Posts

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

Master Machine Manufacturing – Featured Customer

Master Machine Manufacturing, or MMM USA, is a family-owned and operated machine shop based out of Tulsa, Oklahoma. Master Machine is a rapidly expanding company which has seen serious growth as both a job shop and as an OEM Manufacturer of their own Quick Vise Handles and Piranha Jaws for CNC machinists.

Brothers Geordan and Nace Roberts, along with their mother, Sherry Roberts, are the owners of Master Machine Manufacturing. With Geordan and Nace, we dove into topics like having a growth mindset, working smarter instead of harder, and expanding a “job shop” business while also creating and manufacturing their own OEM products.

Tell us a little about Master Machine’s history and the type of work that your company does.

Geordan: Master Machine has been in business since 1981. Our father, George Roberts, started the business. At the beginning it was a pretty typical manual machine shop operating primarily as a job shop. As Nace and I got older, Dad introduced us to the business and we started working there part-time, eventually transitioning into full-time employees. In 1996, we transitioned to high precision machining with our first CNC machine – a Haas VF1, and we kept adding new CNC machines from there.

Nace and I took over in 2013 after our Dad passed. We had to make the transition from managers and shop foreman to owners and dealing with customers. We now own and operate the business with our mother, Sherry Roberts.

master machine

Geordan, Nace, Sherry, and the rest of the MMM USA team at IMTS with Mark Terryberry from Haas Automation

At its core, Master Machine is a job shop that does a lot of high precision machining. We work on things like lab test equipment, parts for the aerospace industry, and a lot of parts for the oil and gas industry. More medical jobs and odd things like parts for off-road racing have started to come in recently as well. One cool thing about us is that we have the unique ability to operate as a job shop, but also to design and manufacture our own products. Many of your readers have probably seen some of our vise handles and jaws in use online, especially on Instagram.

Your MMM USA Jaws and Vise Handles have become extremely popular in the CNC machining community. Where did you get the idea for that product?

Geordan: We had been using other brands of vise handles and jaws for a long time and got tired of buying products that were cheap and didn’t work well. We had this idea for a while, so in 2013 when things started to slow down a little bit, we had an opportunity to spend some time and design our own products. It was just about 2 years ago that we designed our first vise handle and Piranha Jaws. After using social media, showing them off at IMTS and other Industrial Trade Shows, they really started to take off. Our vise handles and jaws have really started to become a business of their own over the past couple of years.

vise handle

Can you breakdown the shop for us? What are you working with in terms of shop size, machine capabilities, and software?

Nace: We operate as a 100% debt-free company, so we grow as we need to. We have been at our current location for 10 years with 5-7 different additions along the way. Our shop is now spread across 10,300 square feet.

We currently have 18 CNC milling machines, including our original machine, the 1996 Haas VF1. We have been growing very fast over the past 10 years. From 2004-2007, we only had 3 CNC mills, and we have acquired the other 15 machines all in the last decade. We like buying from companies that make their products right here in the USA, so we have grown our shop through the Haas line of machines. Almost everything we own here is made by Haas Automation. In fact, our Haas VF4 and our 5-axis Haas UMC750 are some of our biggest mills in the shop right now.

Geordan: We also have other capabilities in the shop. We can do welding, painting, surface grinding, and we have a nice setup of bar feeders and lathes. For software, we use a lot of BOBCAD V31 for our 4th and 5th axis mill programming and all of our lathe programming, Nace uses a lot of Autodesk Fusion 360 for the mill side of things.

For inspection, we have many inspection tools, including a Fowler Z-Cat CMM that can measure down to +/- .0002″ for our most high precision jobs.

How did you guys first get involved in manufacturing?

Geordan: I started machining with my Dad at age 13, and got into it full-time after high school, but was not yet fully committed. At this point, I learned manual and CNC machining entirely through working with my Dad and my Uncle.  It wasn’t until my Uncle, the main machinist in our shop, decided to split off and start his own shop that I was faced with a more urgent need to commit to the family business. So I decided to make manufacturing a full time career move and started learning fixturing, programming, and everything I needed to know to be successful. We still have a great relationship with my uncle and his shop and I wouldn’t be where I am today without him stepping out on his own.

Nace: I didn’t know what I wanted to do with my life. I just knew I wanted to make money, and a lot of money. I was actually in college for radiology and physical therapy, but I didn’t like the layout of the career path. I could not convince myself to wait to start making real money until I had finished a long education and received a license 6-8 years down the road.

Instead of physical therapy and radiology, I started taking more computer engineering courses and learned a lot about programming and technology. After my uncle left, I told my Dad I would like to be a bigger part of the business and take what I knew from my computer programming classes and apply it to the shop. Within a year I had gone from never running a CNC to fully doing everything on the machine. My computer programming skills definitely helped me make the transition into CNC machining and programming.

master machine

As a second generation owner of a family business, how do you stick to those family values while also rapidly expanding the business?

Nace: We have grown a lot with our systems and technology, but our culture has also changed since we took over. We educated ourselves on workplace culture and maintaining a positive work environment. When we were kids, Dad worked probably 100 hours a week and we were always fortunate that he was able to provide us with food, clothes, and a roof over our heads. But no matter how hard he worked, he can’t replace the time with us that was spent working.

One of the major improvements we focused on was trying to maintain repeatability. Everything in the shop is labeled in boxes and readily available for our employees. Ultimately, we want to do everything we can to make it easy as possible for our employees. We want to work smarter, not harder, so there is more time for our employees to spend with family and not spend their lives in the shop.

As owners, we often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until 2 or 3 a.m.. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back in to the shop.

Working with family, we have to remind ourselves that business is business, and outside of business it is all about family. It can be tough to differentiate those two, but you have to. We went to business counseling and learned how to respect family members and build up the team while also making tough business decisions. We have our tough moments at the shop, but at the end of the day this is still your family. You can’t carry any frustration with other family members outside of those shop doors and into the home.

mmm usa piranha jaws

What are some other things you have done to maintain your “Work Smarter, Not Harder” mantra?

Geordan: One of the first things we did was look into getting more tooling and better tooling. We paid more for tools that can push harder and faster, and last longer. When Dad ran the shop, he would just buy whatever he thought we could afford and still get the job done. Now as CNC technology and advanced CAM systems have improved, the need for quality tooling is extremely important. Finding the best and most reliable tools helped take our shop to the next level and that is where Harvey Tool and Helical come into play.

Nace: We like to be the “purple cow” of the industry, differentiating ourselves in any way that we can. We strive to maintain a certain level of quality across our website, our Instagram page, our products, and the entire business as a whole. We are proud to support products made in the USA and keep supporting American manufacturing to help keep the business thriving in our shop and others. We are always happy to support companies like Haas, Harvey Tool, Helical, and many others who are doing it all right here in the USA.

What are some of your “go-to” Harvey Tool and Helical products?

Geordan: The Helical Chipbreaker End Mill for Aluminum is key for making our vise handles. We use the ½” end mill and run it at 10k RPM, 300 IPM with a .700” DOC and 40% stepover. We can push those tools harder than others while also maintaining our product’s quality. We also rely heavily on Helical’s HEV-5 for our steel applications.

One of our favorite and most-used tools is the Harvey Tool 90 Degree Helically Fluted Chamfer Mill. We use the 3-flute style on everything that isn’t Aluminum because we can simply push it faster and harder than anything else that we have tried.

master machine

Nace: We actually keep a ton of other Harvey Tool and Helical products in our Autocrib. It made sense for us to get an inventory system, and we got a great deal on a system during the recession. Industrial Mill & Maintenance Supply got us hooked up with an Autocrib and a ton of tools, and they have been great at supplying it whenever we need more. It has helped a lot having an inventory system like that. It is reassuring to know that we have the best tools ready on hand so we can eliminate any potential downtime.

Master Machine is everywhere in the online machining community, specifically on Instagram. How has online marketing and social media changed the way you promote your business?

Geordan: Most people who run businesses seem to just hope that the word of mouth gets out there, or they have a website and hope it just goes viral one day and gets some attention. With the way the Internet is so crowded these days, you have to do something more to stand out. On our side, we have boosted our business through the use of paid online advertising with Google, boosting our SEO (Search Engine Optimization) to rank higher in search results, and being heavy users of social media like Instagram.

When I started the Master Machine Instagram account, I was really just using it to see what other machinists were doing. It was actually only a personal account for my use. I was skeptical of Instagram because of the Facebook community of machinists. I always viewed Facebook as a little more negative and less productive, while the Instagram community was much more collaborative.

mmm usa

I started by following people like Aeroknox, Kalpay, John Saunders, Bad Ass Machinists, and Tactical Keychains. I immediately noticed how helpful everyone was. I started posting as a business just about 2 years ago, when I posted our first version of the vise handles. Almost immediately people started asking to buy them. We were blown away by the response.

We didn’t set out to create something new with these handles, but by getting our name out there and filling a need for people following us, the hype continued to grow and grow and grow. Instagram has been a great tool for that aspect of the business, especially. We now have around 15 distributors across the US who are carrying our products, and are getting some great momentum. We also sell a lot of our products direct on our website, and 99% of that probably comes through Instagram.

Nace: We have actually landed distributors through someone following us online and going to their integrated distributor asking for our products. The distributor then called us and asked if they could carry our product on their shelves. Other online connections have also helped us land distributors through simple messages and phone calls.

Where do you see MMM USA in 10 years?

Nace: That’s a tough question…

At the shop, we always stress four major actions: Define, Act, Measure, and Refine. In our eyes, there are always better ways to do things and improve our processes. We hire people to have a growth mindset, and so we are redefining our future every day through our continual improvement process. We strive to always have that growth mindset to figure out how to do a job more efficiently. With constant improvement always taking place, it is hard to nail down exactly where the shop will be in 10 years, 5 years, or even 1 year from now. One thing is for sure – we will be successful.

Geordan: Something we do want to focus on is creating new assets, exploring new ventures, and doubling in size every year. We want to continue to release new products to build out our own product line and have MMM USA distributors worldwide.

Back in the day, Kurt Workholding was just a job shop, and now they are one of the most recognized workholding brands in the CNC machining industry. It is really hard to say where this ends or goes, but we think we have a bright future as both a job shop and as a supplier of our own OEM products for manufacturing.

vise handles

Are you currently hiring new machinists? If so, what qualities and skills do you look for?

Geordan: Every Tuesday we have an open interview at 4 PM. As you can imagine, with our company’s growth, we are constantly hiring. We are looking for people that are positive that have a growth mindset who can grow within the company. We always believe we can promote from within. Most of our people have been at Master Machine for 10-15 years because we can always move people up closer to the top and help them advance in their careers as we grow.

Nace: We are really focused on finding people with good attitudes, and people who want to be here. Skilled machinists are great, but they can be rare, so attitude and fitting in with the culture is huge. We can always take a good attitude and train the skill level up, but we can’t take a good skill level and change the bad attitude. We want team members who will coach each other up and help improve the team as a whole. We love working together and supporting the business together in every aspect of the business.

master machine

What is the best advice you have ever received?

Geordan: We really like “Notable Quotables.” Here are a couple of our favorites.

“The pen is for remembering, and the mind is for making decisions.”

We only have so much brain power to make crucial decisions, so we write all the day-to-day action items down on our checklists to make sure nothing is left undone. That frees our minds up from having to remember every little piece of the business so we can save that brain power for strategic decision making moments. We must be proactive and not reactive as we lead our team.

Nace: “Your employees want to follow someone who is always real, and not always right.”

As a leader, you need to take responsibility when you screw up, and be open with the team. Let them be a part of fixing the problem, and approach every situation looking at the positive.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

B&R Custom Machining- Featured Customer

B&R Custom Machining is a rapidly expanding aerospace machine shop located in Ontario, Canada, focused primarily on aerospace and military/defense manufacturing. Over the past 17 years, B&R has grown from a 5 person shop with a few manual mills and lathes, into one of Canada’s most highly respected manufacturing facilities, with nearly 40 employees and 21 precision CNC machines.

B&R focuses on quality assurance and constant improvement, mastering the intimacies of metal cutting and maintaining the highest levels of quality through their unique shop management philosophies. They seek to consistently execute on clear contracts through accurate delivery, competitive price, and high quality machined components.

We talked with Brad Jantzi, Co-Founder and Technical Manager of B&R Custom Machining, to learn about how he started in the industry, his experience with High Efficiency Milling, what he looks for most in a cutting tool, and more!

B&R Custom machining

Can you tell us a little bit about how B&R Custom Machining started, and a little background about yourself and the company?

My brother (Ryan Jantzi, CEO/Co-Founder) and I started working in manufacturing back in 2001, when we were just 20/21 years old. We had 5 employees (including ourselves), a few manual mills and lathes, and we were wrapping our parts in newspaper for shipping. We took over from a preexisting shop and assumed their sales and machines.

We bought our first CNC machine in 2003, and immediately recognized the power of CNC and the opportunities it could open up for us. Now, we have 21 CNC machines, 38 employees, and more requests for work than we can keep up with, which is a good thing for the business. We are constantly expanding our team to elevate the business and take on even more work, and are currently hiring for multiple positions if anyone in Ontario is looking for some challenging and rewarding work!

What kind of CNC machines are you guys working with?

Right now we have a lot of Okuma and Matsuura machines, many of which have 5 axis capabilities, and all of them with high RPM spindles. In fact, our “slowest” machine runs at 15k RPM, with our fastest running at 46k. One of our high production machines is our Matsuura LX160, which has the 46k RPM spindle. We use a ton of Harvey Tool and Helical product on that machine and really get to utilize the RPMs.

B&R Custom Machining

What sort of material are you cutting?

We work with Aluminum predominantly, but also with a lot of super alloys like Invar, Kovar, Inconel, Custom 455 Stainless, and lots of Titanium. Some of those super alloys are really tricky stuff to machine. Once we learn about them and study them, we keep a recorded database of information to help us dial in parameters. Our head programmer/part planner keeps track of all that information, and our staff will frequently reference old jobs for new parts.

Sounds like a great system you guys have in place. How did B&R Custom Machining get into aerospace manufacturing?

It is a bit of a funny story actually. Just about 12 years ago we were contacted by someone working at Comdev, which is close to our shop, who was looking to have some parts made. We started a business relationship with him, and made him his parts. He was happy with the work, and so we eventually got involved in his company’s switch division and started to make more and more aerospace parts.

aerospace machining

We immediately saw the potential of aerospace manufacturing, and it promoted where we wanted to go with CNC machining, so it was a natural fit. It really was a case of being in the right place at the right time and seizing the moment. If an opportunity comes up and you aren’t ready for it, you miss it. You have to be hungry enough to see an opportunity, and confident enough to grab it, while also being competent enough to handle the request. So, we took advantage of what we were given, and we grew and went from there.

Who are some of the major players who you work with?

We have great relationships with Honeywell, MDA Brampton, and MDA Quebec. We actually worked on parts for a Mars Rover with MDA that was commissioned by the Canadian Space Agency, which was really cool to be a part of.

Working with large companies like that means quality is key. Why is high quality tool performance important to you?

High quality and superior tool performance is huge. Aside from cutting conditions, there are two quick things that cause poor performance on a tool: tool life and consistency of the tool quality. One without the other means nothing. We all can measure tool life pretty readily, and there is a clear advantage that some tools have over others, but inconsistent quality can sneak up on you and cause trouble. If you have a tool manufacturer that is only producing a quality tool even 95% of the time, that might seem ok, but that means that 5% of the time you suffer something wrong on the machine. Many times, you won’t know where that trouble is coming from. This causes you to pause the machine, investigate, source the problem, and then ultimately switch the tool and create a new program. It becomes an ordeal. Sometimes it is not as simple as manually adjusting the feed knob, especially when you need to rely on it as a “proven program” the next time around.

So, say the probability of a shortcoming on a machine is “x” with one brand of tooling, but is half of that with a brand like Harvey Tool. Sure, the Harvey Tool product might be 10-20% higher in upfront cost, but that pales in comparison to buying cheaper tools and losing time and money due to machine downtime caused by tool failure. The shop rate for an average machine is right around $100/hour, so machine downtime is much more expensive than the added cost of a quality tool.

B&R Custom machining

Inconsistent tool quality can be extremely dangerous to play around with, even outside of machine downtime. We create based on a specific tool and a certain level of expected performance. If that tool cannot be consistent, we now jeopardize an expensive part. The machine never went down, but the part is no good because we programmed based on consistency in tool quality. Again, the cost of scrapped parts heavily outweighs the upfront cost of quality tooling. Tooling is a low cost of what we do here, but poor tooling can cost us thousands versus a few dollars more for quality tools. Too many people focus on the upfront cost, and don’t look downstream through the rest of the process to see how poor quality tooling can affect your business in a much bigger way. We get to see the whole picture because I am involved from cradle to grave, gaining feedback and knowledge along the way.

That’s great feedback Brad, and I think it is important for people to understand what you have laid out here. Speaking of tool performance, have you guys been using High Efficiency Milling techniques in the shop?

Absolutely. We feel that we are on the front edge of efficient milling. We are quite capable of all the latest techniques, as our programmers are well-versed and up to date. For our larger production work, we have programs dialed in that allow us to push the tools to their limits and significantly cut down our cycle times.

What advice would you have for others who are interested in High Efficiency Milling?

Make sure you are smart about using HEM. If we have one-off parts, particularly expensive ones, that do not have time restraints, we want to make sure we have a safe toolpath that will get us the result we want (in terms of quality and cutting security), rather than pushing the thresholds and taking extra time to program the HEM toolpaths. HEM makes total sense for large production runs, but make sure you know when to, and when not to use these techniques to get the most out of HEM.

B&R Custom machining

Have you been using Machining Advisor Pro in your shop when you run Helical end mills?

We have been, and it makes for a great point of reference for the Helical end mills. It has become a part of our new employee training, teaching them about speeds and feeds, how hard they can push the Helical tools, and where the safe zones are. Our more experienced guys also frequent it for new situations where they have no data. Machining Advisor Pro helps to verify what we thought we knew, or helps us get the confidence to start planning for a new job.

If you could give one piece of advice to a new machinist, or someone looking to take the #PlungeIntoMachining for the first time, what would it be?

Learn the intimacies of metal cutting. Get ultra-familiar with the results of what is actually happening with your tool, your setup, your part, and your machine. As well, don’t be limited to thinking “it sounds good,” or “it’s going good so far, so that must be acceptable.” In order to push the tools and confirm they are performing well and making money, you need to identify and understand where the threshold of failure is, and back off the right amount. This doesn’t end here though. Cutting conditions change as the tools, holders, machines, and parts change. Learning the nuances of this fluctuating environment and adapting accordingly is essential. Verify your dimensions, mitigate against risk, and control the variables.

Also, get intimate with what causes tools to succeed and fail, and keep a log of it for reference. Develop a passion for cutting; don’t just punch in and punch out each shift. Here at B&R, we are looking for continuous improvement, and employees who can add value. Don’t stand around all day with your arms folded, but keep constant logs of what’s going on and always be learning and thinking of how to understand what is happening, and improve on it. That is what makes a great machinist, and a successful shop.

B&R custom machining

Selecting the Right Harvey Tool Miniature Drill

Among Harvey Tool’s expansive holemaking solutions product offering are several different types of miniature tooling options and their complements. Options range from Miniature Spotting Drills to Miniature High Performance Drills – Deep Hole – Coolant Through. But which tools are appropriate for the hole you aim to leave in your part? Which tool might your current carousel be missing, leaving efficiency and performance behind? Understanding how to properly fill your tool repertoire for your desired holemaking result is the first step toward achieving success.

Pre-Drilling Considerations

Miniature Spotting Drills

Depending on the depth of your desired machined hole and its tolerance mandates, as well as the surface of the machine you will be drilling, opting first for a Miniature Spotting Drill might be beneficial. This tool pinpoints the exact location of a hole to prevent common deep-hole drilling mishaps such as walking, or straying from a desired path. It can also help to promote accuracy in instances where there is an uneven part surface for first contact. Some machinists even use Spotting Drills to leave a chamfer on the top of a pre-drilled hole. For extremely irregular surfaces, however, such as the side of a cylinder or an inclined plane, a Flat Bottom Drill or Flat Bottom Counterbore may be needed to lessen these irregularities prior to the drilling process.

spotting drill

Tech Tip: When spotting a hole, the spot angle should be equal to or wider than the angle of your chosen miniature drill. Simply, the miniature drill tip should contact the part before its flute face does.

spotting drill correct angle

Selecting the Right Miniature Drill

Harvey Tool stocks several different types of miniature drills, but which option is right for you, and how does each drill differ in geometry?

Miniature Drills

Harvey Tool Miniature Drills are popular for machinists seeking flexibility and versatility with their holemaking operation. Because this line of tooling is offered uncoated in sizes as small as .002” in diameter, machinists no longer need to compromise on precision to reach very micro sizes. Also, this line of tooling is designed for use in several different materials where specificity is not required.

miniature drill

Miniature High Performance Drills – Deep Hole – Coolant Through

For situations in which chip evacuation may be difficult due to the drill depth, Harvey Tool’s Deep Hole – Coolant Through Miniature Drills might be your best option. The coolant delivery from the drill tip will help to flush chips from within a hole, and prevent heeling on the hole’s sides, even at depths up to 20 multiples of the drill diameter.

miniature drill coolant through

Miniature High Performance Drills – Flat Bottom

Choose Miniature High Performance Flat Bottom Drills when drilling on inclined and rounded surfaces, or when aiming to leave a flat bottom on your hole. Also, when drilling intersecting holes, half holes, shoulders, or thin plates, its flat bottom tool geometry helps to promote accuracy and a clean finish.

flat bottom drill

Miniature High Performance Drills – Aluminum Alloys

The line of High Performance Drills for Aluminum Alloys feature TiB2 coating, which has an extremely low affinity to Aluminum and thus will fend off built-up edge. Its special 3 flute design allows for maximum chip flow, hole accuracy, finish, and elevated speeds and feeds parameters in this easy-to-machine material.

drill for aluminum

 

Miniature High Performance Drills – Hardened Steels

Miniature High Performance Drills – Hardened Steels features a specialized flute shape for improved chip evacuation and maximum rigidity. Additionally, each drill is coated in AlTiN Nano coating for hardness, and heat resistance in materials 48 Rc to 68 Rc.

drill for hardened steel

Miniature High Performance Drills – Prehardened Steels

As temperatures rise during machining, the AlTiN coating featured on Harvey Tool’s Miniature High Performance Drills – Prehardened Steels creates an aluminum oxide layer which helps to reduce thermal conductivity of the tool and helps to promote heat transfer to the chip, as well as improve lubricity and heat resistance in ferrous materials.

drill for prehardened steel

Post-Drilling Considerations

Miniature Reamers

For many operations, drilling the actual hole is only the beginning of the job. Some parts may require an ultra-tight tolerance, for which a Miniature Reamer (tolerances of +.0000″/-.0002″ for uncoated and +.0002″/-.0000″ for AlTiN Coated) can be used to bring a hole to size. miniature reamer

Tech Tip: In order to maintain appropriate stock removal amounts based on the reamer size, a hole should be pre-drilled at a diameter that is 90-94 percent of the finished reamed hole diameter.

Flat Bottom Counterbores

Other operations may require a hole with a flat bottom to allow for a superior connection with another part. Flat Bottom Counterbores leave a flat profile and straighten misaligned holes. For more information on why to use a Flat Bottom Counterbore, read 10 Reasons to Use Flat Bottom Tools.

flat bottom counterbores

Key Next Steps

Now that you’re familiar with miniature drills and complementary holemaking tooling, you must now learn key ways to go about the job. Understanding the importance of pecking cycles, and using the correct approach, is vital for both the life of your tool and the end result on your part. Read this post’s complement “Choosing the Right Pecking Cycle Approach,” for more information on the approach that’s best for your application.

Choosing The Right Pecking Cycle Approach

Utilizing a proper pecking cycle strategy when drilling is important to both the life of your tool and its performance in your part. Recommended pecking cycles vary depending on the drill being used, the material you’re machining, and your desired final product.

What are Pecking Cycles?

Rather than drill to full drill depth in one single plunge, pecking cycles involve several passes – a little at a time. Pecking aids the chip evacuation process, helps support tool accuracy while minimizing walking, prevents chip packing and breakage, and results in a better all around final part.

Recommended Pecking Cycles / Steps

Miniature Drills

miniature drill pecking cycles

High Performance Drills – Flat Bottom

pecking cycles

High Performance Drills – Aluminum & Aluminum Alloys

aluminum pecking cycles

Note: For hole depths 12x or greater, a pilot hole of up to 1.5X Diameter is recommended.

High Performance Drills – Hardened Steels

hardened steels pecking cycles
High Performance Drills – Prehardened Steels

prehardened steels pecking cycles

Key Pecking Cycle Takeaways

From the above tables, it’s easy to identify how recommended pecking cycles change based on the properties of the material being machined. Unsurprisingly, the harder the material is, the shorter the recommended pecking depths are. As always, miniature drills with a diameter of less than .010″ are extremely fragile and require special precautions to avoid immediate failure. For help with your specific job, contact the Harvey Tool Technical Team at 800-645-5609 or [email protected]erformance.com

5 Ways Your Shop is Inefficient

5 Ways Your Shop is Inefficient

In today’s ultracompetitive industry, every machine shop seeks even the slightest edge to gain an advantage on their competition and boost their bottom line. However, what many machinists don’t know is that improving their shop’s efficiency might be easier than they thought. The following five ways your shop is inefficient will provide a clear starting point of where to look for machinists desperate to earn a competitive edge.

1. Premature Tool Decay / Tool Failure

If you’re finding that your tools are failing or breaking at an unacceptable rate, don’t mistake it for commonplace. It doesn’t have to be. Prolonging the life of your tooling starts with finding not just the right tool, but the best one; as well as running it in a way to get its optimal performance. Many machinists mistake premature tool failure with running parameters that were too aggressive. In fact, not pushing the tool to its full potential can actually cause it to decay at an accelerated rate in certain situations.

Tool failure can occur in many different ways: Abrasive Wear, Chipping, Thermal Cracking or Tool Fracture, just to name a few. Understanding each type and its causes can help you to quickly boost your shop’s efficiency by minimizing downtime and saving on replacement tool costs.

tool wear

An example of a tool with excessive wear

For more information on tool wear, view Avoiding 4 Major Types of Tool Wear.

2. Subpar Part Finish

Your shop spends money to employ machinists, run machines, and buy cutting tools. Get your money’s worth, lead the industry, and ensure that you’re providing your customers with the highest quality product. Not only will this help to keep your buyer-seller relationship strong, but it will allow you the flexibility to increase your prices in the future, and will attract prospective customers.

Many factors influence part finish, including the material and its hardness, the speeds and feeds you’re running your tool at, tool deflection, and the tool-to-workpiece orientation.

For more information on ways to improve your part finish, view our Part Finish Reference Guide.

3. Inefficient Coolant Usage

One often forgotten expense of a machine shop is coolant – and it can be pricey. A 55-gallon drum of coolant can run more than $1,500. What’s worse is that coolant is often applied in excess of what’s required for the job. In fact, some machines even feature a Minimum Quantity Lubricant (MQL) functionality, which applies coolant as an extremely fine mist or aerosol, providing just enough coolant to perform a given operation effectively. While drowning a workpiece in coolant, known as a “Flood Coolant,” is sometimes needed, it is oftentimes utilized on jobs that would suffice with much less.

For more information about coolants and which method of application might be best for your job, view What You Need to Know About Coolant for CNC Machining.

4. Not Taking Advantage of Tool Versatility

Did you know that several CNC cutting tools can perform multiple operations? For example, a Chamfer Mill can chamfer, bevel, deburr, and countersink. Some Chamfer Mills can even be used as a Spotting Drill. Of course, the complexity of the job will dictate your ability to reap the benefits of a tool’s versatility. For instance, a Spotting Drill is obviously the best option for spotting a hole. If performing a simple operation, though, don’t go out of your way to buy additional tooling when what’s already in your carousel can handle it.

chamfer mills

To learn more about versatile tools that can perform multiple applications, check out Multi-Functional Tools Every Shop Should Have.

5. High Machine Downtime

What use is a machine that’s not running? Minimizing machine downtime is a key way to ensure that your shop is reaching its efficiency pinnacle. This can be accomplished a variety of ways, including keeping like-parts together. This allows for a simple swap-in, swap-out of material to be machined by the same cutting tool. This saves valuable time swapping out tooling, and lets your machine to do its job for more time per workday. Production planning is a key factor to running an efficient machine shop.

The Advances of Multiaxis Machining

CNC Machine Growth

As the manufacturing industry has developed, so too have the capabilities of machining centers. CNC Machines are constantly being improved and optimized to better handle the requirements of new applications. Perhaps the most important way these machines have improved over time is in the multiple axes of direction they can move, as well as orientation. For instance, a traditional 3-axis machine allows for movement and cutting in three directions, while a 2.5-axis machine can move in three directions but only cut in two. The possible number of axes for a multiaxis machine varies from 4 to 9, depending on the situation. This is assuming that no additional sub-systems are installed to the setup that would provide additional movement. The configuration of a multiaxis machine is dependent on the customer’s operation and the machine manufacturer.

Multiaxis Machining

With this continuous innovation has come the popularity of multiaxis machines – or CNC machines that can perform more than three axes of movement (greater than just the three linear axes X, Y, and Z). Additional axes usually include three rotary axes, as well as movement abilities of the table holding the part or spindle in place. Machines today can move up to 9 axes of direction.

Multiaxis machines provide several major improvements over CNC machines that only support 3 axes of movement. These benefits include:

  • Increasing part accuracy/consistency by decreasing the number of manual adjustments that need to be made.
  • Reducing the amount of human labor needed as there are fewer manual operations to perform.
  • Improving surface finish as the tool can be moved tangentially across the part surface.
  • Allowing for highly complex parts to be made in a single setup, saving time and cost.

9-Axis Machine Centers

The basic 9-axis naming convention consists of three sets of three axes.

Set One

The first set is the X, Y, and Z linear axes, where the Z axis is in line with the machine’s spindle, and the X and Y axes are parallel to the surface of the table. This is based on a vertical machining center. For a horizontal machining center, the Z axis would be aligned with the spindle.

Set Two

The second set of axes is the A, B, and C rotary axes, which rotate around the X, Y, and Z axes, respectively. These axes allow for the spindle to be oriented at different angles and in different positions, which enables tools to create more features, thereby decreasing the number of tool changes and maximizing efficiency.

Set Three

The third set of axes is the U, V, and W axes, which are secondary linear axes that are parallel to the X, Y, and Z axes, respectively. While these axes are parallel to the X, Y, and Z axes, they are managed by separate commands. The U axis is common in a lathe machine. This axis allows the cutting tool to move perpendicular to the machine’s spindle, enabling the machined diameter to be adjusted during the machining process.

A Growing Industry

In summary, as the manufacturing industry has grown, so too have the abilities of CNC Machines. Today, tooling can move across nine different axes, allowing for the machining of more intricate, precise, and delicate parts. Additionally, this development has worked to improve shop efficiency by minimizing manual labor and creating a more perfect final product.

What You Need to Know About Coolant for CNC Machining

Coolant in purpose is widely understood – it’s used to temper high temperatures common during machining, and aid in chip evacuation. However, there are several types and styles, each with its own benefits and drawbacks. Knowing which coolant – or if any – is appropriate for your job can help to boost your shop’s profitability, capability, and overall machining performance.

Coolant or Lubricant Purpose

Coolant and lubricant are terms used interchangeably, though not all coolants are lubricants. Compressed air, for example, has no lubricating purpose but works only as a cooling option. Direct coolants – those which make physical contact with a part – can be compressed air, water, oil, synthetics, or semi-synthetics. When directed to the cutting action of a tool, these can help to fend off high temperatures that could lead to melting, warping, discoloration, or tool failure. Additionally, coolant can help evacuate chips from a part, preventing chip recutting and aiding in part finish.

Coolant can be expensive, however, and wasteful if not necessary. Understanding the amount of coolant needed for your job can help your shop’s efficiency.

Types of Coolant Delivery

Coolant is delivered in several different forms – both in properties and pressure. The most common forms include air, mist, flood coolant, high pressure, and Minimum Quantity Lubricant (MQL). Choosing the wrong pressure can lead to part or tool damage, whereas choosing the wrong amount can lead to exhausted shop resources.

Air: Cools and clears chips, but has no lubricity purpose. Air coolant does not cool as efficiently as water or oil-based coolants. For more sensitive materials, air coolant is often preferred over types that come in direct contact with the part. This is true with many plastics, where thermal shock – or rapid expansion and contraction of a part – can occur if direct coolant is applied.

Mist: This type of low pressure coolant is sufficient for instances where chip evacuation and heat are not major concerns. Because the pressure applied is not great in a mist, the part and tool do not undergo additional stresses.

Flood (See Video Below): This low pressure method creates lubricity and flushes chips from a part to avoid chip recutting, a common and tool damaging occurrence.

High Pressure (See Video Below): Similar to flood coolant, but delivered in greater than 1,000 psi. This is a great option for chip removal and evacuation, as it blasts the chips away from the part. While this method will effectively cool a part immediately, the pressure can be high enough to break miniature diameter tooling. This method is used often in deep pocket or drilling operations, and can be delivered via coolant through tooling, or coolant grooves built into the tool itself. Harvey Tool offers Coolant Through Drills and Coolant Through Threadmills.

Minimum Quantity Lubricant (MQL): Every machine shop focuses on how to gain a competitive advantage – to spend less, make more, and boost shop efficiency. That’s why many shops are opting for MQL, along with its obvious environmental benefits. Using only the necessary amount of coolant will dramatically reduce costs and wasted material. This type of lubricant is applied as an aerosol, or an extremely fine mist, to provide just enough coolant to perform a given operation effectively.

In Conclusion

Coolant is all-too-often overlooked as a major component of a machining operation. The type of coolant or lubricant, and the pressure at which it’s applied, is vital to both machining success and optimum shop efficiency. Coolant can be applied as compressed air, mist, in a flooding property, or as high pressure. Certain machines also are MQL able, meaning they can effectively restrict the amount of coolant being applied to the very amount necessary to avoid being wasteful.

Optimize Roughing With Chipbreaker Tooling

Chipbreaker End Mills feature unique notch profiles, creating a serrated cutting edge. These dividers break otherwise long, stringy chips into small, easily-managed swarf that can be cleanly evacuated from the part. But why is a chipbreaker necessary for some jobs, and not others? How does the geometry of this unique tool impact its proper running parameters? In this post, we’ll answer these questions and others to discover the very real benefits of this unique cutting geometry.

How Chipbreaker Tooling Works

As a tool rotates and its cutting edge impacts a workpiece, material is sheared off from a part, creating chips. When that cutting process is interrupted, as is the case with breaks in the cutting portion of the tool, chips become smaller in length and are thus easier to evacuate. Because the chipbreakers are offset flute-to-flute, a proper, flat surface finish is achieved as each flute cleans up any excess material left behind from previously passed flutes.

Benefits of Chipbreaker Tooling

Machining Efficiency

When chips are removed from the part, they begin to pile in the machine. For extensive operations, where a great deal of material is hogged out, chip accumulation can very rapidly get in the way of the spindle or part. With larger chips, accumulation occurs much faster, leaving machinists to stop their machine regularly to remove the waste. As any machinist knows, a stopped machine equates to lost money.

Prolonged Tool Life

Inefficient chip evacuation can lead to chip recutting, or when the the tool impacts and cuts chips left behind during the machining process. This adds stresses on the tool and accelerates rate of wear on the cutting edge. Chipbreaker tooling creates small chips that are easily evacuated from a part, thus minimizing the risk of recutting.

Accelerated Running Parameters

A Harvey Performance Company Application Engineer recently observed the power of a chipbreaker tool firsthand while visiting a customer’s shop in Minnesota. The customer was roughing a great amount of 4340 Steel. Running at the parameters below, the tool was able to run uninterrupted for two hours!

Helical Part No. 33737
Material 4340 Steel
ADOC 2.545″
RDOC .125″
Speed 2,800 RPM
Feed 78 IPM
Material Removal Rate 24.8 Cubic In/Min

Chipbreaker Product Offering

Chipbreaker geometry is well suited for materials that leave a long chip. Materials that produce a powdery chip, such as graphite, should not be machined with a chipbreaker tool, as chip evacuation would not be a concern. Helical Solutions’ line of chipbreaker tooling includes a 3-flute option for aluminum and non-ferrous materials, and its reduced neck counterpart. Additionally, Helical offers a 4-flute rougher with chipbreaker geometry for high-temp alloys and titanium. Harvey Tool’s expansive product offering includes a composite cutting end mill with chipbreaker geometry.

In Summary

Chipbreaker geometry, or grooves within the cutting face of the tool, break down chips into small, manageable pieces during the machining process. This geometry can boost shop efficiency by minimizing machine downtime to clear large chips from the machining center, improve tool life by minimizing cutting forces exerted on the tool during machining, and allow for more accelerated running parameters.

Harvey Performance Company Announces Partnership with Summit Partners

ROWLEY, MA (October 17, 2017) – The Harvey Performance Company team is excited to announce a growth equity investment from Summit Partners, a global growth equity investor based in Boston, MA. The funding will be used to foster continued growth, generate ongoing product development, and advance new initiatives.

“This funding will support Harvey Performance Company’s ongoing product innovation efforts, allowing us to sustain our tremendous growth we’ve enjoyed over the last several years,” said Pete Jenkins, Harvey Performance Company Chief Executive Officer. “We’re so appreciative of the Summit team for sharing our vision of growth, and the importance of continued outstanding customer service.”

Founded in 1984, Summit (www.summitpartners.com) has become the investment partner of choice for many of the best growth companies in the world. Its leadership team, averaging more than 13 years of experience, has proven results with aiding businesses reach new, exceptional heights. Summit partners with hundreds of companies, including Uber, NetBrain Technologies, Fuze, and MarketLogic, among others.

Summit’s investment in Harvey Performance Company is its third such partnership in its history. Most recently in 2014, prior to the inception of Harvey Performance Company, The Riverside Company (www.riversidecompany.com) invested in Harvey Tool Company. With its help, Harvey Tool’s acquisition of Helical Solutions and the creation of Harvey Performance Company, was made possible.

“With Riverside’s tremendous partnership over the last three years, we’ve accomplished so much,” Jenkins said. “We can’t wait for more great things to come with Summit.”