Posts

Harvey Performance Company Joins High Speed Machining Roadshow

Updated March 30, 2020 – All In-Person Events Postponed, Join The Webinar on April 7th

Due to the current coronavirus (COVID-19) pandemic, and in an effort to maintain the safety and health of all employees and attendees, all in-person High Speed Machining events have been postponed until further notice. We hope to reschedule these events in the future.

In the meantime, we are offering the event in a virtual webinar setting on April 7th. Interested users can register here: https://micromachine.fusion360.events-autodesk.com/ 


Harvey Performance Company is excited to announce that we have partnered with Air Turbine Spindles, Autodesk, and 5th Axis Workholding on a series of nationwide events focused on high speed machining with miniature tooling from our Harvey Tool brand. This “High Speed Machining Roadshow” will be stopping at different machine tool suppliers across the US, ranging from Connecticut and Ohio to Arizona and California.

Each event will feature live high speed, micro machining demos at spindle speeds up to 65,000 RPM, and in-depth technical presentations to help unlock the mystery behind high speed machining. A free lunch will be provided for all in attendance, and there will be many opportunities to network with local CNC machinists, programmers, and engineers. Attendees will also have access to Application Engineers from all of the industry participants, including Harvey Performance Company, to help discuss difficult applications, troubleshoot current projects, and develop new, valuable relationships with local experts.

“We receive questions from our customers on a daily basis, and many are about micro machining with high RPMs,” said Jeff Rauseo, Manager of Digital Marketing, Harvey Performance Company. “We hope that by participating in these events, we can ease some of the fears that come with using miniature tooling and help enable successful micromachining projects in shops nationwide.”

A current list of dates and locations for these events can be seen here. More events and locations may be added at a later date, so stay tuned for updates from Air Turbine Spindles and Harvey Performance Company.

If you have any questions, please reach out to Tony Gunn at Air Turbine Spindles or visit their website for more information.


high speed machining

5 Things to Know About Helical’s High Feed End Mills

Helical Solutions‘ High Feed End Mills provide many opportunities for machinists, and feature a special end profile to increase machining efficiencies. A High Feed End Mill is a High Efficiency Milling (HEM) style tool with specialized end geometry that utilizes chip thinning, allowing for drastically increased feed rates in certain applications. While standard end mills have square, corner radius, or ball profiles, this Helical tool has a specialized, very specific design that takes advantage of chip thinning, resulting in a tool that can be pushed harder than a traditional end mill.

Below are 5 things that all machinists should know about this exciting Helical Solutions product offering.

1. They excel in applications with light axial depths of cut

A High Feed End Mill is designed to take a large radial depth of cut (65% to 100% of the cutter diameter) with a small axial depth of cut (2.5% to 5% diameter) depending on the application. This makes High Feed End Mills perfect for face milling, roughing, slotting, deep pocketing, and 3D milling. Where HEM toolpaths involve light radial depths of cut and heavy axial depths of cut, High Feed End Mills utilize high radial depths of cut and smaller axial depths of cut.

2. This tool reduces radial cutting forces

The end profile of a High Feed End Mill is designed to direct cutting forces upward along the axis of the tool and into the spindle. This reduces radial cutting forces which cause deflection, allowing for longer reach tools while reducing chatter and other issues that may otherwise lead to tool failure. The reduction of radial cutting forces makes this tool excellent for use in machines with lower horsepower, and in thin wall machining applications.

3. High Feed End Mills are rigid tools

The design and short length of cut of High Feed End Mills work in tandem with the end geometry to produce a tool with a strong core, further limiting deflection and allowing for tools with greater reach lengths.

4. They can reduce cycle times

In high RDOC, low ADOC applications, High Feed End Mills can be pushed significantly faster than traditional end mills, saving time and money over the life of the tool.

5. High Feed End Mills are well suited for hard materials

The rigidity and strength of High Feed End Mills make them excellent in challenging to machine materials. Helical’s High Feed End Mills come coated with Tplus coating, which offers high hardness and extended tool life in high temp alloys and ferrous materials up to 45Rc.

In summary, High Feed End Mill tools with specialized end geometry that utilizes chip thinning and light axial depths of cut to allow for significantly increased feed rates in face milling, slotting, roughing, deep pocket milling, and 3D milling applications. The end profile of a High Feed End Mill applies cutting forces back up into the spindle, reducing radial forces that lead to deflection in long reach applications. Combining this end geometry with a stubby length of cut results in a tool that is incredibly rigid and well suited for harder, difficult to machine materials.

Machining Advisor Pro Updated With New Improvements

Harvey Performance Company is excited to announce that Machining Advisor Pro, a cutting edge resource for generating custom CNC running parameters, has been updated with new features and improvements with the release of version 1.5.

Thousands of users have enjoyed the benefits of using Machining Advisor Pro (MAP) to dial in their running parameters for their Helical Solutions high-performance end mills, and with version 1.5, the Harvey Performance Company team has made customizing your speeds and feeds easier than ever. Much of the work done on MAP version 1.5 was the direct result of excellent user feedback, including some of the most innovative updates to the user experience since the launch of Machining Advisor Pro in 2018.

The new improvements to MAP include:

Improved Speed and Feed Sliders (Desktop)

The speed and feed sliders in the “Recommendations” section are now percentage-based. This allows users to more precisely adjust their running parameters while fine-tuning numbers for increased production or longer tool life. Previously, users could adjust their speed and feed values with dials, but without an exact measurement of the increase or decrease. With the new sliders, users can be more accurate, adjusting their speed and feed values by +/- 20% in one percent increments. Users can also type in percentage values to automatically adjust the sliders to their desired number.

machining advisor pro

Locking Depths of Cut

Inside of the “Parameters” section, users will now see a new button that allows them to lock their depths of cut. With this new feature, users have more control over the customization of their running parameters. In the past, the radial and axial depths of cut would adjust dynamically with each other based on the user adjustments to one of the values. Now users can lock the radial depth of cut (RDOC) and adjust the axial depth of cut (ADOC) without affecting the RDOC value, and vice versa.

Machining Advisor Pro Update

Enhanced Summary Section (Mobile)

On mobile devices, users will now see an enhanced “Summary” section at the completion of their job. The summary section will now include key metrics like material removal rate (MRR), as well as important parameters that apply to trochoidal slotting toolpaths. The summary section for chamfering toolpaths has also been updated to better reflect the necessary parameters for those tools.

Machining Advisor Pro Mobile

Smoother User Experience

In MAP version 1.5, users will be greeted with a much smoother user experience throughout the application. Due largely to user feedback, the Harvey Performance Company team has been hard at work to make sure that the major pain points within the application have been addressed. Much of the feedback centered around the “Tooling” section and the “Material” section and significant improvements have been made to each.

In the tooling section, MAP will now automatically select a tool for you if you enter a valid EDP once you navigate outside of that section. If an invalid EDP number is entered, the intrusive error message has been removed and now will display “no results found” in the drop-down menu.

In the material section, MAP requires that a material condition be selected in order to generate accurate running parameters. In the past, this was not immediately clear and could lead some users to believe that the application was malfunctioning. In version 1.5, once a user leaves the material section without selecting a condition, a message will display in the material section to alert users of the missing material condition.

Open in MAP from HelicalTool.com

On the new HelicalTool.com website, users can now import a tool into MAP from the Tool Details page. Users reach the Tool Details page by clicking on a SKU in a product table, or searching for an EDP in the search bar. Once on the Tool Details page, users can select “Open in Machining Advisor Pro” under the Resources section, and MAP will open in a new window and import the tool’s information directly into MAP.

Helical Machining Advisor Pro


Users will see these updates immediately upon their next log-in to the application on a desktop computer and will need to ensure their app is updated to the latest version from the App Store or Google Play to see these changes reflected on mobile.

To get started with Machining Advisor Pro, click here to create an account.

To stay up-to-date on all of the latest improvements and news on Machining Advisor Pro and the Harvey Performance Company brands, join our email list.

If you have any feedback or questions about MAP, please contact Harvey Performance Company at [email protected].

Harvey Performance Company Partners with GibbsCAM

January 7, 2020 (Rowley, MA) – Harvey Performance Company is proud to announce a new partnership with GibbsCAM, a powerful single interface CAM system developed by 3D Systems. GibbsCAM offers solutions ranging from simple 2-axis milling and turning to complex Multi-Task Machining, making them a great partner for the Harvey Performance Company family of brands.

As a result of this new partnership, GibbsCAM users can expect to see new Harvey Tool and Helical Solutions end mill libraries immediately available within GibbsCAM as a new plugin. This plugin will be included with all new releases of GibbsCAM, and will be available once users update their software to the latest version. In the future, users can expect additional tool libraries containing specialty profile tools, holemaking/threading tools, and tooling from Micro 100.

GibbsCAM users interested in accessing these new tool libraries can visit our FAQ page to learn more.

GibbsCAM Tool Library

Key GibbsCAM and Harvey Performance Company Customer Benefits:

  • Harvey Performance Company tool libraries optimized for GibbsCAM users
  • No download required – all tooling is available directly in GibbsCAM in the plugin menu
  • New educational and technical content for machinists and programmers

“GibbsCAM has been a great partner for us,” said Jeff Rauseo, Manager – Digital Marketing, Harvey Performance Company. “By working with their software team to develop a new plugin built specifically for GibbsCAM, we are able to immediately offer accurate tool models to every GibbsCAM user with no downloads or imports required.”

“Having the Harvey Performance Company tool libraries available in GibbsCAM has been a welcome addition to our software,” said Israel Klain, Director of Engineering – GibbsCAM, 3D Systems. “The GibbsCAM community truly appreciates the partnership, and it supports our goal to continuously provide them with more efficient solutions for their metal cutting needs”


About 3D Systems
3D Systems provides comprehensive 3D products and services, including 3D printers, print materials, on-demand manufacturing services and digital design tools. Its ecosystem supports advanced applications from the product design shop to the factory floor to the operating room. 3D Systems’ precision healthcare capabilities include simulation, Virtual Surgical Planning, and printing of medical and dental devices as well as patient-specific surgical instruments. As the originator of 3D printing and a shaper of future 3D solutions, 3D Systems has spent its 30 year history enabling professionals and companies to optimize their designs, transform their workflows, bring innovative products to market and drive new business models. For more information visit: www.3dsystems.com

About Harvey Performance Company
Harvey Performance Company strives to offer unique and innovative products to solve industries’ most challenging machining requirements. Its distinct brands, Harvey Tool, Helical Solutions, and Micro 100, serve specialty needs and markets with a shared commitment to delivering high quality friendly service, providing comprehensive product support, and treating customers, suppliers, and shareholders in a way that builds strategic, strong, products and superior service. The brands offer a broad range of products and services that help support machinists, engineers, and CNC programmers while giving their shops a competitive advantage. Harvey Performance has a proud history of doing business the right way – offering fast and enduring relationships. For more information visit www.harveyperformance.com.

Axis CNC Inc. – Featured Customer

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

How Boring Bar Geometries Impact Cutting Operations

Boring is a turning operation that allows a machinist to make a pre-existing hole bigger through multiple iterations of internal boring. It has a number of advantages over traditional drilling methods:

  • The ability to cost-effectively produce a hole outside standard drill sizes
  • The creation of more precise holes, and therefore tighter tolerances
  • A greater finish quality
  • The opportunity to create multiple dimensions within the bore itself

 

Solid carbide boring bars, such as those offered by Micro 100,  have a few standard dimensions that give the tool basic functionality in removing material from an internal bore. These include:

Minimum Bore Diameter (D1): The minimum diameter of a hole for the cutting end of the tool to completely fit inside without making contact at opposing sides

Maximum Bore Depth (L2): Maximum depth that the tool can reach inside a hole without contact from the shank portion

Shank Diameter (D2): Diameter of the portion of the tool in contact with the tool holder

Overall Length (L1): Total length of the tool

Centerline Offset (F): The distance between a tool’s tip and the shank’s centerline axis

Tool Selection

In order to minimize tool deflection and therefore risk of tool failure, it is important to choose a tool with a max bore depth that is only slightly larger than the length it is intended to cut. It is also beneficial to maximize the boring bar and shank diameter as this will increase the rigidity of the tool. This must be balanced with leaving enough room for chips to evacuate. This balance ultimately comes down to the material being bored. A harder material with a lower feed rate and depths of cut may not need as much space for chips to evacuate, but may require a larger and more rigid tool. Conversely, a softer material with more aggressive running parameters will need more room for chip evacuation, but may not require as rigid of a tool.

Geometries

In addition, they have a number of different geometric features in order to adequately handle the three types of forces acting upon the tool during this machining process. During a standard boring operation, the greatest of these forces is tangential, followed by feed (sometimes called axial), and finally radial. Tangential force acts perpendicular to the rake surface and pushes the tool away from the centerline. Feed force does not cause deflection, but pushes back on the tool and acts parallel to the centerline. Radial force pushes the tool towards the center of the bore.

 

Defining the Geometric Features of Boring Bars:

Nose Radius: the roundness of a tool’s cutting point

Side Clearance (Radial Clearance): The angle measuring the tilt of the nose relative to the axis parallel to the centerline of the tool

End Clearance (Axial Clearance): The angle measuring the tilt of the end face relative to the axis running perpendicular to the centerline of the tool

Side Rake Angle: The angle measuring the sideways tilt of the side face of the tool

Back Rake Angle: The angle measuring the degree to which the back face is tilted in relation to the centerline of the workpiece

Side Relief Angle: The angle measuring how far the bottom face is tilted away from the workpiece

End Relief Angle: The angle measuring the tilt of the end face relative to the line running perpendicular to the center axis of the tool

Effects of Geometric Features on Cutting Operations:

Nose Radius: A large nose radius makes more contact with the workpiece, extending the life of the tool and the cutting edge as well as leaving a better finish. However, too large of a radius will lead to chatter as the tool is more exposed to tangential and radial cutting forces.

Another way this feature affects the cutting action is in determining how much of the cutting edge is struck by tangential force. The magnitude of this effect is largely dependent on the feed and depth of cut. Different combinations of depth of cuts and nose angles will result in either shorter or longer lengths of the cutting edge being exposed to the tangential force. The overall effect being the degree of edge wear. If only a small portion of the cutting edge is exposed to a large force it would be worn down faster than if a longer portion of the edge is succumb to the same force. This phenomenon also occurs with the increase and decrease of the end cutting edge angle.

End Cutting Edge Angle: The main purpose of the end cutting angle is for clearance when cutting in the positive Z direction (moving into the hole). This clearance allows the nose radius to be the main point of contact between the tool and the workpiece. Increasing the end cutting edge angle in the positive direction decreases the strength of the tip, but also decreases feed force. This is another situation where balance of tip strength and cutting force reduction must be found. It is also important to note that the angle may need to be changed depending on the type of boring one is performing.

Side Rake Angle: The nose angle is one geometric dimension that determines how much of the cutting edge is hit by tangential force but the side rake angle determines how much that force is redistributed into radial force. A positive rake angle means a lower tangential cutting force as allows for a greater amount of shearing action. However, this angle cannot be too great as it compromises cutting edge integrity by leaving less material for the nose angle and side relief angle.

Back Rake Angle: Sometimes called the top rake angle, the back rake angle for solid carbide boring bars is ground to help control the flow of chips cut on the end portion of the tool. This feature cannot have too sharp of a positive angle as it decreases the tools strength.

Side and End Relief Angles: Like the end cutting edge angle, the main purpose of the side and end relief angles are to provide clearance so that the tools non-cutting portion doesn’t rub against the workpiece. If the angles are too small then there is a risk of abrasion between the tool and the workpiece. This friction leads to increased tool wear, vibration and poor surface finish. The angle measurements will generally be between 0° and 20°.

Boring Bar Geometries Summarized

Boring bars have a few overall dimensions that allow for the boring of a hole without running the tool holder into the workpiece, or breaking the tool instantly upon contact. Solid carbide boring bars have a variety of angles that are combined differently to distribute the 3 types of cutting forces in order to take full advantage of the tool. Maximizing tool performance requires the combination of choosing the right tool along with the appropriate feed rate, depth of cut and RPM. These factors are dependent on the size of the hole, amount of material that needs to be removed, and mechanical properties of the workpiece.

 

The Geometries and Purposes of a Slitting Saw

When a machinist needs to cut material significantly deeper than wide, a Slitting Saw is an ideal choice to get the job done. A Slitting Saw is unique due to its composition and rigidity, which allows it to hold up in a variety of both straightforward and tricky to machine materials.

What is a Slitting Saw?

A Slitting Saw is a flat (with or without a dish), circular-shaped saw that has a hole in the middle and teeth on the outer diameter. Used in conjunction with an arbor, a Slitting Saw is intended for machining purposes that require a large amount of material to be removed within a small diameter, such as slotting or cutoff applications.

Other names for Slitting Saws include (but are not limited to) Slitting Cutters, Slotting Cutters, Jewelers Saws, and Slitting Knives. Both Jewelers Saws and Slitting Knives are particular types of Slitting Saws. Jewelers Saws have a high tooth count enabling them to cut tiny, precise features, and Slitting Knives are Slitting Saws with no teeth at all. On Jewelers Saws, the tooth counts are generally much higher than other types of saws in order to make the cuts as accurate as possible.

Key Terminology

Why Use a Slitting Saw?

These saws are designed for cutting into both ferrous and non-ferrous materials, and by utilizing their unique shape and geometries, they can cut thin slot type features on parts more efficiently than any other machining tool.

Common Applications:

  1. Separating Two Pieces of Material
    1. If an application calls for cutting a piece of material, such as a rod, in half, then a slitting saw will work well to cut the pieces apart while increasing efficiency.
  2. Undercutting Applications
    1. Saws can perform undercutting applications if mounted correctly, which can eliminate the need to remount the workpiece completely.
  3. Slotting into Material
    1. Capable of creating thin slots with a significant depth of cut, Slitting Saws can be just the right tool for the job!

When Not to Use a Slitting Saw

While it may look similar to a stainless steel circular saw blade from a hardware store, a Slitting Saw should never be used with construction tools such as a table or circular saw.  Brittle saw blades such as slitting saws will shatter when used on manual machines, and can cause injury when not used on the proper set up.

In Conclusion

Slitting Saws can be beneficial to a wide variety of machining processes, and it is vital to understand their geometries and purpose before attempting to utilize them in the shop. They are a great tool to have in the shop and can assist with getting jobs done as quickly and efficiently as possible.

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

Harvey Performance Company Partners with SolidCAM

April 4, 2019 (Rowley, MA) – Harvey Performance Company is proud to announce a new partnership with SolidCAM, the industry leaders in integrated CAM software. SolidCAM software runs directly inside the popular SOLIDWORKS and Autodesk Inventor CAD programs, with seamless integration and full tool path associativity.

As a result of this new partnership, SolidCAM users can expect to see updated Helical Solutions tool libraries, new Harvey Tool and Micro 100 tool libraries, and more engaging technical content in the coming months. Users will see the immediate benefits of this new partnership during the upcoming Live Machining Webinar titled “The Science of Cutting” hosted by SolidCAM on April 10. This webinar will feature live machining with Helical Solutions tooling, utilizing SolidCAM’s iMachining technology. Interested viewers can register for this event here.

Key SolidCAM and Harvey Performance Company Customer Benefits:

  • Harvey Performance Company tool libraries optimized for SolidCAM users
  • New educational and technical content for machinists and programmers
  • The opportunity for CAM and tooling companies to learn from each other, bettering the overall customer experience from tool selection to programming.

“SolidCAM and Harvey Performance Company are a great fit as partners,” said Jeff Rauseo, Senior Marketing Specialist – Strategic Partnerships & Applications, Harvey Performance Company. “We are especially excited to work with them on their iMachining technology, which utilizes many of the same High Efficiency Milling techniques and benefits that we share with our customers regularly.”

“SolidCAM is honored to embark on this partnership with Harvey Performance Company,” said Ken Merritt, Director of Partner Projects & Senior Applications Engineer, SolidCAM. “The Harvey Performance Company tooling brands are a great fit with iMachining, providing high performance chip removal that does not limit the performance of SolidCAM’s revolutionary iMachining tool path.”


About SolidCAM
SolidCAM provides a powerful, easy-to-use, integrated CAD/CAM solution that supports the complete range of major manufacturing applications, including iMachining 2D and 3D, 2.5D Milling, High Speed Surface Machining, 3D Milling/High-Speed Machining, Multi-sided Indexial 4/5 axis Milling, Simultaneous 5 axes Milling, Turning, advanced Mill-Turn including Swiss-Type CNCs and WireEDM. SolidCAM’s patented, unique revolutionary iMachining technology saves 70% in CNC machining time and more and extends tool life dramatically. The iMachining Technology Wizard provides a reliable partner in automatically determining speeds and feeds and other machining parameters. iMachining provides unbelievable savings and increased efficiency in CNC milling operations, translating into profits and success. All SolidCAM customers worldwide, who bought iMachining, are enjoying immense savings! For more information visit www.solidcam.com.

About Harvey Performance Company
Harvey Performance Company strives to offer unique and innovative products to solve industries’ most challenging machining requirements. Its distinct brands, Harvey Tool, Helical Solutions, and Micro 100, serve specialty needs and markets with a shared commitment to delivering high quality friendly service, providing comprehensive product support, and treating customers, suppliers, and shareholders in a way that builds strategic, strong, products and superior service. The brands offer a broad range of products and services that help support machinists, engineers, and CNC programmers while giving their shops a competitive advantage. Harvey Performance has a proud history of doing business the right way – offering fast and enduring relationships. For more information visit www.harveyperformance.com.

Harvey Performance Company Announces Partnership with Mastercam

ROWLEY, MA (November 30, 2018) – Harvey Performance Company is proud to announce a new partnership with CNC Software Inc., the developers of Mastercam software. Mastercam is a CAD/CAM software for 2-through-5-axis routing, milling and turning, 2-and-4-axis wire EDM, 2D and 3D design, surface and solid modeling, and Swiss machining

This new partnership between Harvey Performance Company’s leading cutting tool brands, Harvey Tool and Helical Solutions, and Mastercam will allow both companies to work together to share ideas that shape the future of manufacturing from both a tooling and CAM perspective. A great example of this collaboration is the new Deburring toolpath available in Mastercam 2019. Harvey Tool has many deburring tools which have been used in various tests of this new toolpath. These opportunities have given the Harvey Performance Company team additional insight into the performance of the tooling and allowed the Mastercam team to optimize this new toolpath for their users.

“I think the major benefit from both partners is bringing CAM software and cutting tool innovation closer together to generate a better user experience from the moment you start programming until the time you hit the Cycle Start button and start making chips,” says Jeff Rauseo, Senior Marketing Specialist – Strategic Partnerships & Applications, Harvey Performance Company.

To learn more about this partnership, read the full press release.

For more information on Mastercam, please visit www.mastercam.com.