Tag Archive for: how to become a machinist

New Dublin Ship Fittings – Featured Customer

Featured Image Courtesy of Lucas Gilbert, New Dublin Ship Fittings

New Dublin Ship Fittings was established in 2017 by Lucas Gilbert, and is located on the scenic south shore of Nova Scotia, Canada.  Lucas began his career with a formal education in machining and mechanical engineering. In the early 2000’s, Lucas got into the traditional shipbuilding industry made famous in the region he grew up in, Lunenburg County, Nova Scotia. It is then when Lucas identified the need for quality marine hardware and began making fittings in his free time. After some time, Lucas was able to start New Dublin Ship Fittings and pursue his lifelong dream of opening a machine shop and producing custom yacht hardware.

Lucas was our grand prize winner in the #MadeWithMicro100 Video Contest! He received the $1,000 Amazon gift card, a Micro-Quik™ Quick Change System with some tooling, and a chance to be In the Loupe’s Featured Customer for February. Lucas was able to take some time out of his busy schedule to discuss his shop, how he got started in machining, and the unique products he manufactures.

How did you start New Dublin Ship Fittings?

I went to school for machine shop and then mechanical engineering, only to end up working as a boat builder for 15 years. It was during my time as a boat builder that I started making hardware in my free time for projects we were working on. Eventually, that grew into full-time work. Right now, we manufacture custom silicon bronze and stainless fittings only. Eventually, we will move into a bronze hardware product line.

New Dublin Ship Fittings shop

Photo Courtesy of: New Dublin Ship Fittings

Where did your passion for marine hardware come from?

I’ve always loved metalworking. I grew up playing in my father’s knife shop, so when I got into wooden boats, it was only a matter of time before I started making small bits of hardware. Before hardware, I would play around making woodworking tools such as chisels, hand planes, spokeshaves, etc.

What can be found in your shop?

The shop has a 13”x 30” and 16”x 60” manual lathe, a Bridgeport Milling Machine, Burgmaster Turret Drill Press, Gang Drill, Bandsaw, 30-ton hydraulic press, #2 Hossfeld Bender, GTAW, and GMAW Welding Machines, as well as a full foundry set up with 90 pounds of bronze pour capacity. We generally only work in 655 silicon bronze and 316 stainless steel.

cnc machined boat parts

Photo Courtesy of: New Dublin Ship Fittings

What projects have you worked on at New Dublin Ship Fittings that stand out to you?

I’ve been lucky to work on several amazing projects over the years. Two that stand out are a 48’ Motorsailer Ketch built by Tern Boatworks, as well as the 63’ Fusion Schooner Farfarer, built by Covey Island Boatworks. Both boats we built most of the bronze deck hardware for.

cnc milled boat cleat

Photo Courtesy of: New Dublin Ship Fittings

I’ve made many interesting fittings over the years. I prefer to work with bronze, so I generally have the most fun working on those. I’m generally the most interested when the part is very
challenging to make and custom work parts are often very challenging. I’m asked to build or machine a component that was originally built in a factory and is difficult to reproduce with limited machinery and tooling, but I enjoy figuring out how to make it work.

Why is high-quality tooling important to you?

When I first started I would buy cheaper tooling to “get by” but the longer I did it, the more I realized that cheaper tooling doesn’t pay off. If you want to do quality work in a timely fashion, you need to invest in good tooling.

What Micro 100 Tools are you currently using?

Currently, we just have the Micro 100 brazed on tooling but we have been trying to move more into inserts so we are going to try out Micro’s indexable tooling line. After receiving the Micro-Quik™ Quick Change System, we are looking forward to trying out more of what (Micro 100) has to offer. This new system should help us reduce tool change time, saving us some money in the long run.

cnc machined rigging

Photo Courtesy of: New Dublin Ship Fittings

What makes New Dublin Ship Fittings stand out from the competition?

I think the real value I can offer boat builders and owners over a standard job shop is my experience with building boats. I understand how the fitting will be used and can offer suggestions as to how to improve the design.

If you could give one piece of advice to a new machinist what would it be?

The advice I would give to new machinists is to start slow and learn the machines and techniques before you try to make parts quickly. There is a lot of pressure in shops to make parts as fast as possible, but you’ll never be as fast as you can be if you don’t learn the processes properly first. Also, learn to sharpen drill bits well!

Axis CNC Inc. – Featured Customer

Featured Image Courtesy of Axis CNC Inc

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

How to Select a Spindle

When trying to develop efficient processes, many machinists and programmers turn to tool selection first. It is true that tooling can often make a big difference in machining time, and speeds and feeds, but did you know that your machine’s spindle can have an equally impactful effect? The legs of any CNC machine, spindles are comprised of a motor, a taper for holding tools, and a shaft that will hold all of the components together. Often powered by electricity, spindles rotate on an axis which receives its input from the machine’s CNC controller.

Why is Choosing the Right Spindle Important?

Choosing the right spindle to machine your workpiece with is of very high importance to a successful production run. As tooling options continue to grow, it is important to know what tooling your spindle can utilize. Large diameter tools such as large end mills or face mills typically require slower spindle speeds and take deeper cuts to remove vast amounts of material. These applications require supreme machine rigidity and require a spindle with high torque.

Contrastingly, smaller diameter tools will need a higher-speed spindle. Faster speeds and feeds deliver better surface finishes and are used in a variety of applications. A good rule of thumb is that an end mill that is a half inch or smaller will run well with lower torque.

Types of CNC Spindles

After finding out what you should look for in a spindle, it is time to learn about your different options. Spindles typically vary by the type, style of the taper, or its size. The taper is the conical portion of the tool holder that fits inside of the opening of the spindle. Every spindle is designed to mate with a certain taper style and size.

properly selecting a spindle

CAT and BT Holders

This is the most widely utilized holder for milling in the United States. Referred to as “V-flange holders,” both of these styles need a retention knob or pull stud to be secured within the machine spindle. The BT (metric style) is popular overseas.

HSK Holders

This type of holder is a German standard known as “hollow shank taper.” The tapered portion of the holder is much shorter than its counterparts. It also engages the spindle in a different way and does not require a pull stud or retention knob. The HSK holder is utilized to create repeatability and longer tool life – particularly in High Efficiency Milling (HEM) applications.

All of these holders have benefits and limitations including price, accuracy, and availability. The proper selection will depend largely on your application requirements.

Torque vs. Horsepower

Torque is defined as force perpendicular to the axis of rotation across a distance. It is important to have high torque capabilities when using an end mill larger than ½ inch, or when machining a difficult material such as Inconel. Torque will help put power behind the cutting action of the tool.

Horsepower refers to the amount of work being done. Horsepower is important for smaller diameter end mills and easy-to-machine materials like aluminum.

You can think of torque as a tractor: It can’t go very fast, but there is a lot of power behind it. Think of horsepower as a racecar: It can go very fast but cannot pull or push.

Torque-Horsepower Chart

Every machine and spindle should come with a torque horsepower chart. These charts will help you understand how to maximize your spindle for torque or horsepower, depending on what you need:

Haas spindle horsepower and torque chart
Image Source: HAAS Machine Manual

Proper Spindle Size

The size of the spindle and shank taper corresponds to the weight and length of the tools being used, as well as the material you are planning to machine. CAT40 is the most commonly used spindle in the United States. These spindles are great for utilizing tools that have a ½ inch diameter end mill or smaller in any material. If you are considering using a 1 inch end mill in a material like Inconel or Titanium, a CAT50 would be a more appropriate choice. The higher the taper angle is, the more torque the spindle is capable of.

While choosing the correct tool for your application is important, choosing a tool your spindle can utilize is paramount to machining success. Knowing the amount of torque required will help machinists save a lot of headaches.

Liberty Machine – Featured Customer

Featured Image Courtesy of Liberty Machine, Inc.

Liberty Machine, Inc. is a small Aerospace and Defense-focused machine shop located out of owner Seth Madore’s garage in Gray, Maine. In just a few years, Liberty Machine has transformed from a side hustle into a full-fledged machine shop with customers all over the world.

We were given the chance to visit Seth at his shop in Maine and interview him for this post. We picked Seth’s mind about entrepreneurship, the online manufacturing community, some interesting home construction choices made to accommodate a machine shop, and more.

Thanks for having us come out and visit the shop for this Featured Customer post. To get started, tell us a little bit about Liberty Machine’s history, and what sort of products you typically manufacture.

I founded Liberty Machine, Inc. out of my garage about 6 years ago while I was still working full-time at one of Maine’s largest (and best) Aerospace and Defense shops. I was working close to around 80-100 hours a week, maintaining my full-time job as well as coming home and making chips in the evenings and weekends. At first, I was doing a lot of smaller pieces and one-off parts, such as fixtures and prototype work to help build up a customer base and make enough money to eventually upgrade my machine.

In the early years, I was using an old 1982 Matsuura MC-500 Mill that I picked up for around $6,000. I used that machine to generate enough cash flow and eventually pull the trigger on a 2015 DMG Mori Duravertical 5100 with a 4th axis, probing and high-pressure coolant which really allowed me to take on the type of aerospace and defense work I had been doing at my day job and make the leap into full time entrepreneurship in my own shop. Now, we have the capabilities to focus on aerospace and defense work for major clients all over the country.

We are still working out of my garage, with myself and one other employee, but there are hopes for further expansion in the future as we acquire more work and expand our customer base. If you want to keep up with our shop, follow us on Instagram @liberty_machine!

CNC mill

Photo Courtesy of: Liberty Machine, Inc.

You have a great shop here and are definitely maximizing the space. How much square footage are you working with?

Currently, we are working out of a 940 sq/ft shop. We “technically” have room for one more CNC mill if we really squeezed things together. I don’t think that is in the cards though; it is more likely that we will move to a larger space if and when the time comes for expansion. Heat management and air quality are real issues when working in small spaces with low ceilings, which is something we deal with currently.

What sort of machines and software do you have here in the shop?

For now, we have two VMC’s and a decent amount of inspection equipment. We have the DMG Mori machine I previously mentioned, as well as a 2016 Kitamura-3XD. Both machines have 12k spindles, Renishaw probes, and feature coolant through spindles.

For inspection equipment, we have a 2014 Mitutoyo QM-Height 350 Digital Height Gage, a 2003 Brown & Sharpe Gage 2000 CMM with Renishaw MIP Articulating Probe Head, and a 2003 Mitutoyo PH-A14 Optical Comparator. We also recently acquired a Scienscope Stereo/Digital microscope. This allows us to perform visual inspection of our parts at an extreme amount of detail.

Liberty Machine

Photo Courtesy of: Liberty Machine, Inc.

There are still holes in our inspection lineup, so we are always looking at adding onto what we do to provide our customers with quality machined products.

For CAD/CAM software, we use Autodesk’s Fusion 360 as well as Inventor HSM.

You mentioned using Fusion 360 for CAD/CAM. Some of our readers may know you from the Autodesk CAM forums as an “Autodesk Expert Elite.” How did that come together?

About 4-5 years ago, I knew I needed a legal, supported, capable CAM solution. After several “30-day trials” of the more affordable packages, I stumbled upon Fusion 360. Having a fair amount of experience with Esprit and MasterCAM, I taught myself Fusion 360 in between running my shop and trying to spend what little time I had with my wife and children. Even though I had prior experience in other CAM packages, I still had lots of questions. I turned to the Fusion CAM Forums for assistance. The employees and other users were excellent to work with and got me sorted out quickly.

Liberty Machine

Photo Courtesy of: Liberty Machine, Inc.

After I became more comfortable with the Fusion 360 software, I decided to spend some of my free time helping others by answering their questions on the forums. I wanted to give back to the community that had helped me learn. Autodesk eventually took notice of my constant presence on the forums and granted me the title of “Autodesk Expert Elite,” an honor given to some of their most prolific community members and advocates. Now I work with them to help test new features, provide insight from a user’s point of view, and participate in events like Autodesk University.

How did you first get involved in manufacturing?

I will be honest – I never meant to end up working in manufacturing. When I was a teen, I had glamorous ideas about law enforcement, federal work and so forth. But, life doesn’t always work out that way (I met a wonderful girl and goals shifted, so I started looking for alternate career paths).

My friend (future brother-in-law) was a machinist, so I started asking about his work and what it involved. He was working in a “job shop” using all sorts of cool machines and technology I had never really heard about. I was very excited about this career shift and I pursued it with fervor. 19 years later and I still LOVE this trade. The thing that intrigued me most about manufacturing, and the real reason I became so fixated on the trade, was the integral role the machinist plays in every aspect of manufactured society. I believe it is the most fundamental profession there is, and I take great pride in it. The evolution of the trade from manual machining to skilled programmers running CNC machines has always fascinated me as well and has kept pushing me to learn more and continue growing as a machinist.

Liberty Machine

Photo Courtesy of: Liberty Machine, Inc.

Is it true that you built an addition to your garage specifically for the DMG Mori machine?

That is true! Before I bought the machine, I knew it was going to be too tall for my existing space, and was also going to need a solid foundation to sit on (it weighs 7 tons). Before the machine arrived, I had a concrete slab poured right against the side wall of the existing garage, and placed the DMG Mori on that slab.

After a couple days of unfortunate rain and multiple layers of tarps covering the machine, I had several family members (carpenters by trade) help me build the addition. Ok…I helped them. They were able to get it all framed and covered in just one day, breaking down the side wall of the garage and literally building the new space around the dimensions of the machine. Like they say, if there is a will, there is a way!

Running a shop out of your garage must have been a challenge to startup. What were some of the growing pains you experienced as this shop was built out?

On a professional level, the struggle was real. Two jobs, huge payments on the horizon, wondering where all the work (and money) is going to come from… As I mentioned, at that point, I was working 100 hours a week between the two jobs, and really feeling wiped out at the end of each week. However, the hard work did eventually pay off. Once I was able to get the DMG Mori and prove to customers that I had the capabilities to go full-time on my own, it was all worth it.

Liberty Machine

Photo Courtesy of: Liberty Machine, Inc.

Outside of that, there were the literal growing pains, like cutting holes in my garage ceiling to fit the column on the Kitamura machine, and of course, building an addition to house the DMG. But like I said, it was all worth it in the end to own my own shop.

What is the best thing about working for yourself?

I’d say the best thing about working out of my shop (and for myself) is seeing my family on a daily basis. Yes, I still work 60-70 hours a week, but to have breakfast with them each morning before our day starts and have the flexibility to shift schedules around for doctor visits and other “life stuff” is worth its weight in gold. We are all so busy in life and I think we suffer as a society because of it. I want my children to know what it’s like to have a parent that is around. Busy, yes. But still present.

You mentioned that you had used a lot of Harvey and Helical tools at your last job. However, once you were on your own, you could choose any tooling you wanted to use. What made you stick with the Harvey Performance Company brands as your go-to tools?

The thing with Harvey Tool and Helical products that keep me coming back is the consistency of quality. I know that when I buy one of these tools, I am going to get a high-performing tool that has gone through multiple levels of inspection and is consistently ground within the tight tolerances that were promised. I honestly cannot remember a single time I have had to send any Harvey or Helical tools back for quality issues.

Liberty Machine

Photo Courtesy of: Liberty Machine, Inc.

I tell friends and others in the manufacturing community about the tools, and the hurdle is always getting them to look past the slightly higher cost. That additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance.

Can you remember a key moment where Harvey Tool/Helical products really saved the day?

Truthfully, Harvey and Helical are my first thought when I’m looking at a challenging feature on a new part. If they offer something that looks like it will work, I don’t even look for an alternative. Order it, get it in house. I’d say where Harvey helps the most is their awesome selection of long reach/stub flute end mills for stainless steel. I cut so much of that, so it’s great to have a vendor stock what is truly needed.

cnc milled metal part

Photo Courtesy of: Liberty Machine, Inc.

Would you recommend entrepreneurship to other young machinists hoping to open their own shop some day?

Yes! But like all things in life, “It depends.” Entrepreneurship is certainly not for everyone. The amount of work required to get a shop rolling and out of “crisis-mode” is insane. There is no other term for it. If you have a significant other in your life, MAKE SURE they are on the same page as you. I am blessed to have a wife by my side who sees the end goal and is understanding of the sacrifice needed in the short-term for the long-term benefit of our family.

What advice might you want to give to someone starting in this trade?

Don’t stop learning. Keep your ears open and your mouth shut. That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.

Form Factory – Featured Customer

Featured Image Courtesy of Form Factory

Form Factory is a machine shop located in Portland, Oregon focused primarily on prototype work, taking 3D CAD models and making them a physical reality through CNC precision machining. Over the past 14 years, Form Factory has grown from a one man operation with a single CNC mill into a highly respected shop in the Northwest US, making prototype models for clients all over the world. Harvey Tool customers may recognize the name Form Factory from their photo on the front cover of the Fall 2018 Catalog, as they were the first place winners of the #MachineTheImpossible Catalog Cover Contest!

We talked with Brian Ross, Founder/Owner of Form Factory, to learn about how he suggests entrepreneurs and inventors think about prototyping their ideas, his unique experience working on many different models, his winning part in the #MachineTheImpossible contest, and more!

Thanks for taking the time to talk with us for this Featured Customer post. To get started, tell us a little bit about Form Factory, how you got started, and what sort of products you manufacture.

Prior to starting my own business, I had worked as a machinist at 4 different prototyping firms which is where I learned the trade and got the itch to run my own shop. I started Form Factory myself just over 14 years ago with a single Haas VF1. I had no client base and a bunch of loans. It was a scary time for me to jump in to entrepreneurship. Now, we have three CNC machines, various other components and machines, and four full-time employees.

At Form Factory we focus primarily on industrial design models and prototypes. We do a lot of work in the electronics industry, making prototypes of cell phones, laptops, printers, and other consumer electronics. Many of our models are created for display at trade shows or in Kickstarter and other product announcement videos, but we also do a fair share of working prototypes as well. It all depends on what the client wants, and we pride ourselves on the ability to deliver exactly what they need.

form factory

Photo Courtesy of: Form Factory

What sort of machines and software do you use in your shop?

We currently have 3 CNC mills – a Haas VF1, Haas VF2, and Haas VF3. We like using machines made in the USA because we like making products in the USA. Haas is what I knew and had run predominantly, and Haas is fairly common in the Northwest so it was easier to find skilled employees in the area who knew these machines well.

We use Mastercam for our CAM software, which is what I learned on. It also seems to be very common in this area which makes for an easy transition for new employees.

form factory

Photo Courtesy of: Form Factory

What were some of the keys to success as you built Form Factory from the ground up?

I based much of Form Factory’s business model on my past experiences in manufacturing. Many of the other small companies I had worked for ended up closing, even though the guys on the shop floor would be working lots of overtime and we had plenty of business. What I realized was that these other places often closed because of greed, over-expansion, and rapid growth which they could not sustain. They ended up overextending themselves and they could not keep the doors open as a result.

I like the spot I am in now because while we can certainly expand, we have found a happy medium. We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Being a small company, word of mouth is one of our only forms of marketing. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty, which is key to running a good business.

form factory

Working Prototype of a “Smart Ball” Charger for Adidas Photo Courtesy of: Form Factory

Prototype manufacturing is a very competitive segment of this industry. What sets Form Factory apart from the competition?

Understanding how model making relates to industrial design separates us from a typical machine shop. We can take a prototype design or simple drawing and we are able to implement all of the functionality into a prototype model. We do not deal much with the actual production run, which will come later, so we have the ability to focus more on the prototype and a customer’s exact needs to get a product off the ground. This level of expertise and focus sets us apart from your typical shop.

For example, if the model is for photography purposes, a trade show display, or a promotional video, appearance will be key. We will spend more time working on building what we consider to be a true work of art; something that will immediately stand out to the consumer, but may lack in complete functionality. If the client requires a fully functioning prototype, we will spend more time making sure that all of the components work as intended over multiple stages of design. The final result may be a bit “uglier” than a prototype designed for appearance alone, but it will work as intended.

Let’s say I have an idea for a new product. What should I know about getting my design manufactured?

Right now, especially with 3D printing and cheap overseas manufacturing, it can seem very easy to prototype a new product. However, these options are not always the best route to take to get a quality prototype. With 3D printing, you get a huge step down in resolution and quality, although you can save in cost. You can also save on cost by having things made overseas, but the communication can easily breakdown and the quality is often lower. The other factor is that virtually anyone can end up copying your product overseas and you have very little protection against that.

form factory

Photo Courtesy of: Form Factory

By going with a local machine shop and sticking with CNC-machined parts, you are guaranteed to get a higher quality finished product with better communication. We do a ton of back and forth communication with our clients to understand their exact design intent. With a prototype, there are often a lot of blanks that need to be filled in to completely understand the product, and we do our best to communicate with the client to deliver the perfect piece, and always on time. Sure, your cost may be higher, but the entire process will be smoother and the time saved on revisions or scrapping poor quality prototypes is invaluable.

It sounds like you guys take a lot of pride in the work you do, which is great!

Absolutely! Our models are all one of a kind works of art. We can take things from the early stages where a client might have an idea drawn on a napkin, all the way to a fully functional piece.

Our goal is always to make parts look like they grew that way. In my opinion, taking a solid block of material and making it into a finished part is truly a work of art. We work hard to determine where the burrs are, what the radiuses are, and how the finish should look, amongst many other variables. We take a lot of pride in the finished appearance and want everyone in the shop to produce the same level of quality as their co-workers. We hold all ourselves and our work to very high standards.

form factory

Finished Laptop Display Models Photo Courtesy of: Form Factory

How has the online machinist community helped your business/changed your thinking/helped you grow as a machinist/business owner?

I follow tons of great machinists and other companies on Instagram.  It’s funny how quick you can get an idea from a simple picture or short video of another project somebody else is working on.  I love machining because after 25 years, I am still learning so much every day.  The machines, the software, and the tooling are changing so fast its hard to keep up.  Every day I see something on Instagram that makes me say “Oh WOW!” or “Hey, I can do my part that way!”  I was machining before there was an internet, so I really appreciate having an on-line community, and body of knowledge to draw from. You can find us on Instagram @FormFactory!

We loved the ball in chain part you created for our #MachineTheImpossible Fall 2018 Catalog Cover contest, and so did our followers, as they voted you into first place. Tell us a little more about that part.

So that piece was something I had been wanting to try for a while to challenge myself. It was not a part for a customer or part of a job, but simply a practice in more complex machining. The entire part was actually machined from one solid piece of aluminum on a 3 axis mill. With some clever fixturing and a few setups, I was able to make it work!

machine the impossible

Photo Courtesy of: Form Factory

Harvey Tool’s Tapered and Long Reach End Mills played a huge part in the creation. There would have been no way for me to get at those impossible angles or hard to reach areas without the multiple available dimensions and angles that you guys offer. In total, that piece took me about 20 hours, but it was a great piece to learn with and it definitely paid off in the end! As a small business, getting that exposure and marketing from being on your catalog cover was huge, and we appreciate the opportunity you gave us and the entire machinist community.

To a small business like yours, what did it mean to you to be highlighted on the Fall 2018 catalog cover?

I found out we had won when one of my customer’s emailed me congratulations! I was blown away! Even to be chosen as a finalist was exciting. The Harvey Tool Catalog is the ONE catalog we always have around the shop at the ready. I have been a Harvey fan for two decades, so making the cover of the catalog was pretty awesome!

In your career, how has Harvey Tool helped you #MachineTheImpossible?

Being able to overnight tools straight to the shop on a moment’s notice has saved us too many times to count. Harvey Tool makes some of the most impossible reach tooling; I still don’t know how they do it. ‘Back in the day” I would grind my own relief on an old Deckel. There’s nothing quite like looking for that extra 50 thou of reach and snapping off the tool! Now I let Harvey do ALL of that work for me, so I can focus on the machining. It takes nice tools to make nice parts. If you need tools that are always accurately relieved to just under the tool diameter, crazy sharp, and balanced, then look no further than Harvey Tool.

form factory

Photo Courtesy of: Form Factory

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Find the ‘Distance to Go’ setting or view on your machine’s control, and hit ‘feed hold’ with the first plunge of every new tool you set, and every new work offset, 100% of the time. It will save your mill and your parts from disaster. Machining is the art of doing thousands of simple things, exactly right and in the right order. The hard part is to keep your focus and pay keen attention through the entire process. Understand how easy it is to make a simple mistake, and how quickly you can be starting over. Allow yourself room for mistakes along the way by triple checking BEFORE your mill lets you know it’s too late. If you have other things on your mind, don’t machine parts.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Helical Solutions: Behind the Scenes

We have shown our end users bits and pieces of our manufacturing process on our website and via social media, but for the first time we decided to open our own doors to the public and show you every step behind how we manufacture and fulfill the Helical Solutions product. We partnered with John Saunders from NYC CNC to create a “Factory Tour” video, covering topics like our CNC grinding machines and setups, tool manufacturing, and our warehouse organization and fulfillment procedures.

In the video below, we first toured our Gorham, Maine manufacturing plan with Plant Manager Adam Martin. Then, we ran a few tests with the Helical tools on our Haas machine, before heading back to our warehouse in Massachusetts to talk about fulfillment and new products with Fulfillment Manager Megan Townsley.

7 Facts Revealed in Our Factory Tour (Plus 3 More That Didn’t Make the Cut)

We know you’re busy making amazing parts, and might not have time for the entire video. To save you time, here are some of the most important facts you should know about Helical.

We Take Quality Control Seriously

Our high performance end mills go through an extensive inspection and quality assurance process before they end up in your machine, with multiple inspection points along the manufacturing journey. At the 17 minute mark of the video, you can learn more about how we monitor the quality of the tools in batches as they are manufactured. If you skip ahead to the 29 minute mark, you can see some of our more advanced inspection machines in action.

We Stand Behind Our Tools with Our Renewal Services

Our Tool Renewal service is a great way to maximize your cost-savings and avoid having to re-purchase new tools without sacrificing any aspects of the original design. At Helical, we do not re-sharpen tools. Rather, we restore your tools to their original geometry. We will review the condition of your used tools and return the cutting edge to its original sharpness and strength, allowing the tool to retain its outstanding performance. The renewed tools go through the same rigorous inspection, edge prep, and coating process that we follow for all our of our new tools. To learn more about our Tool Renewal services, head to the 23:30 mark in the video.

Our Tool Coating Is Done In-House

We have multiple tool coating machines in-house which allow us to take the ground tools right off the line and transfer them to our coating room to have Aplus, Zplus, or Tplus coatings added. These machines also have the capability to create roughly 20 different coatings, which are reserved for specials and custom orders. If you want a close-up look at the coating room and learn how the PVD coating process actually works, head to the 35 minute mark.

Our Standard Catalog Items Are Stocked and Ready for Your Machine

We don’t make our standard catalog tools to order. All of our standard tools are stocked and ready to make some chips in your machine. We also introduce hundreds of new tools to our annual catalog to keep providing our customers with the latest in high performance tooling technology. You can check out our new tools for 2018, including our new High Balance Tools and Metric Tooling, by heading to 52:20, or take quick look at our rows of stocked tools in our warehouse by jumping to 56:55.

Diamond Wheels Grind Carbide Tools

Diamond grinding wheels are the essential tool (outside of the machine) when it comes to grinding carbide. We have a unique management system for our diamond wheels, and a redressing process which can see these wheels last up to a year or more before they need replacement. Adam goes through our “frozen wheel” room with John at the 32:45 mark in the video above.

We Track Every Batch of Tools With Laser Etching

Our tools are all laser etched on-site with our logo, phone number, and tool description, but also with a specific batch number. These batch numbers allow us full track-ability of every tool so we can quickly asses any questions or concerns a customer may have about a tool. With these numbers, we are able to track the tool’s journey all the way back to which machine it was made on, which grinding wheel was used, and who ran the program. We have a couple of these laser etching machines in Maine, which you can see in action at the 42 minute mark.

If You Can Dream It, We Have Probably Made It

We have had some crazy tool drawings come in to our custom tool program over the years, including oddly shaped form tools, tools with a crazy long length of cut, “paper cutters”, and more. You can see some cool examples of custom tools we have manufactured by jumping to the 20 minute mark. If you are more interested in how we actually make them, head to the 27 minute mark to see one of our large custom tools being ground on our Walter machines.

Our Technical Resources Are Second To None

We don’t leave you hanging after your purchase of Helical tools. We have a multitude of technical resources and How-Tos available here on our blog, and we also offer the HEM Guidebook, a complete guide to High Efficiency Milling techniques.

If you are looking for information on speeds and feeds, we suggest you try our Machining Advisor Pro application. This application is designed to increase metal removal rates and shop productivity by generating customizable running parameters optimized for your Helical Solutions end mills. You can click here to get started with Machining Advisor Pro today.

You Will Always Get a Real Person When You Call Helical

If you have technical questions about an upcoming job, a special application, or tooling selection, you can contact Helical by phone at 866-543-5422. Our technical experts are available over the phone Monday-Friday from 8 AM to 5 PM EST, and you will always get a real person to talk to with no automated systems to navigate through. You can also reach our team by email at [email protected].

Questions about where to buy Helical tools? You can give our team a call, or you can find your local distributor by using the “Find a Distributor” tool on our website. Simply choose your state to see a complete list of authorized distributors in your area.

We’re Hiring!

We have a current list of our open opportunities on our website! Open jobs include CNC Machinist, Quality Control Inspector, and Customer Service Representative.

3 Ways to Help Solve the Machinist Shortage

The manufacturing industry is on the rise, but there is a shortage in the workforce that is limiting the abilities of machine shops to find great talent and fulfill their needs. As manufacturing continues to move back to the US, the shortage will only grow larger. With nearly 70% of the machinist workforce over the age of 45, there has to be an injection of youth in the industry over the next 20 years to keep American manufacturing alive and well. Currently employed machinists are the best source to encourage today’s youth to join the profession, so the community will be an integral part of solving this machinist shortage.

Reach Out and Get Involved

The best thing machinists can do to make an immediate impact is to begin reaching out to their local communities, sharing their craft with families and students in the area. If we want to solve the machinist shortage, we have to get students excited about the industry. One great way to get students interested is to hold an open house at your machine shop and open your doors to local schools for visits. Since machining is a very visual craft, students will appreciate seeing finished projects in-person and watching the machines at work. Shops could also open their doors to vocational schools and have a “Career Night,” where students who are interested in the trades can come with their families and learn more about what it is like to be a machinist. It is important to get the families of interested youth involved, as colleges will do the same at their open houses, and it gives the family a better sense of where they may be sending their son or daughter after graduation.

machinist shortage

As great as it is to get students and families inside the machine shop, it is equally important for machinists to branch out and attend career days at local schools, as the trades are often underrepresented at these events. Bringing in a few recent projects and videos or photos of more advanced machining processes will be sure to open a few eyes, and might inspire a student who had never considered machining to do some research on the profession.

Join Communities on Social Media

According to a report from the Pew Internet Research Center, 92% of high school students use social media daily – a staggering number that must be taken into consideration when it comes to inspiring the younger generations. One easy way machinists can share their work is by using social media apps like Instagram, Facebook, Twitter, and YouTube. Instagram in particular has a great community of machinists, who are constantly sharing videos, tips and tricks, photos of their finished work, and talking to each other about best practices. Many machinist-related Instagram accounts have thousands of followers, and every machine shop should be jumping on this trend not only for their own marketing efforts, but also to get in front of the younger audience present in that space.

machinist shortage

Machinists love sharing their work with the community on social media, like this example from Reboot Engineering (@rebooteng) on Instagram.

If Instagram is not an option, there are several Facebook groups with tens of thousands of machinists talking about the trade, and quite a few influential machinists on YouTube who have substantial followings and are working to raise awareness about their trade. The machinist community on Twitter is smaller than the others, but it is growing and could be a valuable resource going forward.

Share Your Knowledge

New machinists will be more likely to embrace the profession and stick around if they are welcomed with open arms and in-depth, hands-on training from the senior machinists in a shop. This will decrease turnover, and keep younger machinists connected to the trade from the start. A machine shop full of veteran machinists can be an intimidating environment for a new hire, so this is a vital step in solving the machinist shortage.

It is also a great idea to share knowledge and stories with younger relatives. Nieces and nephews, younger cousins, grandchildren, and sons and daughters may find inspiration to follow in the footsteps of someone they look up to, but they’ll never know unless those experiences are shared with them.

If you already know someone who is considering a career as a machinist, share our “How to Become a Machinist” blog post with them, which is a great resource for all machine shops looking to hire young talent. This article could be handed out at open houses, career days, or school visits, and is part of Harvey Performance Company’s ongoing effort to improve the manufacturing industry and help solve the machinist shortage.

You can also share our new infographic, which outlines the current state of the industry, and provides a visual representation of how you can help solve this shortage as a current machinist. Use the hashtag #PlungeIntoMachining and share to your Facebook, Instagram, Twitter, and LinkedIn pages to help us start a movement!

Solving the Machinist Shortage

How to Become a Machinist

Machining is one of the fastest growing occupations in the US, with thousands of open positions listed all across various job boards and websites. Because graduating students are more likely to head to college than join the trades, there is currently a major shortage in the workforce for machinists. As the “Baby Boomer” generation inches closer to retirement, this shortage will only continue to grow. According to American Machinist, nearly 70% of the current machinist workforce is over the age of 45, which means there is a great need for younger workers over the next two decades. The Bureau of Labor Statistics (BLS) is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly an exciting time to start thinking about the available career opportunities in the machining industry.

Getting Started

One of the best things about becoming a machinist is that there is a fairly low barrier to entry level positions. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a 1-2 year apprenticeship. This path generally does not require any experience past a high school education, but prospective machinists are encouraged to take math classes including geometry and trigonometry, and participate in metalworking, drafting, and blueprint reading classes if possible. Chris Metayer, a CNC Operator with Helical Solutions, took this same route to begin his career. “I didn’t know anything about machining when I started, but I trained side by side with other employees. I am a hands-on learner, so it was a perfect learning experience for me.” said Metayer. In the end, most of an entry-level machinists’ learning will be done hands-on in the machine shop while getting paid to learn the craft.

machinist

Others may take a two-year machining-based program at a community college or technical school, where they can learn more advanced skills like Computer Numerical Control (CNC) Machining and Computer Aided Design (CAD) or Computer Aided Manufacturing (CAM) programming.  They would then enter the workforce following the completion of an associate’s degree. These machinists tend to earn higher salaries and are more apt to advance to a management role, but they will also need to pay for the costs of their continued education and will still require some hands-on training before they can jump into their new positions. However, there are added benefits to continuing your education. Jake Barnes, another member of the CNC team at Helical, earned his associates degree in Integrated Manufacturing Technology at Southern Maine Community College, and has worked in various departments since joining Helical. Jake started as a manual grinder, then moved to inspection before landing with the CNC team. “I personally recommend going to a trade school” said Barnes, “You will get exposure to many different classes, which opens up new career opportunities across the industry.”

Some machinists who want to work in more advanced industries like aerospace or tech may attend a four-year college and take advanced courses in calculus, physics, and engineering. All of these options are widely accepted in the machining community, so it is more a matter of personal preference and an individual’s specific situation that determine which path to take.

Location Matters

While there are open jobs for machinists all over the country, there are certainly a few areas that would be considered machinist “hot spots.” These areas of the country have increased job openings in the industry and often pay better wages, since machining skills are in higher demand. The Great Lakes Region (Michigan, Ohio, Illinois, Indiana, Upstate New York, Pennsylvania), and the Southeast (The Carolinas, Louisiana, Georgia, Alabama, Mississippi) are great places to look for work, with over 150,000 currently employed machinists. Most of the work in the Great Lakes Region is dominated by the automotive industry, especially in Michigan. In the Southeast US, there has been a recent influx of manufacturing jobs after plants owned by Apple, Boeing, General Electric, Haier, and LeNovo all opened in the area. In fact, Mississippi offers the highest annual salaries for machinists of any state in the country.

Texas, California, and Washington (especially Seattle) are also hot spots for machining jobs. The west coast holds some of the world’s largest aerospace manufacturing plants, so these areas have plenty of job opportunities for machining and manufacturing.

Salary Expectations

A career as a machinist can be rewarding and fun, especially when it comes to working with different materials and creating amazing and intricate parts. But in the end, compensation matters as well. What is often misunderstood most about this industry is that the salary range for machinists is above the national median.

The Bureau of Labor Statistics (BLS) reported in 2016 that those in the workforce with a high school diploma earned an annual median salary of $36,000, while those with an associate’s degree earned $42,000 across all occupations. The BLS also reported the median salaries for machinists in 2016, with median earnings at $43,200, across all levels of education.

The top 10% of machinists earn over $62,500, and depending on what projects they work on, those wages can go even higher. For example, someone working in the aerospace industry or tech industry can expect to make a higher salary as a machinist, but will likely need to have a more extensive education, which can get costly. Experience also matters, as salaries are likely to increase as machinists get more years under their belts. However, many entry level machinist jobs require little to no educational cost and no experience, so the return on investment can be very high once hired into the industry.

Machinist Career Paths

There are quite a few career paths that a machinist can take once they begin working on their craft. Some machinists will work their way up the shop ladder, going from an entry level CNC operator, to a full-on CNC machinist, and possibly finding themselves in a shop management position at some point in their careers. Others may transition away from machining and begin to work with CAD/CAM or CNC Programming applications, working with the machinists on the floor to program and troubleshoot the machines and design new parts to be created. Many machinists also move into careers in inspection, quality control, or production planning, which can be an excellent way to move up the corporate ladder.

machinist

Working in Inspection is a possible career path for a machinist.

Those who do earn an associate’s degree in a machining-based program should consider a path in engineering. The experiences learned as a machinist translate well to this field, and having an associate’s degree allows for the flexibility of going back to school to finish up a Bachelor’s degree in mechanical engineering. For those who may be unable to go to school full-time, there are many online and part-time courses available. These courses make it possible to work full-time or part-time to advance your skills and attain hands-on experience while earning a degree. Both Barnes and Matayer talked about heading back to school to complete an engineering program at some point, taking advantage of the Harvey Performance Company tuition reimbursement program to advance their education and careers.

The skills learned as a machinist also lay a foundation for becoming an entrepreneur or starting a business. Some machinists will open their own machine shops, manufacturing outsourced parts from other companies, while others will take their skills and create a unique product to fulfill a need they identify in the market.

Do Your Research

As the manufacturing industry continues to grow in America, the shortage of machinists in the workforce will become an incredible source of opportunity for our youth. Breaking into the industry now can set young machinists up for great career opportunities. The skills learned as a machinist also translate well to many different jobs, especially in manufacturing and engineering.

machinist

However, not every machine shop should be treated equal. Potential machinists will want to research shops in their area to find the right fit. As Matayer puts it, “Finding the right shop matters. You want to find a place with newer equipment, great benefits, and clean air in a safe environment.” Poor air quality or unsafe working conditions can directly affect a machinist’s long-term health, so doing the proper research before accepting a position can prevent any serious issues.

If you are curious and want to learn more, reach out to your local trade school or college, talk to a machinist, check out some online forums, and read about the profession. You should also check out the machinist community on Instagram, which is full of amazing customer projects, helpful tips and tricks, and videos that will give you a better idea of what is possible in this field! Machinists are always more than happy to share their experiences, but the biggest thing you can do is try. Get out there, start creating, and see where it takes you – the possibilities are endless!