart a favorite project, but every time a professional golfer comes aboard I always seem to learn something new.

What sets Olson Manufacturing apart from the competition?

In a world where mass production and system efficiency control the consumer market, utilizing old world craftsmanship in companion with cutting edge technology, I can create one of a kind personalized and unique products. That’s not a touch you can find buying something off of a shelf. Knowing that only 1 pair of hands might have spent hours, days, even weeks just creating a putter, I think is something a person holds value to once they acquire one of my putters.

What machines do you currently have in your shop and what materials are you machining?

I use all vertical mills at my shop. With the exception of one of my largest machines, having a 4th axis. Everything I run is all 3 axis machining. I really cut everything under the sun. The bulk of my machining consists of stainless steel, mild alloy carbon steel, and aluminum, for fixture making. However, with that said, I do a very large amount of copper as well. The bulk majority of my inlay work is done in superalloys and some exotic blends such as Zirconium-Titanium alloys, Titanium Damascus (Timascus), pre-hardened high carbon Damascus steels, mother of pearl, bronze, and a handful of other materials.

Why is high quality tool performance important to you?

When I’m working in an environment where the part I am making is a one-shot kind of deal or the material is incredibly hard to get/ expensive, not having the ability to remake the part is why customer support and applications engineers are indispensable. When you’re off purchasing a cheap tool from an unknown company you are unlikely to be able to pick up the phone and say “hey, I’ve got a .030” tool going 1” deep in titanium, this tool can’t break haha can you help me out?”

I can count back just in the last year at least a dozen times I’ve spoken with a Harvey Tool rep on one of my micro tools for a cutting recipe recommendation for an application that kept me out of the dog house. I think we could all talk about coating, cutting life, and tool performance all day long, but I could argue that being able to make a phone call and have an engineer reassure you something will work, is the most important thing of all when it comes to quality tool performance.

What is the smallest Harvey tool you have used and the largest Helical tool?

I’ve used a .02” diameter 3 flute tool for stainless and carbon steel, which would likely be the smallest. I regularly store a .04” tool in my tool changer for pocketing on small inlay work. I used to be scared to sneeze on them in fear of them breaking, now they’re as dependable as any tool in my library and I require them daily for all kinds of machine work. The largest tool I run from Helical is a 6 flute ½” endmill for HEM roughing. I find that’s really as large as I need to go.

If heavier cutting is necessary I’ll lean on an insert tool. I really think some people would be amazed though, at the MRR you can get with a ½” tool. These modern toolpaths are incredibly powerful in comparison to some of the older style machining strategies. Give me a ½” tool in stainless full depth at 250 inches a minute and I can move some metal.

Can you talk about a time that Harvey Tool or Helical products really came through and helped your business?

This would go back to one of my earlier answers for the customer support argument. I was running a billet of pre-hardened Damascus steel for a putter I was making. I don’t know if you’re familiar with Damascus at all, but if you picture high carbon steel blended, smashed, and forged together with a nickel alloy, then hardened, I think you can paint a picture. Oh yeah, and nickel alloys are famously fun to machine… think Inconel, Monel, and Hastelloy… fun stuff. So take that billet and make a putter out of it haha.

Anyways, this stuff is harder than a coffin nail and is eating my 80 dollar endmills for breakfast like it skipped dinner the night before. I was down to my last ½” tool that could do the machine work on this putter and didn’t know what I was going to do. I called up Helical, and an applications engineer not only gave me a recipe that ended up saving me but sent me the skew for a tool that worked way better than the one I had in the spindle. I ordered a package of them, and ever since that day, they are my go-to in Damascus.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

My biggest piece of advice would be to learn as much as you can. In today’s world, the internet is an incredibly powerful tool and platform for the machining community. There is basically a video out there somewhere you can watch that can probably answer any question you might have. It’s insane. I’m 24 years old and started as a machinist at 19-20. There is absolutely no way I could have gotten to where I am today without countless hours of YouTube scrolling and video binge-watching. It’s great stuff and you should soak it in like a sponge as fast as you can. 30 years ago the machinists would look at the stuff we are doing today and call it Wizardry. We truly are living in an incredible time. Live, learn and love what you do.

To see more of Logan and Olson Manufacturing, you can follow him on Instagram @olsonmfg

R & S Machining – Featured Customer

Featured Image Courtesy of R & S Machining

Located in St. Louis, Missouri, R & S Machining specializes in 4 & 5 axis machining and manufacturing of aerospace components. Since R & S was founded in 1992, they have instilled a spirit of hard work and determination to exceed customer expectations. Equipped with up-to-date machines and automation, R & S Machining has high-quality equipment to keep them as efficient as possible to stay ahead of the competition. The highly skilled men and women operating the manufacturing facility are committed to a high quality standard to meet all customer requirements. Because of this commitment, R & S Machining has been able to expand its facilities in the past four years by more than 225,000 square feet.

We were able to get in touch with Matthew Roderick, the lead programmer for R & S Machining. Matthew took some time out of his busy schedule to answer some questions about R & S Machining, and how the company continues to grow.

Photo Courtesy of: R & S Machining

Can you tell us a little about R & S Machining?

R & S Machining is dedicated to continual improvement and growth. We strive to buy very high quality machines and tooling. We also equip most of our machines with automation. Whether it is a bar feeder, pallet changer, FMS, or robot, nearly all our machines have some form of automation to increase our lights out production. In the past 4 years, we have built a new facility and purchased a new facility. We have grown by more than 225,000 square feet and 35 employees in this timespan. With the backing of our ownership, continued success and relationships with our customers, very dedicated employees, and high-quality reliable manufacturing equipment, we are in a league of our own and continue to strive towards our goal of becoming the powerhouse manufacturing company of the Midwest.

R & S Machining currently uses Hermie, Okuma, Makino, and Kenichi machines in the facility, while utilizing CAM/CAD software such as Siemens NX, Catia, and Mastercam.

How did R & S get into Aerospace and Defense Manufacturing?

Our president worked at Boeing for 10 years. When he left to start his own company, we were given an opportunity with the Boeing Company to manufacture aerospace and defense components based on the quality of work that our President produced during his time with them. We continued to produce high quality products with an emphasis on on-time delivery and the rest is history.

Photo Courtesy of: R & S Machining

What sets R & S apart from the rest of the competitors?

We take on all the work that our competitors no quote or refuse to do. The complexity of parts that flow through this shop is like no other place. We believe there is no other company that can produce the complexity level of parts that we make in the time frames we are given by our customers.

Customer satisfaction is maintained through effectively applying the quality system. Continued training and process review enable R & S Machining to meet customers’ ever-changing requirements. 

What is your favorite project you have had come through the shop?

We manufacture Inlet Ducts for a variety of Fighter Jets. The complexity of these parts is unmatched and the creativity in programming the parts in the CAM system has to be at its peak. Some of these parts require programs of 600+ toolpaths with a majority of them being full 5axis simultaneous paths. Then, when you get to see the machine throwing a 1,100 pound block around like it’s nothing at 2000 IPM in full 5axis simultaneous motion, it’s pretty humbling.

Photo Courtesy of: R & S Machining

What is your connection with the Missouri SkillsUSA Competition?

SkillsUSA is a nonprofit national education association that serves middle school, high school, and college/postsecondary students preparing for careers in trade, technical, and skilled service (including health) occupations. SkillsUSA’s mission is to empower its members to become world class workers, leaders, and responsible American citizens. It emphasizes total quality at work—high ethical standards, superior work skills, lifelong education, and pride in the dignity of work.

Over the past 4 years, we have had many of our employees participate and win in the competition. We have had 5 employees win the district championship, 5 employees win the state championship, and 3 employees win the national championship.

Photo Courtesy of: R & S Machining

Why is high quality tool performance important to you?

We rely on high quality tool performance to meet the tolerancing demands of our customers. Our tolerances range from hole tolerances of +.002″/-.001″, thickness tolerances of +-.01″, profile tolerances of .03″, critical hole tolerances of +-.0002″, and critical hole true position tolerances of .007″. We also rely heavily on lights-out run time overnight, so having a high quality tool that you know is still going to be cutting effectively in the morning and throughout the night is critical to our operation.

We had a 50+ quantity stainless steel job that we were only getting 2-3 parts per tool using tools from a different manufacturer. We changed our tool to a Helical endmill and left everything else the same and made over 30 parts before having to change out the tool.

Photo Courtesy of: R & S Machining

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

There are tons of cool and flashy things out there, but you can not skip the fundamentals. They are the building block to your entire career and they are the concepts you will use every single day. Use the technology to further your skills, not the basis of your skills. At the end of the day, you always have to know feeds and speeds, depth of cuts, work holding, and what you can get away with.

Is there anything else you would like to share with the In The Loupe community?

Helical tooling is unmatched in the HEM hard metal category. These tools have changed the way we manufacture parts and give us the confidence we need to accomplish our high precision and complex parts.

If you want to see what is next for R & S Machining or reach out and ask them some questions, you can follow them on Instagram @randsmachine.

Defiant CNC – Featured Customer

Featured Image Courtesy of Jeremy Taylor, Defiant CNC

Twenty years ago, Jeremy Taylor worked as a Tool and Die Apprentice and was well on his way to earning his Journeyman Certification, when he fell in with the wrong crowd and found himself in trouble, criminally. As a result, he found himself facing a lengthy prison sentence but was determined to make his time incarcerated as constructive as possible. During his sentence, he earned his undergraduate and MBA degrees, taught himself Spanish and Italian, and used his limited access to computers to stay updated on all things CNC machining, including the evolution of tool making and advanced manufacturing.

Today, Taylor owns Defiant CNC, a 2-year-old machine shop located in Orlando, Florida, that specializes in performing a wide variety of machining operations, including CNC Milling, CNC turning, laser engraving, finishing, quality control, CAM/CAD, inventory management, technical drawings, and ERP services. Defiant CNC machines everything from components for underwater welding robots to tools for helicopter repair kits, to even tools for pastry decorating and jewelry making.

Along with owning his business, Taylor also spends his time working with The Community, a company that focuses on preparing prisoners to reenter society.

We spoke with Taylor to learn more about how he changed his life’s trajectory; his new business; the ERP system he built, himself; and what he values most in CNC tooling, among other topics.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

How did you first get started in machining?

I started off as a Tool and Die Apprentice. I was making tremendous progress towards my Journeyman Certification until I got myself into trouble. I had done a great job of learning very sophisticated toolmaking techniques and CNC programming/machining. Unfortunately, when I was a few months away from obtaining my journeyman’s card, I was incarcerated for 14 years. However, I utilized that time to significantly change my life trajectory. While in prison, I taught myself Spanish and Italian, kept as up to speed as I could (given very limited access to computers) on the evolution of tool making, CNC machining, advanced manufacturing, computer hardware, and software, completed both an undergraduate degree and an MBA via a mixture of mail and online access.

Today I am a completely different person than the one who wasted the great opportunities I had before my imprisonment. Somewhere along the line during the time when I was 18-19 or so, I fell in with the wrong people and took a path that led to me wasting what should have been the best years of my life. Rather than give up, I used that time while confined to continue my education and prepare myself for a productive role in society after my release. Getting back into machining played a huge role in my current success. Defiant CNC has only been in business for a little over two years, but the best is yet to come.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

What machines are in your shop?

Defiant CNC currently has 4 mills: Doosan DNM 4500, Chevelier QP 2040, Toyoda Stealth 1365, and a Manual Bridgeport Mill. We use Fusion 360 on all of our milling machines. We also have 5 lathes: Emco Maier 365 Y, Miyano BND-51S, Miyano BND-20S5, Miyano BND-34S. and a Miyano BND-42S. Finally, we have our two support machines, a Cosen MH-1016JA Bandsaw and a Boss FMS Laser for Desktop Fiber Marking.

What industries have you worked with?

We have worked with a large variety of industries, including aerospace, defense, automotive, commercial, and medical. Working in these industries allows us to machine in all different materials: Aluminum (7075, 6061, and 2024), Stainless Steel (303, 304, and 316), and Steel (1018, 4140, and 1045).

Photo Courtesy of: Jeremy Taylor, Defiant CNC

What sets Defiant CNC apart from the competition?

We provide an array of machining-related services including milling, turning, CAD design, engineering, and laser engraving in-house. We also provide a number of services through vetted partners such as heat treating, welding, and plating. However, what sets us apart from the rest of the competition is the Enterprise Resource Planning (ERP) system that I built, which is customized specifically for our shop. Not only does it allow us to streamline our operations, but it also allows us to give that something extra to our customers. I create portals and give our customers access to all their past and present jobs with us. They can check the status of any of their jobs as they move through the production process. We take just as much care managing every aspect of the business as we do machining parts.

Typically in small-to-medium-sized shops, the data structure is to create a series of customer-job-part revision folders, and put the customer data there. This data structure is rarely planned for growth. I created an Enterprise Resource Planning (ERP) system using Airtable, along with other API-friendly applications, because the software has Product Data Management (PDM) built into it. PDM is the architecture of the data storage system which, in a nutshell, is the organization, storage, and retrieval of any data that might be tied to a manufacturing process. Since Airtable has a built-in PDM system, we are able to store all our CAM files, G-code, setup documents, tool data (where we log important data about our Helical and Harvey tools), fixture data, and any other data that needs to be tied to a step for making a part. We now have a place to bring together product data (images, instructions, inventory, links, etc), customer information (CRM data), data on sales, marketing development and deployment, a schedule, and more, all in one place. All of the integrations and automations that I built saves hours of manual work and prevents a multitude of mistakes.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

What is your favorite job you have worked on?

I just finished a production run on a job where I completed 12 pieces of two different parts out of hardened 17-4 stainless from start to finish. The cycle time was just over four hours. Each part required three operations after the stock was sawed and heat treated. I designed, modeled, and made two sets of fixtures for each operation in order to load one set while the other was being machined.

When have Harvey or Helical products helped your business?

A majority of the endmills that we stock are Harvey Tool and Helical products. We utilize Fusion 360, which has a tool library full of Harvey Tool and Helical products. About a week ago, we purchased some Harvey Tool flat bottom endmills which saved substantial time on a large production run because we no longer had to circular interpolate a hole. Whenever we are in a pinch and need a tool quickly, Helical Solutions and Harvey Tool always come through.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

Why is high quality tooling important to you?

High quality tools allow us to spend more time machining and less time changing tools. Our go-to tool is Helical’s 3 flute – 40-degree helix with ZPlus, whether we need 1/8 end mills or 5/8 endmills, they get the job done.

What advice do you have for others who want to try High Efficiency Milling?

Consider the material that you are cutting. Consult with your tooling vendor and/or documentation on their website to obtain a starting point and go from there. Helical Solutions has great information on their website and on their social media accounts, with regard to their products. It is worth consulting these sources when utilizing their tools.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Learning needs to be continuous. Don’t just expect to learn everything that you need to know in one place. Constantly increment your skills in every aspect of machining.

Is there anything else you would like to share with the “In The Loupe” community?

I am grateful for the opportunity to talk about my experiences with Harvey Tool and Helical products and my business. I use Harvey Tool and Helical products because they work well. I will continue to document my usage of their products on my website DefiantCNC.com, as well as my company’s social media accounts (@defiantcnc on Instagram, LinkedIn, and Facebook). Be sure to check them out.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

Heavy Duty Racing – Featured Customer

Featured Image Courtesy of Pete Payne, Heavy Duty Racing

Heavy Duty Racing is a manufacturing company based in Stafford, VA, that specializes in motocross, off-road motorcycle suspension, and 2-stroke engine modification. Its owner, Pete Payne, grew up racing motorcycles. Later in life, he even taught classes on how to race. Simply, Motocross and motorcycles became Pete’s passion.

Pete always looked for ways to enhance his motorcycle’s engine, but quickly realized that no shops in his area could design what he was looking for. To get access to the parts he would need, he would have to rely upon companies from far away, and would oftentimes be forced to wait more than three weeks for them to arrive. Because of this, Pete decided he would need to take part manufacturing into his own hands. He purchased a manual lathe, allowing him to make modifications to his two-stroke engines exactly how he wanted them. Quickly thereafter, Heavy Duty Racing was born.

Pete discussed with us his love of racing, how he first got into machining, the parts his shop has designed, and tips and tricks for new machinists.

Pete Payne Heavy Duty Racing
Photo Courtesy of: Pete Payne, Heavy Duty Racing

How did you get started in machining?

Since I was a kid I have been riding motorcycles and racing motocross. I went to a tech school in the ’80s and learned diesel technologies. When I realized nobody in this area could help design the engines I wanted to make, I decided I needed to learn how to do it myself. I have a friend, George, who is a retired mold and die maker that also worked on motorcycle engines, I asked him for some advice on how to get started. George ended up teaching me all about machining and working on engines. I really learned from failures, by trying new things, and doing it every day. I started Heavy Duty Racing in 1997 and we have been modifying and designing the highest performing engines since then.

turning motorcycle part on lathe
Photo Courtesy of: Pete Payne, Heavy Duty Racing

What machines and softwares are you using in your shop?

We currently have a Thormach PCNC 1100 and a Daluth Puma CNC Lathe (we call it The Beast, it’s angry and grumpy but it gets the job done). We also have a Bridgeport Mill, Manual Lathe, and a Tiggwell. When we were choosing software to use, they had to be easy and quick to learn. We weighed our options and decided to use Autodesk Fusion 360 about 5 years ago. We mostly machine cast iron and steel since most engines are made from those materials.

What sets Heavy Duty Racing apart from competitions?

We have a small hands-on approach and treat every part with care. We don’t have a cookie-cutter process so we are very flexible when it comes to customer needs. Since each part is different, we don’t have set prices and have custom quoting on each part. We value our customers and tailor every build to the rider, based on the weight, fuel, and skill level of the rider. We make unique components for each rider so they can have the best experience when they hop on their bike. We are just focused on letting people do what they love.

metal racing parts made by Heavy Duty Racing
Photo Courtesy of: Pete Payne, Heavy Duty Racing

What is the coolest project you have worked on?

In 2016, MX Tech Suspension in Illinois gave us the opportunity to build an engine for them to display at their event. We got to go to California to watch them demo the engine in front of thousands of people. It was very nerve-racking to watch it live but the experience was amazing. The engine was later featured on the cover of Motocross Action magazine. It was very cool to see something we dedicated so much hard time toward get that much recognition.

Why is high quality tooling important to you?

We are making really difficult machine parts so we need tools that can last. Micro 100 tooling lasts and does the job. The thread mills we use are 3-4 mm and 14 mm and they last longer than any competition out there. The thread mills do not chip like the competition and the carbide is super strong. Breaking a tool is not cheap, so to keep one tool in the machine for how long we have has really saved me in the long run. We found Micro 100 one day looking through our distributor’s catalog and decided to try some of their boring bars. After about 5 holes, we realized that these tools are the best we have ever used! Micro has had everything I’ve been looking for in stock and ready to ship, so we have yet to need to try out their custom tools.

Most engine tolerances are no more than .0005” taper. You need the tooling to hold tight tolerances, especially in engines. Just like with tooling, minimizing vibration is key to getting the engine to last longer. We need tight tolerances to maintain high quality and keep engines alive.

machined metal racing part
Photo Courtesy of: Pete Payne, Heavy Duty Racing

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

The same advice I’ve given to my son: Don’t be ashamed to start from the bottom and learn from the ground, up. Everybody wants to make cool projects, but you need to learn what is going on around you to master the craft. Learn the processes and follow the steps. It’s very easy to break a tool, ruin a part, or even hurt yourself. Don’t be scared of quality tools! Buying the cheap stuff will help you with one job, but the quality tools last and will save you in multiple situations.

Follow Heavy Duty Racing on Instagram, and go check out their website to see more about them!

Hybrid Machining – Featured Customer

Featured Image Courtesy of Jeff Robinson, Hybrid Machining

Located in Holland, MI, Hybrid Machining uses machining skills combined with 3 different 3D printing technologies to manufacture complex projects. Hybrid Machining is a manufacturing company that can take the customer’s design from start to finish, allowing customers to dictate their path. Rather than focusing on a single product, Hybrid has listened to customer needs and presented solutions that, in many cases, customers didn’t know were possible. Jeff Robinson, the owner, took some time out of his day to answer some questions about Hybrid Machining.

How did you get into manufacturing?  

I started working in an architectural shop during my high school years.  I quickly realized that there was a more advanced part of the industry that I was missing out on. Therefore, I started researching CNC Routing.  I fell in love with the technology and have been studying it ever since. 

What sort of machines and materials do you use in your shop?

We currently run a Datron Neo, Fanuc Robodrill, and a CR Onsrud 5-axis Router. We work primarily with wood, plastic, and non-ferrous materials. We currently use Autodesk Fusion 360, FeatureCAM, Powermill, Vectric Aspire, and AlphaCAM for CAM.  For CAD, we run Fusion 360, Inventor, and Solidworks.

hybrid machining datron neo
Photo Courtesy of: Jeff Robinson, Hybrid Machining

When did you start using 3D printing and how has it benefitted you?

I have been 3D printing for just over a year.  It was the first technology that we initiated here at Hybrid Machining, and it has allowed us to provide the best solution to the customer no matter what the requirements are. By expanding into 3D printing, we can help the customer decide which technology will work the best for their part. Many times, we take the “Hybrid” approach and use both additive and subtractive technologies together.

How have you adapted during the Covid-19 outbreak and how has it changed your business?

We started by stopping normal production to form a non-profit called 3DC19 with other local, small business owners with the sole purpose of 3D printing and assembling plastic face shields.  Hybrid Machining became the distribution center for the efforts.  Collectively, we produced and donated 75K articles of PPE to local hospitals, nursing homes, doctor offices, and first responders.  You can learn more about the efforts at www.3DC19.com. We have also been machining a lot of acrylic face guards for customers so that we can help them to get their office staff back to work safely. 

fanuc robodrill machine
Photo Courtesy of: Jeff Robinson, Hybrid Machining

What sets Hybrid Machining apart from the rest of the manufacturing community? 

We have a serious passion for educating our youth and local businesses on the rapid changes currently happening in the manufacturing industry and preparing them for the impact that Industry 4.0 will have on our lives in the future.  We want to produce knowledgeable people just as much as we produce products, and we do this in our unique Learning Lab.  We team up with local schools, vocational schools, and community colleges to help them spread the word about manufacturing.  We also intend to do ‘Lunch and Learns’ with local businesses to help them understand what other manufacturing methods and advanced materials are available on the market today.

What is the coolest project you have had come through the shop?

Many years ago, at my previous shop, we worked on the presidential handrail that the last three presidents stood behind during the inauguration.

hybrid machining metal business card
Photo Courtesy of: Jeff Robinson, Hybrid Machining

Are you using HEM techniques to improve cycle times? 

Yes, we use a couple of the fastest and most nimble machines on the market: the Datron NEO and the Fanuc Robodrill.  We leverage the machine’s tools’ high accelerations and deceleration rates, along with HEM, to drastically reduce cycle times for our customers.  This allows us to be competitive against over-seas importers.

What do you have to lose other than cycle time? You purchased the entire tool, not just the tip, so use it!  You will be surprised how the different the machine will sound and you can get parts done faster with less tool wear.

Why is high quality tool performance important to you?

The tooling is super important to the success of a project because the tool is what is doing the work.  I like to tell people, “Why would you buy a high-end sports car with all bells and whistles and then put crappy tires on it?  All that power and handling is worthless unless you have good tires.”  The same goes for tooling.  You can have a half-million-dollar machine that is super-fast and accurate and yet still produce a terrible part with cheap tooling. 

When was a time that Harvey Tool, Helical Solutions, or Micro 100 saved the day?

Harvey Tool helped me get through some tough composite projects in the past.  Their technical support team was extremely knowledgeable on the subject matter and helped me pick the right tool and parameters to get the job done. 

machined metal part from hybrid machining
Photo Courtesy of: Jeff Robinson, Hybrid Machining

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

NEVER STOP LEARNING.  Things may be going great at first and you think you have it all figured out, but then a new technology comes and swipes you off your feet.  Spend your spare time studying industry trends, talking to other business leaders, new and old, and preparing for the future.

 Is there anything else you would like to share with the “In The Loupe” community?

We are extremely thankful that Harvey Tool spends a lot of time developing ‘material-specific’ tooling.  We spend 90% of our time in that section of the catalog.  We recently tested out the new wood cutters and are extremely happy. We pushed these tools at speeds and feeds that are unbelievable.  We also use the Harvey Tool plastic cutters on a regular basis. 

Here at Hybrid Machining, we are blending the lines between routing and milling.  For many decades, the line had been fairly clear. There were certain types of jobs you ran on certain types of machines.  We are blurring those lines and are using the best tools for the jobs.  For instance, we use the 24K RPM spindle on the Robodrill to run it more like a router than a mill.  Therefore, we call it the “RoboRouter”.  We can produce wood and plastic parts at unbelievable speeds while achieving surface finishes that are off the charts.  This is not conventional practice, but the team at Hybrid Machining is willing to blaze the path forward for others to follow.

To check out more about Hybrid Machining go to their website or follow them on social media!

KAD Models – Featured Customer

Featured Image Courtesy of KAD Models

Established in 2012, KAD Models is a small, yet steadily growing prototype machine shop, which originated in the San Francisco Bay Area and has since opened its second location in Vermont. They have been a regional leader in the advanced manufacturing space for many years, and operate in close connection with other machine shops and related businesses like turning facilities, anodizers, welders, and more. KAD Models staff is comprised of diverse occupational backgrounds (e.g. mechanic, industrial engineer, blacksmith, etc.). Further, they have invested into their local community college and technical training programs to support an expanding talent pipeline for advanced manufacturing.

Brian Kippen is the owner & founder of KAD Models & Prototypes, Inc. Before launching KAD with model maker John Dove, Brian worked as the Director of Operations at A&J Product Solutions and a machinist at Performance Structures. Brian is drawn to the challenge of making design concepts into reality, and motivated by the ever-changing landscape of machining. Brian took time to speak with us about KAD Models, his experiences, machining techniques, and so much more.

KAD Models cnc machining a custom part
Photo Courtesy of: KAD Models

Can you give us a little background on how KAD Models was started?

I worked for a few years repairing automobiles, then following high school, I attended college for about three weeks. After some strong encouragement from my mom, I moved out west. I joined the Marines, broke both of my feet, and was honorably discharged. Then, I got my broken foot in the door at a machine shop and knew what I wanted to be when I grew up. After years of working as a machinist, I went into business with one of my previous employers. After a year and a half, the partnership degraded and I made the decision to buy out my partner.

It’s been really gratifying to see the business grow and get to know different types of customers as the shop’s reputation spreads. One of the reasons I wanted to start my own shop is that I really wanted to see the industry evolve in a new way, to better meet people’s needs. It’s been really great to see that decision and the investments I’ve made in building KAD pay off.

We produce approximately $1.5M of parts for 100+ distinct clients each year.  Since its founding in 2012, KAD has continued on a steady path of growth, adding staff, equipment, and clients without marketing or advertising. We build a broad range of products such as automotive drive axles, silicone cardiovascular valves, and fully functional consumer product models. Due to the nature of prototyping, no component is outside of the realm of possibility. 

What machines are currently in your shop?

We use Haas CNC machines. At our West coast facility, we have six machines, five vertical 4 AXIS machining centers with capacities up to 26” Y AND 50” X and one 5 AXIS universal machining center. At our East coast facility, we currently have two new CNC ONE 3 AXIS and one 5 AXIS universal machining center paired with a Trinity Automation AX5 robotic cell. I decided to get a 5 axis milling machine earlier last year because I felt we should invest before the absolute necessity arose. I’m excited about the creative options it opened up and it’s been fun to put it to good use. We are currently using both Fusion 360 and Surfcam software.

What sets KAD Models apart from the competition?

Our quick turnaround time of 3-5 days with our ability to tackle very complex parts sets KAD apart from a majority of manufacturers.

I also think our willingness to really dig in with the client and get to know what they need and why. We have a really creative team here at KAD and thrive at not only building complex parts, but helping industrial designers and engineers think through manufacturing, design, and usage requirements to build the simplest, most effective product we can. I’ve created prototypes before, just from a conversation with someone – not even a CAD drawing. It’s these types of interesting challenges that made me want to be a machinist in the first place and that keeps me engaged and excited day-to-day.

end mill machining metal
Photo Courtesy of: KAD Models

KAD Models is an innovative company. Can you speak about what innovations KAD makes?

Well, KAD works with some of the most innovative companies out there, across all kinds of industries: medical devices, aerospace, automotive, and consumer electronics. We help people at the forefront of innovation bring their ideas to life, so I’d say innovation is basically our bread and butter. As far as our innovations in process, as I said before, KAD has a really creative team. Since we are well known for prototyping and since prototype manufacturing need not follow all the common work holding rules, we break them on a daily basis.

What is your favorite part of your job?

I love the challenge of taking on seemingly impossible ideas and turning them into tangible things. I’m really satisfied when I can come home after a long day and have held the things I’ve made in my hands. I’m also really proud to be a business owner. It’s incredibly rewarding to see a team you’ve taught and grown to take on and be inspired by the same types of problems as you. It’s been really cool to see what we’ve been able to accomplish for our clients. My personal passion remains automotive.  KAD has reverse-engineered many no longer available automobile components and designed parts that upgrade vintage Datsuns.

assortment of prototype parts made by Kad Models
Photo Courtesy of: KAD Models

Why is high-quality tooling important to you?

In prototyping, you often get one chance in order to make deadlines. High quality and high-performance tools allow you to get this done without question. Given 95% of our tooling is either Helical or Harvey, I would say that high-quality tooling helps us out on a daily basis. We also use High Efficiency Milling (HEM) techniques, which Helical is optimized for. We find with long cutters and with deep pockets, HEM is almost a must.  Often though, on shallow areas, it’s overkill.  As with salt, there can be too much. 

cnc machined metal wine rack
Photo Courtesy of: KAD Models

If you could give one piece of advice to a new machinist what would it be?

Fail fast and fail often. Then learn from your mistakes. 

I think the biggest thing is getting to know other machinists, learning other methods, and being open to alternative ideas. It’s important to keep your mind open because there’s always more than one way to machine something. One of the things I’ve found most rewarding about running my own shop is getting to set the tone of how we work with other shops and adjacent industries. I’m really passionate about the manufacturing community as a whole and I’m glad blogs like this exist to help draw connections amongst us.

Also, don’t be afraid to challenge the status quo. I love working with new machinists because they bring different ideas to the table. That’s really important for innovation and to keep us all moving forward.

Feel free to check them out at www.kadmodels.com or on Instagram @kadmodels or stop by their west coast shop in California or new east coast location in Vermont.

New Dublin Ship Fittings – Featured Customer

Featured Image Courtesy of Lucas Gilbert, New Dublin Ship Fittings

New Dublin Ship Fittings was established in 2017 by Lucas Gilbert, and is located on the scenic south shore of Nova Scotia, Canada.  Lucas began his career with a formal education in machining and mechanical engineering. In the early 2000’s, Lucas got into the traditional shipbuilding industry made famous in the region he grew up in, Lunenburg County, Nova Scotia. It is then when Lucas identified the need for quality marine hardware and began making fittings in his free time. After some time, Lucas was able to start New Dublin Ship Fittings and pursue his lifelong dream of opening a machine shop and producing custom yacht hardware.

Lucas was our grand prize winner in the #MadeWithMicro100 Video Contest! He received the $1,000 Amazon gift card, a Micro-Quik™ Quick Change System with some tooling, and a chance to be In the Loupe’s Featured Customer for February. Lucas was able to take some time out of his busy schedule to discuss his shop, how he got started in machining, and the unique products he manufactures.

How did you start New Dublin Ship Fittings?

I went to school for machine shop and then mechanical engineering, only to end up working as a boat builder for 15 years. It was during my time as a boat builder that I started making hardware in my free time for projects we were working on. Eventually, that grew into full-time work. Right now, we manufacture custom silicon bronze and stainless fittings only. Eventually, we will move into a bronze hardware product line.

New Dublin Ship Fittings shop

Photo Courtesy of: New Dublin Ship Fittings

Where did your passion for marine hardware come from?

I’ve always loved metalworking. I grew up playing in my father’s knife shop, so when I got into wooden boats, it was only a matter of time before I started making small bits of hardware. Before hardware, I would play around making woodworking tools such as chisels, hand planes, spokeshaves, etc.

What can be found in your shop?

The shop has a 13”x 30” and 16”x 60” manual lathe, a Bridgeport Milling Machine, Burgmaster Turret Drill Press, Gang Drill, Bandsaw, 30-ton hydraulic press, #2 Hossfeld Bender, GTAW, and GMAW Welding Machines, as well as a full foundry set up with 90 pounds of bronze pour capacity. We generally only work in 655 silicon bronze and 316 stainless steel.

cnc machined boat parts

Photo Courtesy of: New Dublin Ship Fittings

What projects have you worked on at New Dublin Ship Fittings that stand out to you?

I’ve been lucky to work on several amazing projects over the years. Two that stand out are a 48’ Motorsailer Ketch built by Tern Boatworks, as well as the 63’ Fusion Schooner Farfarer, built by Covey Island Boatworks. Both boats we built most of the bronze deck hardware for.

cnc milled boat cleat

Photo Courtesy of: New Dublin Ship Fittings

I’ve made many interesting fittings over the years. I prefer to work with bronze, so I generally have the most fun working on those. I’m generally the most interested when the part is very
challenging to make and custom work parts are often very challenging. I’m asked to build or machine a component that was originally built in a factory and is difficult to reproduce with limited machinery and tooling, but I enjoy figuring out how to make it work.

Why is high-quality tooling important to you?

When I first started I would buy cheaper tooling to “get by” but the longer I did it, the more I realized that cheaper tooling doesn’t pay off. If you want to do quality work in a timely fashion, you need to invest in good tooling.

What Micro 100 Tools are you currently using?

Currently, we just have the Micro 100 brazed on tooling but we have been trying to move more into inserts so we are going to try out Micro’s indexable tooling line. After receiving the Micro-Quik™ Quick Change System, we are looking forward to trying out more of what (Micro 100) has to offer. This new system should help us reduce tool change time, saving us some money in the long run.

cnc machined rigging

Photo Courtesy of: New Dublin Ship Fittings

What makes New Dublin Ship Fittings stand out from the competition?

I think the real value I can offer boat builders and owners over a standard job shop is my experience with building boats. I understand how the fitting will be used and can offer suggestions as to how to improve the design.

If you could give one piece of advice to a new machinist what would it be?

The advice I would give to new machinists is to start slow and learn the machines and techniques before you try to make parts quickly. There is a lot of pressure in shops to make parts as fast as possible, but you’ll never be as fast as you can be if you don’t learn the processes properly first. Also, learn to sharpen drill bits well!

Axis CNC Inc. – Featured Customer

Featured Image Courtesy of Axis CNC Inc

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

Show Us What You #MadeWithMicro100

Are you proud of the parts you #MadeWithMicro100? Show us with a video of the parts you are making, the Micro 100 Tool used, and the story behind how that part came to be, for a chance to win a $1,000 Amazon gift card grand prize!

With the recent addition of the Micro 100 brand to the Harvey Performance Company family, we want to know how you have been utilizing its expansive tooling offering. Has Micro 100’s Micro-Quik™ system helped you save time and money? Do you have a favorite tool that gets the job done for you every time? Has Micro 100 tooling saved you from a jam? We want to know! Send us a video on Instagram and show us what you #MadeWithMicro100!

How to Participate

Using #MadeWithMicro100 and @micro_100, tag your video of the Micro 100 tools machining your parts on Instagram or Facebook. Remember, don’t share anything that could get you in trouble! Proprietary parts and trade secrets should not be on display.

Official Contest Rules

Contest Dates:

  • The contest will run between December 5, 2019 to January 17, 2020. Submit as many entries as you’d like! Entries that are submitted before or after the contest period will not be considered for the top prizes (But we’d still like to see them!)

The Important Stuff:

  1. Take a video of your Micro 100 tool in action, clear and visible.
  2. Share your video on social media using #MadeWithMicro100 and tagging @Micro_100.
  3. Detail the story behind the project (tool number(s), operation, running parameters, etc.)

Prizes

All submissions will be considered for the $1,000 Amazon gift card grand prize. Of these entries, the most impressive (10) will be put up to popular vote. All entries put up to vote will be featured on our new customer testimonial page on our website with their name, social media account, and video displayed for everybody to see.

We’ll pick our favorites, but the final say is up to you. Public voting will begin on January 21, 2020, and a winner will be announced on January 28, 2020.

The top five entries will be sent Micro 100’s Micro-Quik™ tool change system with a few of our quick change tools. The top three entries will be offered a spot as a “Featured Customer” on our “In The Loupe” blog!

The Fine Print:

  • Please ensure that you have permission from both your employer and customer to post a video.
  • All entries must be the original work of the person identified in the entry.
  • No purchase necessary to enter or win. A purchase will not increase your chances of winning.
  • On January 28, 2020, the top 5 winners will be announced to the public. The Top 5 selected winners will receive a prize. The odds of being selected depend on the number of entries received. If a potential winner cannot be contacted within five (5) days after the date of first attempt, an alternative winner may be selected.
  • The potential winners will be notified via social media. Each potential winner must complete a release form granting Micro 100 full permission to publish the winner’s submitted video. If a potential winner cannot be contacted, or fails to submit the release form, the potential winner forfeits prize. Potential winners must continue to comply with all terms and conditions of these official contest rules, and winning is contingent upon fulfilling all requirements.
  • Participation in the contest constitutes entrants’ full and unconditional agreement to and acceptance of these official rules and decisions. Winning a prize is contingent upon being compliant with these official rules and fulfilling all other requirements.
  • The Micro 100 Video Contest is open to residents in US and Canada who are at least 18 years old at the time of entry.