Tag Archive for: harvey performance company

Understanding Threads & Thread Mills

Thread milling can present a machinist many challenges. While thread mills are capable of producing threads with relative ease, there are a lot of considerations that machinists must make prior to beginning the job in order to gain consistent results. To conceptualize these features and choose the right tool, machinists must first understand basic thread milling applications.

multi-form threadmill in holder

What is a Thread?

The primary function of a thread is to form a coupling between two different mechanisms. Think of the cap on your water bottle. The cap couples with the top of the bottle in order to create a water tight seal. This coupling can transmit motion and help to obtain mechanical advantages.  Below are some important terms to know in order to understand threads.

Root – That surface of the thread which joins the flanks of adjacent thread forms and is immediately adjacent to the cylinder or cone from which the thread projects.

Flank – The flank of a thread is either surface connecting the crest with the root. The flank surface intersection with an axial plane is theoretically a straight line.

Crest – This is that surface of a thread which joins the flanks of the thread and is farthest from the cylinder or cone from which the thread projects.

Pitch – The pitch of a thread having uniform spacing is the distance measured parallelwith its axis between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis. Pitch is equal to the lead divided by the number of thread starts.

Major Diameter – On a straight thread the major diameter is that of the major cylinder.On a taper thread the major diameter at a given position on the thread axis is that of the major cone at that position.

Minor Diameter – On a straight thread the minor diameter is that of the minor cylinder. On a taper thread the minor diameter at a given position on the thread axis is that of the minor cone at that position.

Helix Angle – On a straight thread, the helix angle is the angle made by the helix of the thread and its relation to the thread axis. On a taper thread, the helix angle at a given axial position is the angle made by the conical spiral of the thread with the axis of the thread. The helix angle is the complement of the lead angle.

Depth of Thread Engagement – The depth (or height) of thread engagement between two coaxially assembled mating threads is the radial distance by which their thread forms overlap each other.

External Thread – A thread on a cylindrical or conical external surface.

Internal Thread – A thread on a cylindrical or conical internal surface.

Class of Thread – The class of a thread is an alphanumerical designation to indicate the standard grade of tolerance and allowance specified for a thread.

Source: Machinery’s Handbook 29th Edition

thread milling

Types of Threads & Their Common Applications:

ISO Metric, American UN: This thread type is used for general purposes, including for screws. Features a 60° thread form.

British Standard, Whitworth: This thread form includes a 55° thread form and is often used when a water tight seal is needed.

NPT: Meaning National Pipe Tapered, this thread, like the Whitworth Thread Form, is also internal. See the above video for an example of an NPT thread.

UNJ, MJ: This type of thread is often used in the Aerospace industry and features a radius at the root of the thread.

ACME, Trapezoidal: ACME threads are screw thread profiles that feature a trapezoidal outline, and are most commonly used for power screws.

Buttress Threads: Designed for applications that involve particularly high stresses along the thread axis in one direction. The thread angle on these threads is 45° with a perpendicular flat on the front or “load resisting face.”         

Thread Designations

Threads must hold certain tolerances, known as thread designations, in order to join together properly. International standards have been developed for threads. Below are examples of Metric, UN, and Acme Thread Designations. It is important to note that not all designations will be uniform, as some tolerances will include diameter tolerances while others will include class of fit.

Metric Thread Designations              

M12 x 1.75 – 4h – LH

In this scenario, “M” designates a Metric Thread Designation, 12 refers to the Nominal Diameter, 1.75 is the pitch, 4h is the “Class of Fit,” and “LH” means “Left-Hand.”

UN Thread Designations

¾ 10 UNC 2A LH

For this UN Thread Designation, ¾ refers to the thread’s major diameter, where 10 references the number of threads per inch. UNC stands for the thread series; and 2A means the class of thread. The “A” is used to designate external threads, while “B” is for internal threads. For these style threads, there are 6 other classes of fit; 1B, 2B, and 3B for internal threads; and 1A, 2A, and 3A for external threads.

ACME Thread Designations

A 1 025 20-X

For this ACME Thread Designation, A refers to “Acme,” while 1 is the number of thread starts. The basic major diameter is called out by 025 (Meaning 1/4”) while 20 is the callout for number of threads per inch. X is a placeholder for a number designating the purpose of the thread. A number 1 means it’s for a screw, while 2 means it’s for a nut, and 3 refers to a flange.

How Are Threads Measured?

Threads are measured using go and no-go gauges. These gauges are inspection tools used to ensure the that the thread is the right size and has the correct pitch. The go gauge ensures the pitch diameter falls below the maximum requirement, while the no-go gauge verifies that the pitch diameter is above the minimum requirement. These gauges must be used carefully to ensure that the threads are not damaged.

Thread Milling Considerations

Thread milling is the interpolation of a thread mill around or inside a workpiece to create a desired thread form on a workpiece. Multiple radial passes during milling offer good chip control. Remember, though, that thread milling needs to be performed on machines capable of moving on the X, Y, and Z axis simultaneously.

5 Tips for Successful Thread Milling Operations:

1.  Opt for a Quality Tooling Manufacturer

There is no substitute for adequate tooling. To avoid tool failure and machining mishaps, opt for a quality manufacturer for High Performance Drills for your starter holes, as well as for your thread milling solutions. Harvey Tool fully stocks several types of threadmills, including Single Form, Tri-Form, and Multi-Form Thread Milling Cutters. In addition, the 60° Double Angle Shank Cutter can be used for thread milling. Titan USA’s threadmill lineup features both Standard and Coolant Fed Internal/External Threadmills as well as NPT/NPTF Threadmills and Metric Mills.

thread milling

Image Courtesy of  @Avantmfg

2. Select a Proper Cutter Diameter

Choose only a cutter diameter as large as you need. A smaller cutter diameter will help achieve higher quality threads.

3. Ensure You’re Comfortable With Your Tool Path

Your chosen tool path will determine left hand or right hand threads.

Right-hand internal thread milling is where cutters move counterclockwise in an upwards direction to ensure that climb milling is achieved.

Left-hand internal thread milling a left-hand thread follows in the opposite direction, from top to bottom, also in a counterclockwise path to ensure that climb milling is achieved.

4. Assess Number of Radial Passes Needed

In difficult applications, using more passes may be necessary to achieve desired quality. Separating the thread milling operation into several radial passes achieves a finer quality of thread and improves security against tool breakage in difficult materials. In addition, thread milling with several radial passes also improves thread tolerance due to reduced tool deflection. This gives greater security in long overhangs and unstable conditions.

5. Review Chip Evacuation Strategy

Are you taking the necessary steps to avoid chip recutting due to inefficient chip evacuation? If not, your thread may fall out of tolerance. Opt for a strategy that includes coolant, lubricant, and tool retractions.

Titan USA Threadmill

In Summary

Just looking at a thread milling tool can be confusing – it is sometimes hard to conceptualize how these tools are able to get the job done. But with proper understanding of call, methods, and best practices, machinists can feel confident when beginning their operation.

Harvey Tool: Behind the Scenes

Many of our end users have had great questions about our manufacturing process, how we keep all of our tools in stock, and more. Now for the first time, we decided to open our doors and show you how we manufacture and fulfill the Harvey Tool product. We partnered with John Saunders from NYC CNC to create a “Factory Tour” video, covering topics like our CNC grinding machines and setups, tool manufacturing, and our warehouse organization and fulfillment procedures.

In the video below, we first toured our Rowley, MA warehouse and fulfillment center with Fulfillment Manager Megan Townsley. After that, we head up to Maine to check out how the Harvey Tool product is manufactured and inspected with VP of Operations Brian McKahan.

7 Facts Revealed in Our Factory Tour (Plus 3 More That Didn’t Make the Cut)

We know you’re busy making amazing parts, and might not have time for the entire video. To save you time, here are some of the highlights and facts you should know about Harvey Tool.

When We Say Miniature, We Mean Miniature

Our miniature end mills are in stock in diameters down to .001″. In fact, our Stub and Standard end mills cover every diameter from .001″ to .120″, meaning we will always have you covered when it comes to micro-machining. Although it is hard to see with the naked eye, you can get an up-close look at the famed .001″ end mill by jumping to the 35 minute mark in the tour video.

Micro-Tools Require Precision Grinding

We utilize advanced CNC grinding technology to manufacture our miniature tools at our plant in Maine. Brian MacKahan, VP of Operations, does an excellent job of breaking down our manufacturing process beginning at the 21 minute mark of the tour video. If you just want to see some miniature CNC grinding in action, jump ahead to the 26 minute mark.

Our Inspection Process is Rigourous

All of our tools are sent through an extensive inspection process, both at our plant in Maine and at our headquarters in Massachusetts. To check out the Massachusetts inspection room, head to the 19 minute mark of the video. If you want to see some more in-depth inspection at our facility in Maine, you can jump to the 35 minute mark.

Yes, We Have It In Stock

If you need it, we have it. All 20,000+ tools from our catalog are kept stocked and ready to ship to you the same day. If you need more proof, jump to 15:30 in the tour video, where you will see John Saunders choose a randomly selected Undercutting End Mill from our catalog and find it in our warehouse, in stock and ready to head out to a shop.

We Maintain a 99.8% Order Accuracy Rate

Our fulfillment team handles all of your orders with precision and accuracy. We maintain a 99.8% order accuracy rate, with fulfillment team members checking every order multiple times to ensure you receive exactly what you need. You can learn more about our order fulfillment process and accuracy rates by moving to the 5 minute mark in the video.

We Sell More Than Miniature

Miniature end mills have always been our bread and butter, but did you know that we have many larger diameter tools in stock as well? At the 9 minute mark in the video, you can see John pull out a 3/4″ Long Reach Ball Nose End Mill from our shelves. If you are interested in larger diameter specialty tooling, jump to 12:15 in the video to check out one of our large diameter Corner Rounding End Mills.

When You Call, You’ll Always Talk to An Experienced Tech Expert

Though we didn’t catch it on tape, John Saunders was blown away by our tech team during his visit. He got a chance to pick their brains about a problem he was having and a few minutes later, he received a recommendation for the right compression cutter to tackle his unique operation. This tool was later showcased in one of his “Widget Wednesday” videos.

When you choose Harvey Tool, you will never get an automated system or countless steps before you are able to talk to a real person about your applications. Our industry-leading technical support team is available over the phones or via email every Monday-Friday from 8 AM EST to 7 PM EST. You can reach them by calling 800-645-5609, or by sending an email to [email protected].

We Value Our Distributor Network

We value our large distributor network, and we ask that all orders are placed with your local dealer. To find the closest distributor to you, use the “Find a Distributor” tool on our website.

We’re Hiring!

We are currently hiring for many different positions, including open CNC Machinists positions for all shifts at our manufacturing plant. If you want to be a part of the Harvey Performance Company team, check out our Opportunities page for more information.

5 Ways Your Shop is Inefficient

5 Ways Your Shop is Inefficient

In today’s ultracompetitive industry, every machine shop seeks even the slightest edge to gain an advantage on their competition and boost their bottom line. However, what many machinists don’t know is that improving their shop’s efficiency might be easier than they thought. The following five ways your shop is inefficient will provide a clear starting point of where to look for machinists desperate to earn a competitive edge.

Premature Tool Decay / Tool Failure

If you’re finding that your tools are failing or breaking at an unacceptable rate, don’t mistake it for commonplace. It doesn’t have to be. Prolonging the life of your tooling starts with finding not just the right tool, but the best one; as well as running it in a way to get its optimal performance. Many machinists mistake premature tool failure with running parameters that were too aggressive. In fact, not pushing the tool to its full potential can actually cause it to decay at an accelerated rate in certain situations.

Tool failure can occur in many different ways: Abrasive Wear, Chipping, Thermal Cracking or Tool Fracture, just to name a few. Understanding each type and its causes can help you to quickly boost your shop’s efficiency by minimizing downtime and saving on replacement tool costs.

tool wear Shop Inefficient

An example of a tool with excessive wear

For more information on tool wear, view Avoiding 4 Major Types of Tool Wear.

Subpar Part Finish

Your shop spends money to employ machinists, run machines, and buy cutting tools. Get your money’s worth, lead the industry, and ensure that you’re providing your customers with the highest quality product. Not only will this help to keep your buyer-seller relationship strong, but it will allow you the flexibility to increase your prices in the future, and will attract prospective customers.

Many factors influence part finish, including the material and its hardness, the speeds and feeds you’re running your tool at, tool deflection, and the tool-to-workpiece orientation.

For more information on ways to improve your part finish, view our Part Finish Reference Guide.

Inefficient Coolant Usage

One often forgotten expense of a machine shop is coolant – and it can be pricey. A 55-gallon drum of coolant can run more than $1,500. What’s worse is that coolant is often applied in excess of what’s required for the job. In fact, some machines even feature a Minimum Quantity Lubricant (MQL) functionality, which applies coolant as an extremely fine mist or aerosol, providing just enough coolant to perform a given operation effectively. While drowning a workpiece in coolant, known as a “Flood Coolant,” is sometimes needed, it is oftentimes utilized on jobs that would suffice with much less.

For more information about coolants and which method of application might be best for your job, view What You Need to Know About Coolant for CNC Machining.

Not Taking Advantage of Tool Versatility

Did you know that several CNC cutting tools can perform multiple operations? For example, a Chamfer Mill can chamfer, bevel, deburr, and countersink. Some Chamfer Mills can even be used as a Spotting Drill. Of course, the complexity of the job will dictate your ability to reap the benefits of a tool’s versatility. For instance, a Spotting Drill is obviously the best option for spotting a hole. If performing a simple operation, though, don’t go out of your way to buy additional tooling when what’s already in your carousel can handle it.

chamfer mills

To learn more about versatile tools that can perform multiple applications, check out Multi-Functional Tools Every Shop Should Have.

High Machine Downtime Makes Your Shop Inefficient

What use is a machine that’s not running beside making your shop inefficient? Minimizing machine downtime is a key way to ensure that your shop is reaching its efficiency pinnacle. This can be accomplished a variety of ways, including keeping like-parts together. This allows for a simple swap-in, swap-out of material to be machined by the same cutting tool. This saves valuable time swapping out tooling, and lets your machine to do its job for more time per workday. Production planning is a key factor to running an efficient machine shop.

Aspex CNC – Featured Customer

Featured Image Courtesy of Aspex Cnc

Aspex CNC is a CNC machine shop based out of Poway, California. They offer prototype turning and milling, as well as production level machining. Their quick turnaround times and premium quality have garnered them some serious recognition in the manufacturing industry. Aspex CNC is just one of the four businesses that Gary Colle Jr. currently owns, but they are an essential part of his business ecosystem, creating parts for the other three product-based companies while also offering machining services to outside customers.

We talked to Gary about his unique experiences in the industry, his thoughts on 5 axis machining, his advice for trying High Efficiency Milling, and more!

Tell us a bit about how you got started in machining, your businesses, and how Aspex CNC was formed.

It is a bit of an interesting story. I got started in manufacturing because my father designed, developed, and manufactured one of the first lines of Wheelchair Accessible Vehicle lifts, which allow people in wheelchairs to easily get in and out of their vehicles. The company was called GoldenBoy Mobility and is still one of the four business I currently own and operate today.

At a young age, I was working in my father’s shop, answering phones and doing odd jobs as young as the age of 10. When I got to high school, I worked after school and during the summers in a more hands-on position, welding parts, cutting up cars, and helping on the shop floor. This really inspired my love for metalworking at a young age.

goldenboy mobility

Photo Courtesy of: Aspex CNC

My dad used to let me mess around in the shop at night, so I started welding my own parts and trying to learn as much as I could. One day, someone came in and asked if I could create a “tuna tower” (an accessory for wakeboarding/water skiing) for their boat. I relented at first, but eventually gave in and welded all the parts together for him. After I made that one, word got around that I could create these at night. I started to advertise a little bit locally, and people started ordering more and more. That summer, I ended up making 50 of these towers and got noticed by a couple of big distributors. Scaling up like that made it necessary to outsource some of our parts to local machine shops, which is where I discovered machining. I had very little prior knowledge of machining, but once I stepped into my first machine shop, I was blown away.

As that business grew even larger (now known as DBG Concepts), I needed more parts and needed them faster. We outgrew the local shops and purchased our first machine, a Fadal 4020 CNC Mill, from a local machine salesman, who also helped teach me the ropes. I learned a lot in those first 6 months about machining.

Business kept ramping up, and my father eventually retired and I took over GoldenBoy Mobility. With all the extra parts we needed, we kept machining things in-house, and buying more mills. Eventually, machining became an even larger part of the business than either DBG Concepts or GoldenBoy Mobility, so we formed Aspex CNC to move our machining out of the product line and more into prototype work and production machining for other business. We still machine most of the parts for DBG and GoldenBoy in-house, but we are doing much more for outside sources than we used to.

What sort of machines do you use in your shop?

Right now, we are a Haas-only shop. We currently have eight Haas machines in our shop. Our lineup consists of a couple of lathes (ST10 and ST30), a Super Mini Mill, and five CNC Mills (VF2SS, VF2SSYT, VF4SS, VF5SS, and UMC750SS), with another UMC750 on the way!

aspex cnc

Photo Courtesy of: Aspex CNC

Which materials do you most often work with in your shop?

We work with a lot of the common materials, 6061/7075 Aluminum, 1018/1045 Steel, 303/304/17-4ph Stainless, as well as plastics like Acetal, UHMW, HDPE, and PVC.

How has your experience been with 5 axis machining?

If you don’t keep up with technology, you won’t be able to keep up with business, so learning multi-axis machining was a no-brainer for us. We first started with a Haas HRT210 4th axis rotary, and began to play with that. Over the next two years, we learned everything we could about multi-axis machining and made the decision to upgrade to a 5 axis machine. We actually went to IMTS that year to talk to manufacturers and find the perfect machine for us and ended up sticking with Haas because of their support platform and educational resources.

5 axis can be hard, but there are a lot of tools out there (HSM Works from Autodesk being one) that can help you learn. It does require a little more upfront work and discipline, but it eliminates a lot of setup time, creates new opportunities for our shop, and has been really good for us from a business standpoint. A big part of our business is machining one-off parts, so the 5 axis machine allows for a faster turnaround time for those odd shapes and sizes we come across.

5 axis machining

Photo Courtesy of: Aspex CNC

You are very active on social media promoting your business. How has the online machinist community helped your business?

Honestly, even though it can become a bit of a distraction at times, using social media to share our work and partner up with companies like Harvey Tool and Helical has been a lot of fun. We are still young in the social media space, so we haven’t seen a massive impact yet, but the best is yet to come. We have received a few bites here and there which has led to work, but as with everything, it takes some time. We expect a lot of growth this year as we work on more really neat projects and continue to get our name out there. As we grow, the opportunities are going to come.

aspex cnc

Photo Courtesy of: Aspex CNC

What are some of the coolest projects you have ever worked on?

Unfortunately, we can’t talk about most of the work we do, due to customer confidentiality, but we did just do a project for the State of California building a training vehicle for their driver’s education program. We designed and built a dual steering system that gave the driver’s trainer a second steering wheel on the passenger side of the car to be used during training. Another job we just finished up was some parts for the new Raiders football stadium in Las Vegas. They contacted us in a pinch and needed them in two days, and we made it happen. It is pretty cool to know you played a part in a huge project like that.

Aspex CNC also does a lot of work with racing/off-road vehicle companies, often machining parts for the chassis and suspension components. We have worked on projects for companies like Scarbo Performance, ID Designs, TSCO Racing and a whole list of others.

You can only use one machine for the rest of your life. Do you go with a CNC Milling machine or the Lathe?

I would hate to have to choose between them, but it is 100% the CNC Mill. I love ripping around with end mills and working with the 5 axis machines. It is mind blowing what these things are capable of.

Why is manufacturing products in America important to you?

Growing up in the industry which I did while working under my father (building wheelchair accessible vehicles), we had a lot of customers who were veterans coming back from Vietnam or Desert Storm who had been injured overseas and needed extra accommodations, which we could provide for them. The veterans I have worked with made me so patriotic with their stories and courage. We also get to work on a lot of projects with the US Department of Veteran’s Affairs, which is putting money back into the American economy by supporting companies like ours and contracting us to make these vehicles. It only makes sense that we employ more people here and avoid sending things overseas to support those who have supported us.

aspex cnc

Photo Courtesy of: Aspex CNC

Do you utilize High Efficiency Milling (HEM) techniques in your shop? What advice do you have for those who are getting started with HEM?

Absolutely, all the time!

The biggest thing is listening to your tool manufacturer for recommendations and then cut those in half to start. From there, work your way up until you are comfortable. Just because the tool can handle it doesn’t necessarily mean your machine, work holding and or set up can, so I would advise people to walk before you run when it comes to HEM.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Be conservative and establish good habits from the start. You can get more aggressive as your career starts to take off, but don’t run out and try to run the biggest and baddest machines on day one and try to cut corners. You need to learn what is behind machining; you can get easily lost in all the technology that is available, but you need to understand the core science behind it first. Take it slow, because if you go too fast, you might miss something important along the way.

Is there anything else you would like to share with the In The Loupe community?

The best thing is building relationships with companies like Haas, Harvey Tool, and Helical. Not only do they provide great service and support for you, but it quickly becomes a mutually beneficial relationship. As we give feedback to the tool and machine manufacturers, and even our metal supplier, it helps them improve their products, which in turn allows our shop to increase our production and efficiency.

Also, having a good team with good people makes all the difference. No matter how many machines you have and how automated you get, you still need good people on your side. I would put my guys up against any other machine shop out there in terms of skill, and it is a big part of what has made our business so successful.

aspex cnc

Photo Courtesy of: Aspex CNC


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Optimize Roughing With Chipbreaker Tooling

Chipbreaker End Mills feature unique notch profiles, creating a serrated cutting edge. These dividers break otherwise long, stringy chips into small, easily-managed swarf that can be cleanly evacuated from the part. But why is a chipbreaker necessary for some jobs, and not others? How does the geometry of this unique tool impact its proper running parameters? In this post, we’ll answer these questions and others to discover the very real benefits of this unique cutting geometry.

How Chipbreaker Tooling Works

As a tool rotates and its cutting edge impacts a workpiece, material is sheared off from a part, creating chips. When that cutting process is interrupted, as is the case with breaks in the cutting portion of the tool, chips become smaller in length and are thus easier to evacuate. Because the chipbreakers are offset flute-to-flute, a proper, flat surface finish is achieved as each flute cleans up any excess material left behind from previously passed flutes.

Benefits of Chipbreaker Tooling

Machining Efficiency

When chips are removed from the part, they begin to pile in the machine. For extensive operations, where a great deal of material is hogged out, chip accumulation can very rapidly get in the way of the spindle or part. With larger chips, accumulation occurs much faster, leaving machinists to stop their machine regularly to remove the waste. As any machinist knows, a stopped machine equates to lost money.

metal chips in cnc mill form chipbreaking

Prolonged Tool Life

Inefficient chip evacuation can lead to chip recutting, or when the the tool impacts and cuts chips left behind during the machining process. This adds stresses on the tool and accelerates rate of wear on the cutting edge. Chipbreaker tooling creates small chips that are easily evacuated from a part, thus minimizing the risk of recutting.

Accelerated Running Parameters

A Harvey Performance Company Application Engineer recently observed the power of a chipbreaker tool firsthand while visiting a customer’s shop in Minnesota. The customer was roughing a great amount of 4340 Steel. Running at the parameters below, the tool was able to run uninterrupted for two hours!

Helical Part No.33737
Material4340 Steel
ADOC2.545″
RDOC.125″
Speed2,800 RPM
Feed78 IPM
Material Removal Rate24.8 Cubic In/Min

 

Chipbreaker Product Offering

Chipbreaker geometry is well suited for materials that leave a long chip. Materials that produce a powdery chip, such as graphite, should not be machined with a chipbreaker tool, as chip evacuation would not be a concern. Helical Solutions’ line of chipbreaker tooling includes a 3-flute option for aluminum and non-ferrous materials, and its reduced neck counterpart. Additionally, Helical offers a 4-flute rougher with chipbreaker geometry for high-temp alloys and titanium. Harvey Tool’s expansive product offering includes a composite cutting end mill with chipbreaker geometry.

Helical Solutions 7 Flute Chipbreaker

In Summary

Chipbreaker geometry, or grooves within the cutting face of the tool, break down chips into small, manageable pieces during the machining process. This geometry can boost shop efficiency by minimizing machine downtime to clear large chips from the machining center, improve tool life by minimizing cutting forces exerted on the tool during machining, and allow for more accelerated running parameters.

Harvey Performance Company Announces Partnership With Summit Partners

ROWLEY, MA (October 17, 2017) – The Harvey Performance Company team is excited to announce a growth equity investment from Summit Partners, a global growth equity investor based in Boston, MA. The funding will be used to foster continued growth, generate ongoing product development, and advance new initiatives.

“This funding will support Harvey Performance Company’s ongoing product innovation efforts, allowing us to sustain our tremendous growth we’ve enjoyed over the last several years,” said Pete Jenkins, Harvey Performance Company Chief Executive Officer. “We’re so appreciative of the Summit team for sharing our vision of growth, and the importance of continued outstanding customer service.”

Founded in 1984, Summit (www.summitpartners.com) has become the investment partner of choice for many of the best growth companies in the world. Its leadership team, averaging more than 13 years of experience, has proven results with aiding businesses reach new, exceptional heights. Summit partners with hundreds of companies, including Uber, NetBrain Technologies, Fuze, and MarketLogic, among others.

Summit’s investment in Harvey Performance Company is its third such partnership in its history. Most recently in 2014, prior to the inception of Harvey Performance Company, The Riverside Company (www.riversidecompany.com) invested in Harvey Tool Company. With its help, Harvey Tool’s acquisition of Helical Solutions and the creation of Harvey Performance Company, was made possible.

“With Riverside’s tremendous partnership over the last three years, we’ve accomplished so much,” Jenkins said. “We can’t wait for more great things to come with Summit.”

Harvey Performance Hosts Local Students for Manufacturing Day Tour

Harvey Performance Company welcomed dozens of local high school students to its Gorham, ME manufacturing facility for an educational tour as part of “Manufacturing Day,” a national day of celebration of modern manufacturing meant to promote, inform, and inspire.

As part of the tour, students were led around the facility by Harvey Performance Company engineers, receiving valuable insight on how a state-of-the-art CNC grinding machine turns a carbide blank into specialty tooling.  The event concluded with a question and answer segment led by Plant Manager Adam Martin.

“It was a thrill for me to meet with the participating students, and to see just how enthusiastic they were about manufacturing,” Martin said. “The Harvey Performance team really had a great time celebrating Manufacturing Day with them.”

harvey performance company

Nationwide, more than 2,800 events took place for current and aspiring machinists as part of Manufacturing Day, held the first week of October every year. In 2016, 84 percent of participants in a Manufacturing Day event were more convinced that manufacturing provides interesting and rewarding careers, according to data from Deloitte and the Manufacturing Institute.

Harvey Performance Company remains committed to its goal of highlighting the best of the manufacturing industry via its “Plunge Into Machining” campaign.

Magnuson Superchargers – Featured Customer

Featured Image Courtesy of Magnuson Superchargers

Magnuson Superchargers is a manufacturer of aftermarket and OEM (Original Equipment Manufacturer) supercharger systems for the automotive industry, located in Ventura, California. Started by industry legend Jerry Magnuson, Magnuson Superchargers has quickly grown into one of the most respected brands in the automotive industry. Magnuson creates products for various brands, including GM, Mopar, Ford, AUDI, Mercedes-Benz, Lexus, Toyota, and Jeep. Magnuson Superchargers are most commonly found in “hot rods,” everyday vehicles, off-road vehicles, and vehicles purpose built for competitive racing, as they are used to significantly yet reliably increase horsepower.

The Magnuson Superchargers team of technicians combine modern and time-tested prototyping and fabrication techniques to construct each component to exact specifications and the highest quality. Magnuson has a complete machine shop in house for fabrication of new prototype system components. This allows them to operate efficiently with short runs and high volume production.

magnuson superchargers dodge demon

Photo Courtesy of: Magnuson Superchargers

Hubert Gromek, Magnuson Superchargers’ Machine Shop Manager, is a 15-year veteran of the industry. We spoke with Hubert about his experiences building a career in the manufacturing industry, his advice for young machinists, and the way he and his team use both Harvey Tool and Helical Solutions tools in their machine shop every day.


Tell us a little bit about yourself.

I started with Magnuson Superchargers 15-plus years ago as a young kid who didn’t know anything about machining at all. Being a major car guy and drag racer, working for a company that makes superchargers was a perfect fit for me.  I started by deburring and washing parts and worked my way up to operating our Fadal Vertical Mills.

From there I started to get the concept of what it actually takes to machine things and started learning how to do all the setups; I even started making my own fixtures here and there. After a couple of years of being the setup guy for our shop, I started looking into the programming aspect of the job and that really grabbed my interest right away. It’s one thing to run and set up machines with other people’s programs and instruction, but it’s a whole new world when you have to do the entire job from scratch on your own.

magnuson superchargers supercharged dodge demon

Photo Courtesy of: Magnuson Superchargers

After a couple of years of being the Lead Setup Programmer here at our shop, I was given the opportunity to be the Machine Shop Manager. I was very honored that the owner of such a big and great company thought I had what it takes to run the whole shop. Let me tell you, when you are responsible for everything that goes on in a machine shop, it really opens your eyes to how much every little thing matters. The one thing I learned very quickly is how important it is to have the right team in your shop to support you and reach the goals that are set. It doesn’t matter how great a manager or programmer you are, if you don’t have the right team of machinists in your shop, you are setting yourself up for failure. After many years of trying, I think I have finally found that team that I’ve been looking for.

What made you get into machining?

It was when I first saw a raw piece of material (billet aluminum) become a billet bracket for a hot rod my boss was working on. I thought that was the coolest thing ever. You start with nothing and the finished product was a work of art to me. I knew right then that I wanted to do that someday.

What is your greatest challenge as a machinist?

This is a two-part answer. First, it is finding the right core team that you can trust and not have to worry about what they are doing. My current team is comprised of experienced and disciplined machinists and they know what needs to get done. I don’t have to watch over them, I just try to guide them and teach them everything that I have learned over the years.

The second part has always been fixture design. I am always learning how to make better, more user-friendly fixtures to help speed up production but still maintain very high part quality.

magnuson superchargers

Photo Courtesy of: Magnuson Superchargers

What is your favorite part of this profession?

I really love the fact that I learn something new every day. It doesn’t matter how much you think you know, there is always a job that will test your ability as a machinist.

What made you decide to use Harvey Tool and Helical products?

Actually I have a great local tool supplier that I deal with all the time. His name is Mike Baldino over at PM Industrial, and he is the one who first introduced me to both of these products. We make tiny Dovetail O-Ring grooves in a lot of our parts and I couldn’t find a tool that would do the job like I wanted it to. Mike recommended the Harvey Tool .135″ Dovetail Cutter and I haven’t used anything else since. As for the Helical End Mills, since 98% of our jobs are in aluminum, Mike also recommended I try these new (at the time) Zplus coated Helical End Mills. Just like the Harvey Tool Dovetail Cutter, I haven’t used anything else since I found out how amazing these cutters worked for us.

magnuson superchargers

Photo Courtesy of: Magnuson Superchargers

Why is high quality tool performance important to your team at Magnuson Superchargers?

We work with a lot of castings here at Magnuson Superchargers, and even though they are aluminum, they can be very abrasive. Because of this, tool life and part finishes are very important to us. The Helical End Mills hold up very well to cast and billet materials and the Harvey Tool Dovetail Cutters are the only thing that works for us.

Tell us about your favorite projects that Harvey Tool or Helical Solutions tools helped you create.

We make most of our casting tooling in-house, which includes master patterns and core boxes, usually in 6061 Billet Aluminum. The Helical Zplus coated End Mills are amazing for doing these jobs. Using the dynamic toolpaths and utilizing the entire flute length is great. As for the Harvey Tool Dovetail Cutters, I haven’t used anything that works better than these. Every project has become easier with the use of both Harvey Tool and Helical Solutions tools.

magnuson superchargers supercharged chevrolet camaro

A 2016 Chevrolet Camaro loaded with the TVS2300 supercharger at the track. Photo Courtesy of: Magnuson Superchargers

One of our most exciting projects is our new TVS2300 supercharger that we built for our 2016 Chevrolet Camaro. We took a completely stock engine and transmission, and with just our supercharger and a couple of modifications it was able to run a 9 second 1/4 mile drag race. This was very impressive and has made a huge impact in the automotive industry. We are very excited about this kit and the potential it has in the market.

We have also been working on the biggest supercharger that our company has ever made, the new TVS2650. We are very proud of the all the R&D work that has gone into this kit and we are seeing some incredible horsepower numbers from these units. We displayed this at last year’s Specialty Equipment Market Association (SEMA) show in Las Vegas. We are still in the prototype stages of this project but will have production units coming very soon.

magnuson TVS2650 prototype supercharger

A prototype of the new TVS2650 supercharger, the largest ever built by Magnuson. Photo Courtesy of: Magnuson Superchargers

Would you recommend that young people take the #PlungeIntoMachining and start a career as a machinist?

I personally would recommend a career in machining to anyone who has an interest in how things are made. I believe it is a great career choice. There are always going to be parts that have to get made somehow, so there is no shortage of open jobs available in the industry. I have a 4 year old son and as soon as he is old enough, I will teach him everything I know about this profession. If he chooses not to go that route, that is completely okay, but at least he will know what it takes to make something from scratch.

If you could give one piece of advice to a new machinist, what would it be?

Learn the basics. Start with a manual mill or lathe and get some experience with how it feels to cut something. Lots of people start on a CNC as an operator and call themselves “machinists.” It took me 5 years before my boss officially called me a machinist! Trust me, it feels really good when your boss hands you a print or CAD model and says “make this,” and you come back with a perfect part that you were able to make yourself.

magnuson superchargers machine shop team

The Magnuson Superchargers machine shop team. From left: John, Jesus, Jun, Miguel, Jesse, Kenton, and Armando. Photo Courtesy of: Magnuson Superchargers

Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Photos courtesy of Magnuson Superchargers

Introducing Harvey Performance Company

Harvey Tool and Helical Solutions are now brought together under the umbrella of Harvey Performance Company, the brands’ new parent company.

Rowley, MA (May 8, 2017) – Harvey Performance Company, the parent company of the Harvey Tool and Helical Solutions brands, was launched today in an effort to streamline communications and better support its customers and business partners.

Harvey Tool Company is known for its highly specialized hard-to-find micro cutting tools. Helical Solutions has built a reputation for its high performance custom and standard end mills. Both brands now exist under the umbrella of Harvey Performance Company.

Like the two brands it represents, Harvey Performance Company will maintain a dedication to providing world class products, services, and solutions that increase productivity for customers in the manufacturing and metalworking industries. Additionally, it will continue on a proud history of doing business the right way with fast, friendly, knowledgeable customer service.

“The launch of Harvey Performance Company is a necessary step in the natural growth and evolution of our company,” said Peter Jenkins, Chief Executive Officer of Harvey Performance Company. “Our new parent company will enhance our ability to continue to provide our customers with stellar service, products, and commitment to building long-standing relationships.”

“Since Harvey Tool acquired Helical Solutions about a year and a half ago, we have worked hard to come together as one team while also maintaining each brands’ unique character and identity, established business relationships, and earned reputation,” said Garth Ely, Harvey Performance Company Vice President of Marketing. “We feel that the launch of Harvey Performance Company is another large step toward achieving this goal.”

How to Avoid Common Part Finish Problems

Part Finish Reference Guide

Finishing cuts are used to complete a part, achieving its final dimensions within tolerance and its required surface finish. Most often an aesthetic demand and frequently a print specification, surface finish can lead to a scrapped part if requirements are not met. Meeting finish requirements in-machine has become a major point of improvement in manufacturing, as avoiding hand-finishing can significantly reduce costs and cycle times.

Common Finishing Problems

  • Burrs
  • Scallop marks
  • Chatter Marks

Factors That Influence Part Finish

  • Specific material and hardness
  • Cutting tool speeds & feeds
  • Tool design and deployment
  • Tool projection and deflection
  • Tool-to-workpiece orientation
  • Rigidity of workholding
  • Coolant and lubricity
  • Final-pass depth of cut

Finishing Problem Solutions

  • Tools with high helix angles and flute counts work best for finishing operations. Softer materials show great results with higher helices, while harder materials can benefit greatly from increased flute counts.
  • Increase your RPM and lower your IPT (Figure 2).
  • Ensure that tool runout is extremely minimal.
  • Use precision tool holders that are in good condition, are undamaged, and run true.
  • Opt for a climb milling machining method.
  • Use tooling with Variable Pitch geometry to help reduce chatter.
  • A proper radial depth of cut (RDOC) should be used. For finishing operations, the RDOC should be between 2 and 5 percent of the tool’s Cutter Diameter.
  • For long reach walls, use reduced neck tooling which help to minimize deflection (Figure 3).
  • Extreme contact finishing (3x cutter diameter), may require a 50% feed rate reduction.

part finish guide

length of cut

Common Surface Finish Nomenclature

Ra = Roughness average
Rq = RMS (Root Mean Square) = Ra x 1.1
Rz = Ra x 3.1

part finish guide