Posts

Harvey Performance Brands Announce Release of HEM Guidebook

ROWLEY, MA (August 22, 2017) – Harvey Performance Company’s two brands, Harvey Tool and Helical Solutions, collaborated in the creation of the HEM Guidebook. This new resource centers around the concept of High Efficiency Milling (HEM), popular for its ability to boost shop productivity by minimizing cycle times and boosting tool performance.

Included within the HEM Guidebook are seven relevant articles: Introduction to High Efficiency Milling, High Speed Machining Vs. HEM, Combat Chip Thinning & Boost Tool Potential, Diving into Depth of Cut, Preventing Tool Wear, Applying HEM to Micromachining, and Best Practices for Trochoidal Milling. Additionally, HEM usage statistics and machinist tips for this popular machining method are included, and were gathered as part of a survey hosted by the two brands in the days preceding its release.

“We’re thrilled to present this helpful resource to the metalworking industry,” said Garth Ely, Harvey Performance Company Vice President of Marketing. “This machining method has results proven to enhance our customers’ shop performance, and we’re confident this resource will help them achieve the production benefits that HEM offers.”

Harrelson Trumpets – Featured Customer

Harrelson Trumpets is a custom trumpet manufacturer based out of Denver, Colorado. As the only trumpet manufacturer that produces many of their parts on a CNC machine, Harrelson Trumpets has become widely recognized as one of the top custom instrument manufacturers in the world. Harrelson Trumpets are manufactured using a technology called Standing Wave Efficiency (SWE). Put simply, SWE Mod Kits reduce energy loss in the instrument, thus increasing efficiency. This translates to playing an instrument with less effort, improved attacks, flexibility, slotting, endurance and dynamics.

Jason Harrelson is the founder and owner of Harrelson Trumpets. He has been researching and applying SWE technology since 1993, both in the lab and real world playing situations. As of 2017, Harrelson has personally built more than 800 unique trumpet designs and 1,200 individual trumpets. We spoke with Harrelson about his history as an entrepreneur, how CNC machining changed the way he worked, and more.


harrelson trumpets

Tell us about how you started Harrelson Trumpets and some of the products you manufacture.

I started out modifying my own trumpet when I discovered it didn’t play as well as my friend’s trumpet. I wondered why my friends with the same brand of trumpet could hit certain notes more easily or make a more beautiful tone. So, it started off as something I was doing for myself. Fast forward many years and I sold a trumpet I had modified that was collecting dust in a closet. I soon realized there is a huge market for custom trumpets that play easier. I bought old horns at pawn shops or music stores and modified and sold them for a few years, but that approach was a lot of work. Every trumpet manufacturer uses different bore and thread sizing. I was constantly reverse engineering each and every modification I did. So, the decision was made to come out with a line of instruments that we built from the ground up utilizing the physics principals I’d learned in my physics program in college. Many years of research, development and hard work were invested to produce the most technologically advanced trumpets available in the world. We have extended the application of our “Science Meets Sound” model into a series of accessories that improve the efficiency of other brand trumpets as well. We offer a fully modular 5MM mouthpiece, mod kits, and a variable gap receiver, just to name a few. We are launching several new products in the near future that also apply science and machining in an industry that has been unchanged for hundreds of years.

What made you get into machining?

Machining was a natural progression. Most of my designs are not possible with traditional fabrication techniques so precision machining was the logical next step. CNC machines were a necessity in allowing us to prototype and eventually put into production designs that revolutionized the industry. We are the only trumpet manufacturer in the world that produces our tuning slides, bell crooks and leadpipes (as well as most other parts) on a CNC Machine.

harrelson trumpets

As someone who was self-taught in CNC Machining, what was your biggest hurdle?

Well, I think learning so many different machining and fabrication processes is the biggest challenge. We use modified machines to achieve our end goal. Most of our processes have required specialty tooling such as spindle speeders up to 90,000 rpm to create the high detail features and artwork that looks almost like they were a coin struck by a die.

What is your favorite part of this profession?

Problem solving. Finding solutions. Helping others raise their standards musically while incorporating science-based solutions.

harrelson trumpets

You use a lot of Harvey Tool products in your shop. How have Harvey Tool products impacted your overall shop performance?

When we first started using them, Harvey Tool was the only small tool manufacturer for miniature end mills that I could find online. The wide range of tooling available from Harvey has allowed us to create fine detailed artwork in components that otherwise wouldn’t be possible. It’s a large part of our business to offer custom art and machining. I don’t think I’ve ever had to order anything custom because they’ve always had something that worked right off the shelf for my applications.

Tell us about your favorite project that Harvey Tools helped to create.

Any of our custom Summit Art Trumpets would be included in that category. We do a special Satchmo Trumpet every year and donate it to French Quarter Festivals in New Orleans. These are fun projects because they really let us flex our artistic and machining muscles. Some of the Satchmo Trumpets would not have been possible if it weren’t for Harvey Tool.

harrelson trumpets

If you were stranded on a desert island with only one Harvey Tool, which would it be, and why?

I couldn’t live with only one! I would choose the catalog so I could dream of getting off the island and back into the shop!

You have been an entrepreneur for your entire life. What do you think was the major reason you were able to make Harrelson Trumpets your full-time job?

I have been inventing and trying my hand at different businesses my whole life. I think that the reason Harrelson Trumpets was and is a success is two-fold. We have put countless long and hard hours into learning and mastering our trade. Hard work really is a major factor in our success. Beyond that, I love music, science and inventing solutions for my customers. I have made it my life’s work to create a superior trumpet and this is an endless quest that keeps me motivated. It is very rewarding work. There is great satisfaction in delivering an heirloom quality instrument that is scientifically superior to all others and brings joy to the musician making music with it for generations to come.

harrelson trumpets

If you could give one piece of advice to a new machinist ready to #PlungeIntoMachining, what would it be?

Ask other professionals in your field for help. I assist other machinists daily via email, social media, phone, and in person. Seek out mentors and learn from their experiences as often as possible. Most of what I have learned was a culmination of reading, trying, failing, reading again, trying again, and eventually finding what works. But today, we have resources like YouTube, Instagram, and online or in-person classes held by private individuals rather than full fledged college courses. You can learn as fast as you want through these non-traditional avenues!

Is there anything else you would like to share with the In The Loupe community?

Loyalty to a brand IS very important and almost always results in greater productivity and success. I mention this because many people assume the cheapest tool is the right tool. In reality, knowing your tooling is worth every penny and paying a premium over cheap imports is the wise decision. Working with tooling from the same manufacturer day after day and year after year provides the end user with benefits including reliable performance expectations, accuracy, quality and availability. To this end, be loyal to the best tooling manufacturer you can afford!

harrelson trumpets

Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Photos courtesy of Harrelson Trumpets

Most Common Methods of Tool Entry

Tool entry is pivotal to machining success, as it’s one of the most punishing operations for a cutter. Entering a part in a way that’s not ideal for the tool or operation could lead to a damaged part or exhausted shop resources. Below, we’ll explore the most common part entry methods, as well as tips for how to perform them successfully.


Pre-Drilled Hole

Pre-drilling a hole to full pocket depth (and 5-10% larger than the end mill diameter) is the safest practice of dropping your end mill into a pocket. This method ensures the least amount of end work abuse and premature tool wear.

tool entry predrill

 


Helical Interpolation

Helical Interpolation is a very common and safe practice of tool entry with ferrous materials. Employing corner radius end mills during this operation will decrease tool wear and lessen corner breakdown. With this method, use a programmed helix diameter of greater than 110-120% of the cutter diameter.

helical interpolation

 


Ramping-In

This type of operation can be very successful, but institutes many different torsional forces the cutter must withstand. A strong core is key for this method, as is room for proper chip evacuation. Using tools with a corner radius, which strengthen its cutting portion, will help.

ramping

Suggested Starting Ramp Angles:

Hard/Ferrous Materials: 1°-3°

Soft/Non-Ferrous Materials: 3°-10°

For more information on this popular tool entry method, see Ramping to Success.


Arcing

This method of tool entry is similar to ramping in both method and benefit. However, while ramping enters the part from the top, arcing does so from the side. The end mill follows a curved tool path, or arc, when milling, this gradually increasing the load on the tool as it enters the part. Additionally, the load put on the tool decreases as it exits the part, helping to avoid shock loading and tool breakage.


Straight Plunge

This is a common, yet often problematic method of entering a part. A straight plunge into a part can easily lead to tool breakage. If opting for this machining method, however, certain criteria must be met for best chances of machining success. The tool must be center cutting, as end milling incorporates a flat entry point making chip evacuation extremely difficult. Drill bits are intended for straight plunging, however, and should be used for this type of operation.

tool entry

 


Straight Tool Entry

Straight entry into the part takes a toll on the cutter, as does a straight plunge. Until the cutter is fully engaged, the feed rate upon entry is recommended to be reduced by at least 50% during this operation.

tool entry

 


Roll-In Tool Entry

Rolling into the cut ensures a cutter to work its way to full engagement and naturally acquire proper chip thickness. The feed rate in this scenario should be reduced by 50%.

tool entry

 

Magnuson Superchargers – Featured Customer

Magnuson Superchargers is a manufacturer of aftermarket and OEM (Original Equipment Manufacturer) supercharger systems for the automotive industry, located in Ventura, California. Started by industry legend Jerry Magnuson, Magnuson Superchargers has quickly grown into one of the most respected brands in the automotive industry. Magnuson creates products for various brands, including GM, Mopar, Ford, AUDI, Mercedes-Benz, Lexus, Toyota, and Jeep. Magnuson Superchargers are most commonly found in “hot rods,” everyday vehicles, off-road vehicles, and vehicles purpose built for competitive racing, as they are used to significantly yet reliably increase horsepower.

The Magnuson Superchargers team of technicians combine modern and time-tested prototyping and fabrication techniques to construct each component to exact specifications and the highest quality. Magnuson has a complete machine shop in house for fabrication of new prototype system components. This allows them to operate efficiently with short runs and high volume production.

magnuson superchargers

Hubert Gromek, Magnuson Superchargers’ Machine Shop Manager, is a 15-year veteran of the industry. We spoke with Hubert about his experiences building a career in the manufacturing industry, his advice for young machinists, and the way he and his team use both Harvey Tool and Helical Solutions tools in their machine shop every day.


Tell us a little bit about yourself.

I started with Magnuson Superchargers 15-plus years ago as a young kid who didn’t know anything about machining at all. Being a major car guy and drag racer, working for a company that makes superchargers was a perfect fit for me.  I started by deburring and washing parts and worked my way up to operating our Fadal Vertical Mills.

From there I started to get the concept of what it actually takes to machine things and started learning how to do all the setups; I even started making my own fixtures here and there. After a couple of years of being the setup guy for our shop, I started looking into the programming aspect of the job and that really grabbed my interest right away. It’s one thing to run and set up machines with other people’s programs and instruction, but it’s a whole new world when you have to do the entire job from scratch on your own.

magnuson superchargers

After a couple of years of being the Lead Setup Programmer here at our shop, I was given the opportunity to be the Machine Shop Manager. I was very honored that the owner of such a big and great company thought I had what it takes to run the whole shop. Let me tell you, when you are responsible for everything that goes on in a machine shop, it really opens your eyes to how much every little thing matters. The one thing I learned very quickly is how important it is to have the right team in your shop to support you and reach the goals that are set. It doesn’t matter how great a manager or programmer you are, if you don’t have the right team of machinists in your shop, you are setting yourself up for failure. After many years of trying, I think I have finally found that team that I’ve been looking for.

What made you get into machining?

It was when I first saw a raw piece of material (billet aluminum) become a billet bracket for a hot rod my boss was working on. I thought that was the coolest thing ever. You start with nothing and the finished product was a work of art to me. I knew right then that I wanted to do that someday.

What is your greatest challenge as a machinist?

This is a two-part answer. First, it is finding the right core team that you can trust and not have to worry about what they are doing. My current team is comprised of experienced and disciplined machinists and they know what needs to get done. I don’t have to watch over them, I just try to guide them and teach them everything that I have learned over the years.

The second part has always been fixture design. I am always learning how to make better, more user-friendly fixtures to help speed up production but still maintain very high part quality.

magnuson superchargers

What is your favorite part of this profession?

I really love the fact that I learn something new every day. It doesn’t matter how much you think you know, there is always a job that will test your ability as a machinist.

What made you decide to use Harvey Tool and Helical products?

Actually I have a great local tool supplier that I deal with all the time. His name is Mike Baldino over at PM Industrial, and he is the one who first introduced me to both of these products. We make tiny Dovetail O-Ring grooves in a lot of our parts and I couldn’t find a tool that would do the job like I wanted it to. Mike recommended the Harvey Tool .135″ Dovetail Cutter and I haven’t used anything else since. As for the Helical End Mills, since 98% of our jobs are in aluminum, Mike also recommended I try these new (at the time) Zplus coated Helical End Mills. Just like the Harvey Tool Dovetail Cutter, I haven’t used anything else since I found out how amazing these cutters worked for us.

magnuson superchargers

Why is high quality tool performance important to your team at Magnuson Superchargers?

We work with a lot of castings here at Magnuson Superchargers, and even though they are aluminum, they can be very abrasive. Because of this, tool life and part finishes are very important to us. The Helical End Mills hold up very well to cast and billet materials and the Harvey Tool Dovetail Cutters are the only thing that works for us.

Tell us about your favorite projects that Harvey Tool or Helical Solutions tools helped you create.

We make most of our casting tooling in-house, which includes master patterns and core boxes, usually in 6061 Billet Aluminum. The Helical Zplus coated End Mills are amazing for doing these jobs. Using the dynamic toolpaths and utilizing the entire flute length is great. As for the Harvey Tool Dovetail Cutters, I haven’t used anything that works better than these. Every project has become easier with the use of both Harvey Tool and Helical Solutions tools.

magnuson superchargers

A 2016 Chevrolet Camaro loaded with the TVS2300 supercharger at the track.

One of our most exciting projects is our new TVS2300 supercharger that we built for our 2016 Chevrolet Camaro. We took a completely stock engine and transmission, and with just our supercharger and a couple of modifications it was able to run a 9 second 1/4 mile drag race. This was very impressive and has made a huge impact in the automotive industry. We are very excited about this kit and the potential it has in the market.

We have also been working on the biggest supercharger that our company has ever made, the new TVS2650. We are very proud of the all the R&D work that has gone into this kit and we are seeing some incredible horsepower numbers from these units. We displayed this at last year’s Specialty Equipment Market Association (SEMA) show in Las Vegas. We are still in the prototype stages of this project but will have production units coming very soon.

magnuson superchargers

A prototype of the new TVS2650 supercharger, the largest ever built by Magnuson.

Would you recommend that young people take the #PlungeIntoMachining and start a career as a machinist?

I personally would recommend a career in machining to anyone who has an interest in how things are made. I believe it is a great career choice. There are always going to be parts that have to get made somehow, so there is no shortage of open jobs available in the industry. I have a 4 year old son and as soon as he is old enough, I will teach him everything I know about this profession. If he chooses not to go that route, that is completely okay, but at least he will know what it takes to make something from scratch.

If you could give one piece of advice to a new machinist, what would it be?

Learn the basics. Start with a manual mill or lathe and get some experience with how it feels to cut something. Lots of people start on a CNC as an operator and call themselves “machinists.” It took me 5 years before my boss officially called me a machinist! Trust me, it feels really good when your boss hands you a print or CAD model and says “make this,” and you come back with a perfect part that you were able to make yourself.

magnuson superchargers

The Magnuson Superchargers machine shop team. From left: John, Jesus, Jun, Miguel, Jesse, Kenton, and Armando.

Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Photos courtesy of Magnuson Superchargers

KeyBar – Featured Customer

KeyBar® is a manufacturing company based in Savannah, Georgia that prides itself on American-made products. Mike Taylor, the CEO, Owner, and Founder of KeyBar®, first got the idea for this company while working as the chief engineer at an upscale hotel in Savannah, Georgia. As a part of this position, he carried around countless keys attached to his belt. One day he realized that there must be an easier way to carry his keys, so that they made less noise and were easier to access. Mike used a multi-tool daily, and it occurred to him that he could apply the same concept to keys to create the KeyBar®, a patented key organizer that promises to “Stop the Noise”® of jangling keys, kill the clutter of a handful of keys, and make the key ring obsolete.

In 2014, Mike and his wife, Jessica, left their full-time jobs to take a chance on their new business, and it paid off. Mike, now 34, has built a thriving online store, retailers all over the country are carrying KeyBars, and they have an entire team of employees working at their Savannah, Georgia machine shop; quite the achievement for a young entrepreneur.

KeyBar® also offers other products, including the newly released Quick-Draw, which is a revolver-inspired, rotating desktop pen holder that recently raised over $25,000 in a Kickstarter campaign.

keybar

KeyBars are made of many different materials, ranging from aluminum and copper to brass, titanium, and carbon fiber, and end mills from Harvey Tool and Helical Solutions play a crucial part in the creation of each one.

We spoke with Mike for this Featured Customer profile, and talked about his experiences starting his own shop and the way Harvey Tool and Helical products have impacted his shop’s overall performance.

What made you get into machining?

We actually started manufacturing KeyBars by outsourcing our parts to some of my machinist friends. After watching several YouTube videos, I decided that machining our own parts in-house was something I wanted to achieve. I am new to machining, so every day is a challenge. I am truly learning as I go, but I learn more every single day in the shop and every day is a huge payoff.

Would you recommend a career as a machinist to young people trying to find a career path?

Absolutely! In this day and age of smart phones and computers, young people would be great in CNC machining and manufacturing.

How did you first hear about the Harvey Tool & Helical brands?

I first heard about both Harvey Tool and Helical from your Instagram pages. KeyBar® really took off when I started posting the finished product on Instagram, so I have always been an active user and firm believer in the power of social media.

keybar

What made you decide to go with these brands for your cutting tool needs?

I was told that Harvey made the best tool for cutting carbon fiber, which we do a lot of while manufacturing KeyBars, so it was a no-brainer.

How easy was the purchase process?

With only a quick email or phone call, I usually have my tools within 1-2 days, which is important for us to keep up our production and never lose a single second of time in the shop waiting for a tool.

Did you receive any help from our customer service teams? How was that experience?

It was great. I needed some initial speeds and feeds for all my composites, and in just a few minutes they had me all squared away. Time is money, and the customer service team saved me lots of time when we first started working with composite materials.

Tell us about your favorite product that Harvey Tool or Helical products helped to create.

We are currently producing a run of custom KeyBars with inlays. The Harvey end mills for composite materials allowed us to achieve a perfect fit and made the project a success.

keybar

What is your favorite operation to work on with Helical end mills?

I really like working on 1/4″ roughing passes with a Helical chipbreaker.

What was your first impression of these brands’ tools?

“Damn! That worked pretty good!”

You use a lot of Harvey Tool miniature drills in your work. Why is high quality drill performance important to you?

We drill a lot of holes, and every second counts in production. Most importantly, being able to depend on a tool and get consistent results is worth more than anything else.

How have the Harvey Tool and Helical products impacted your overall performance?

I never have to worry about getting a less than superior finish on our composite products. Harvey Tool products do an excellent job with composite materials– like I said, this is a huge part of our manufacturing process and so it is very important to our performance.

If you were stranded on a desert island with only one Harvey Performance tool, which would it be, and why?

I would choose the Harvey Tool 933316-C6 (1/4″ Corner Radius End Mill for Hardened Steels up to 55 Rc) because you never know what you are going to run in to, and there isn’t much that a 1/4″ end mill can’t do!

keybar

Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Photos courtesy of KeyBar

Harvey Performance Company Employees Build Stage at Camp Cedar Mill

(Rowley, MA) May 19, 2017 – Harvey Performance Company employees built a new stage for the Ipswich Family YMCA’s summer day camp, Camp Cedar Mill, as part of a continuing effort to contribute to local community organizations. Seven employees spent their morning building the stage, which will be used for morning announcements, awards ceremonies, talent shows, yoga, and community events.

This volunteer opportunity was part of the Harvey Performance Gives Back Program.

Harvey Performance Company supports and celebrates the local community with the Harvey Performance Gives Back Program, which is designed to promote social responsibility and corporate citizenship. This structured company-wide program seeks to motivate and enable employees to volunteer and give back to the local community. Past programs have included clothing drives, community giving tree programs, and school supply drives.

camp cedar mill

camp cedar mill

 

Corner Engagement: How to Machine Corners

Corner Engagement

During the milling process, and especially during corner engagement, tools undergo significant variations in cutting forces. One common and difficult situation is when a cutting tool experiences an “inside corner” condition. This is where the tool’s engagement angle significantly increases, potentially resulting in poor performance.

Machining this difficult area with the wrong approach may result in:

  • Chatter – visible in “poor” corner finish
  • Deflection – detected by unwanted “measured” wall taper
  • Strange cutting sound – tool squawking or chirping in the corners
  • Tool breakage/failure or chipping

Least Effective Approach (Figure 1)

Generating an inside part radius that matches the radius of the tool at a 90° direction range is not a desirable approach to machining a corner. In this approach, the tool experiences extra material to cut (dark gray), an increased engagement angle, and a direction change. As a result, issues including chatter, tool deflection/ breakage, and poor surface finish may occur.

Feed rate may need to be lessened depending on the “tool radius-to-part radius ratio.”

corner engagement

More Effective Approach (Figure 2)

Generating an inside part radius that matches the radius of the tool with a sweeping direction change is a more desirable approach. The smaller radial depths of cut (RDOC) in this example help to manage the angle of engagement, but at the final pass, the tool will still experience a very high engagement angle.  Common results of this approach will be chatter, tool deflection/breakage and poor surface finish.

Feed rate may need to be reduced by 30-50% depending on the “tool radius-to-part radius ratio.”

corner engagement

Most Effective Approach (Figure 3)

Generating an inside part radius with a smaller tool and a sweeping action creates a much more desirable machining approach. The manageable RDOC and smaller tool diameter allow for management of the tool engagement angle, higher feed rates and better surface finishes. As the cutter reaches full radial depth, its engagement angle will increase, but the feed reduction should be much less than in the previous approaches.

Feed rate may need to be heightened depending on the “tool-to-part ratio.” Utilize tools that are smaller than the corner you are machining.

corner engagement

Climb Milling vs. Conventional Milling

There are two distinct ways to cut materials when milling: Conventional Milling (Up) and Climb Milling (Down). The difference between these two techniques is the relationship of the rotation of the cutter to the direction of feed. In Conventional Milling, the cutter rotates against the direction of the feed. During Climb Milling, the cutter rotates with the feed.

Conventional Milling is the traditional approach when cutting because the backlash, or the play between the lead screw and the nut in the machine table, is eliminated (Figure 1). Recently, however, Climb Milling has been recognized as the preferred way to approach a workpiece since most machines today compensate for backlash or have a backlash eliminator.

 


Key Conventional and Climb Milling Properties:

Conventional Milling (Figure 2)

  • Chip width starts from zero and increases which causes more heat to diffuse into the workpiece and produces work hardening
  • Tool rubs more at the beginning of the cut causing faster tool wear and decreases tool life
  • Chips are carried upward by the tooth and fall in front of cutter creating a marred finish and re-cutting of chips
  • Upwards forces created in horizontal milling* tend to lift the workpiece, more intricate and expansive work holdings are needed to lessen the lift created*

climb milling

 

Climb Milling (Figure 3)

  • Chip width starts from maximum and decreases so heat generated will more likely transfer to the chip
  • Creates cleaner shear plane which causes the tool to rub less and increases tool life
  • Chips are removed behind the cutter which reduces the chance of recutting
  • Downwards forces in horizontal milling is created that helps hold the workpiece down, less complex work holdings are need when coupled with these forces
  • Horizontal milling is when the center line of the tool is parallel to the work piece

climb milling


When to Choose Conventional or Climb Milling

Climb Milling is generally the best way to machine parts today since it reduces the load from the cutting edge, leaves a better surface finish, and improves tool life. During Conventional Milling, the cutter tends to dig into the workpiece and may cause the part to be cut out of tolerance.

However, though Climb Milling is the preferred way to machine parts, there are times when Conventional Milling is the necessary milling style. One such example is if your machine does not counteract backlash. In this case, Conventional Milling should be implemented. In addition, this style should also be utilized on casting, forgings or when the part is case hardened (since the cut begins under the surface of the material).

 

 

Harvey Performance Company’s Jeff Davis Interviewed in Advanced Manufacturing Article

Harvey Performance Company Vice President of Engineering Jeff Davis was interviewed in Advanced Manufacturing’s May 2, 2017 article entitled “Coatings Expand Cutting Tool Capabilities, Reach New Markets,” in which he discusses the proper use of tool coatings.

As the lead engineer for the Harvey Tool and Helical Solutions brands, Davis is well versed in the world of miniature and large diameter tooling, as well as several different coating options.

“Different coatings address different concerns,” said Davis. “Some coatings, when used improperly, can cause problems, including stickiness and galling. Although diamond works well in graphite and composites, ferrous applications could result in excessive thermal build-up, coating breakdown, and damage for both the tool and the part.”

View the article in its entirety.

Harvey Tool Company was also mentioned in Advanced Manufacturing’s post “What Machine Shops Need to Know about Deburring.” For more, click here.

Dodging Dovetail Headaches: 7 Common Dovetail Mistakes

While they are specialty tools, dovetail style cutters have a broad range of applications. Dovetails are typically used to cut O-ring grooves in fluid and pressure devices, industrial slides and detailed undercutting work.