Tag Archive for: machining industry

Defiant CNC – Featured Customer

Featured Image Courtesy of Jeremy Taylor, Defiant CNC

Twenty years ago, Jeremy Taylor worked as a Tool and Die Apprentice and was well on his way to earning his Journeyman Certification, when he fell in with the wrong crowd and found himself in trouble, criminally. As a result, he found himself facing a lengthy prison sentence but was determined to make his time incarcerated as constructive as possible. During his sentence, he earned his undergraduate and MBA degrees, taught himself Spanish and Italian, and used his limited access to computers to stay updated on all things CNC machining, including the evolution of tool making and advanced manufacturing.

Today, Taylor owns Defiant CNC, a 2-year-old machine shop located in Orlando, Florida, that specializes in performing a wide variety of machining operations, including CNC Milling, CNC turning, laser engraving, finishing, quality control, CAM/CAD, inventory management, technical drawings, and ERP services. Defiant CNC machines everything from components for underwater welding robots to tools for helicopter repair kits, to even tools for pastry decorating and jewelry making.

Along with owning his business, Taylor also spends his time working with The Community, a company that focuses on preparing prisoners to reenter society.

We spoke with Taylor to learn more about how he changed his life’s trajectory; his new business; the ERP system he built, himself; and what he values most in CNC tooling, among other topics.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

How did you first get started in machining?

I started off as a Tool and Die Apprentice. I was making tremendous progress towards my Journeyman Certification until I got myself into trouble. I had done a great job of learning very sophisticated toolmaking techniques and CNC programming/machining. Unfortunately, when I was a few months away from obtaining my journeyman’s card, I was incarcerated for 14 years. However, I utilized that time to significantly change my life trajectory. While in prison, I taught myself Spanish and Italian, kept as up to speed as I could (given very limited access to computers) on the evolution of tool making, CNC machining, advanced manufacturing, computer hardware, and software, completed both an undergraduate degree and an MBA via a mixture of mail and online access.

Today I am a completely different person than the one who wasted the great opportunities I had before my imprisonment. Somewhere along the line during the time when I was 18-19 or so, I fell in with the wrong people and took a path that led to me wasting what should have been the best years of my life. Rather than give up, I used that time while confined to continue my education and prepare myself for a productive role in society after my release. Getting back into machining played a huge role in my current success. Defiant CNC has only been in business for a little over two years, but the best is yet to come.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

What machines are in your shop?

Defiant CNC currently has 4 mills: Doosan DNM 4500, Chevelier QP 2040, Toyoda Stealth 1365, and a Manual Bridgeport Mill. We use Fusion 360 on all of our milling machines. We also have 5 lathes: Emco Maier 365 Y, Miyano BND-51S, Miyano BND-20S5, Miyano BND-34S. and a Miyano BND-42S. Finally, we have our two support machines, a Cosen MH-1016JA Bandsaw and a Boss FMS Laser for Desktop Fiber Marking.

What industries have you worked with?

We have worked with a large variety of industries, including aerospace, defense, automotive, commercial, and medical. Working in these industries allows us to machine in all different materials: Aluminum (7075, 6061, and 2024), Stainless Steel (303, 304, and 316), and Steel (1018, 4140, and 1045).

Photo Courtesy of: Jeremy Taylor, Defiant CNC

What sets Defiant CNC apart from the competition?

We provide an array of machining-related services including milling, turning, CAD design, engineering, and laser engraving in-house. We also provide a number of services through vetted partners such as heat treating, welding, and plating. However, what sets us apart from the rest of the competition is the Enterprise Resource Planning (ERP) system that I built, which is customized specifically for our shop. Not only does it allow us to streamline our operations, but it also allows us to give that something extra to our customers. I create portals and give our customers access to all their past and present jobs with us. They can check the status of any of their jobs as they move through the production process. We take just as much care managing every aspect of the business as we do machining parts.

Typically in small-to-medium-sized shops, the data structure is to create a series of customer-job-part revision folders, and put the customer data there. This data structure is rarely planned for growth. I created an Enterprise Resource Planning (ERP) system using Airtable, along with other API-friendly applications, because the software has Product Data Management (PDM) built into it. PDM is the architecture of the data storage system which, in a nutshell, is the organization, storage, and retrieval of any data that might be tied to a manufacturing process. Since Airtable has a built-in PDM system, we are able to store all our CAM files, G-code, setup documents, tool data (where we log important data about our Helical and Harvey tools), fixture data, and any other data that needs to be tied to a step for making a part. We now have a place to bring together product data (images, instructions, inventory, links, etc), customer information (CRM data), data on sales, marketing development and deployment, a schedule, and more, all in one place. All of the integrations and automations that I built saves hours of manual work and prevents a multitude of mistakes.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

What is your favorite job you have worked on?

I just finished a production run on a job where I completed 12 pieces of two different parts out of hardened 17-4 stainless from start to finish. The cycle time was just over four hours. Each part required three operations after the stock was sawed and heat treated. I designed, modeled, and made two sets of fixtures for each operation in order to load one set while the other was being machined.

When have Harvey or Helical products helped your business?

A majority of the endmills that we stock are Harvey Tool and Helical products. We utilize Fusion 360, which has a tool library full of Harvey Tool and Helical products. About a week ago, we purchased some Harvey Tool flat bottom endmills which saved substantial time on a large production run because we no longer had to circular interpolate a hole. Whenever we are in a pinch and need a tool quickly, Helical Solutions and Harvey Tool always come through.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

Why is high quality tooling important to you?

High quality tools allow us to spend more time machining and less time changing tools. Our go-to tool is Helical’s 3 flute – 40-degree helix with ZPlus, whether we need 1/8 end mills or 5/8 endmills, they get the job done.

What advice do you have for others who want to try High Efficiency Milling?

Consider the material that you are cutting. Consult with your tooling vendor and/or documentation on their website to obtain a starting point and go from there. Helical Solutions has great information on their website and on their social media accounts, with regard to their products. It is worth consulting these sources when utilizing their tools.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Learning needs to be continuous. Don’t just expect to learn everything that you need to know in one place. Constantly increment your skills in every aspect of machining.

Is there anything else you would like to share with the “In The Loupe” community?

I am grateful for the opportunity to talk about my experiences with Harvey Tool and Helical products and my business. I use Harvey Tool and Helical products because they work well. I will continue to document my usage of their products on my website DefiantCNC.com, as well as my company’s social media accounts (@defiantcnc on Instagram, LinkedIn, and Facebook). Be sure to check them out.

Photo Courtesy of: Jeremy Taylor, Defiant CNC

TOMI Engineering INC – Featured Customer

Featured Image Courtesy of TOMI Engineering

Since its beginning in 1977, brothers Tony and Mike Falbo have made the focal point of TOMI Engineering to deliver quality, competitively-priced parts on time. TOMI Engineering has earned a reputation through the years as being a world-class manufacturer of precision machined components and assemblies for aerospace, defense, commercial and other advanced technology industries. They are fortunate to have the highest level of engineering, quality and programming personnel on staff, and, with over 40 years in the industry, there isn’t a problem TOMI hasn’t experienced.

With all the years of experience, TOMI Engineering has a lot of knowledge to share. We had the pleasure of sitting down with Tony and Mike Falbo to ask them about their experiences, techniques, tooling and a lot more.

green machined part from Tomi Engineering INC
Photo Courtesy of: TOMI Engineering

How was TOMI Engineering INC started?

TOMI Engineering, Inc. began in 1977 when we (Tony and Mike) teamed up and got a loan from our father to purchase our first machine.  The machine was used in the garage of our parents’ home, which still resides in Tustin, California.  Forty years, 20 current machines, and countless parts later, TOMI Engineering proudly serves the defense, airline, medical and commercial industries.  We machine just about any type of product thrown our way.  Over the years, we have made wing tips for the F16 fighter jet, enclosures for GPS housings, manifolds that help transport fluids, support frames for Gulfstream, cabin brackets for Airbus, ammunition feeders for tanks, and many, many others.

At TOMI Engineering, we aim to be a one-stop shop for our customers.  Once we receive blueprints, we can program, machine, deburr, inspect, process and assemble most parts.  We utilize a mixture of 3-and-4-axis machines in order to increase efficiency, which helps us to cut down costs to our customer.  In our temperature-controlled assembly room, we can assemble bearings, bushings, rivets, nut plates, gaskets and sealants.  We also hope to add additive machining to our repertoire soon.

What machines are you currently using in your shop?

Our 21,250 square foot facility houses 20 CNC machines.  Most of our machines are Kitamura, OKK and Okuma.  The purchase dates of these machines range from 1987 to December of 2019.  With our large machine diversity, we can machine parts smaller than a penny, and as large as 30 x 60 inches. Most of the material that makes its way through our shop is aluminum.  Whether it is 6061 or aircraft grade 7000 series, we aim to have most of our parts be aluminum.  However, we do see a large amount of 6AL-4V titanium, along with 17-4 and 15-5 steel. We are currently utilizing Mastercam 2020 for most of our programming needs and are staying up to date with software upgrades and progression.

Tomi Engineering CNC mill
Photo Courtesy of: TOMI Engineering

What sets TOMI Engineering apart from the rest of the competition?

We believe our greatest asset is our experience.  Here at TOMI, we have been machining parts since 1977.  In those 40-plus years, a lot of parts have come and gone through our doors and we have helped our customers solve a large array of problems.  Most of our machinists have been with us for over 10 years, while some are approaching 20 years!  Our programmers easily boast over 60 years of experience! With so many of our employees working together for so many years, it has really helped everyone to understand what helps us quickly machine our products, while being held accountable to the high standards of AS9100. 

Where did your passion for machining start?

We grew up with machines in our garage and it wasn’t until we needed money to pay for college that our dad realized he could show us the basics of operating a milling machine, which allowed us to pay our tuition while working at home in the evenings and weekends. Machining was more of a necessity than a passion at the time. However, after nearly 40 years in the business, it has been amazing to see the strides in technology from a Bridgeport Mill to the multi-axis lights-out machining that is available today.

My favorite part of the job has always been the flexibility it has allowed me. I had the opportunity to watch my kids grow up and be a part of their lives by going to their school plays, coaching them, and being home at night to help them with anything they needed. Most importantly, I’ve had the opportunity to work with my brother, my business partner, who also shares the same ideals about being with family, so we could always cover for each while the other was gone and spending time with their family. The business would not have worked without both of us understanding the importance of each other’s input. The challenge of running a business keeps me going, and working with all of the different personalities was an added bonus.

machined part from Tomi Engineering
Photo Courtesy of: TOMI Engineering

Who is the most famous contact that you have worked on a project with? What is the most interesting product you’ve made?

At TOMI, we do not work with specific individuals, so we can’t really name drop.  However, a vast majority of our work is for Airbus, Boeing, or the military. So it’s pretty gratifying to say that we supply parts to some of the biggest companies in the world and that our work helps to defend this country.

The most interesting product we have made here at TOMI is a GPS housing for a defense contractor.  This part encompasses everything that we can do at TOMI: precision machining, complex/multi detail assemblies, gasket assembly, and pressure testing fluid transportation components. 

Why is high quality tool performance important to you?

High quality tool performance is important to us in many ways.  Purchasing high quality tools allow us to constantly achieve premium surface finishes, push our machines to the high speeds and feeds that they are capable of, and enjoy noticeably longer tool life.

Every part, day-in and day-out, is different.   Because of our vast array of products, our tools are always changing.  But when we are picking out Helical End Mills for Aluminum, we always go with their 3-flute variable helix cutters, and we have always been happy with them.

machined part from Tomi Engineering
Photo Courtesy of: TOMI Engineering

What sort of tolerances do you work in on a daily basis?

The tolerances we typically work with are ± tenths of an inch, as well as very tight true position cal louts. We can hold and achieve these close tolerance dimensions through our very experienced Mastercam programmers, as well as our superior quality department.  Our quality inspectors have over 30 years of experience in the industry and utilize two Zeiss Contura G2 coordinate measuring machines (CMMs).  While in their temperature controlled environment, the CMMs are capable of measuring close tolerance dimensions and are used to generate data for inspection reports.

Are you guys using High Efficiency Milling (HEM) techniques to improve cycle times? What advice do you have for others who want to try HEM?

Yes, we are using HEM techniques to improve cycle times while roughing to increase our MRR while increasing tool life. If you have CAM/CAD software that supports HEM, then go for it!  Machining Advisor Pro (MAP) is VERY helpful with the suggested speeds and feeds as a starting point.  Over time though, and through experience, we have learned that every single machine is a bit different and often needs a different approach with speeds and feeds.  Start with a smaller than suggested RDOC and physically go out to your machine and see how it sounds and what is going on.  Then, start increasing and find that sweet spot that your particular machine runs well on.  Many programmers in the industry will not take the time to go out and watch how their part is sounding and cutting on the machine and going out and doing that is the best way to really find out what you and the machine are capable of achieving.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Ask questions!  Don’t be afraid to talk to programmers and fellow coworkers about what is trying to be achieved and WHY the programmer is holding tolerances a certain way.  Learn from them and watch what every cutter is doing during your cycles.  The more you learn, the more you can contribute to the machining process and move up in your business.  Sometimes it takes just one good suggestion about the machining approach that can change the set-up process from aggravating to very easy.  Lastly, be open minded to new ideas and approaches.  As we said earlier, there are a ton of ways to make good parts in a constantly evolving industry.

Please take the time to check out the TOMI Engineering INC website or follow them on social media!

Titan Ring Design – Featured Customer

Featured Image Courtesy of Trevor Hirschi, Titan Ring Design

Officially started in 2015, Titan Ring Design is a high quality machine shop that designs rings, as well as mechanical tie clips, art based designs, and freelance custom designs. While working at a machine shop that produced top notch parts for just about every type of field you can imagine, now owner of Titan Ring Design, Trevor Hirschi, noticed that the machining industry is mostly about cranking out a mass quantity of the highest quality parts as quickly as possible. This often resulted in compromised tolerances and part finishes, something Trevor aimed to change. Quality always comes first in his projects.

Whether you are looking for a band for an upcoming wedding, looking to replace or upgrade your current wedding ring, or just want something unique and beautiful, Trevor’s designs are different than anything else. Trevor was able to take the time and answer some questions for us about his business, machining techniques, tooling, and a lot more.

machined metal ring from Titan Ring Design
Photo Courtesy of: Trevor Hirschi, Titan Ring Design

How was Titan Ring Design started?

Titan Ring Designs is a part time, passion/hobby business of mine that I sort of started at the time I was ring shopping for a wedding ring back in 2013. I didn’t like what was available on the market and was inspired by a former Oakley designer to machine my own. I had been introduced to machining in High School at a technical college and had been working as a machinist since graduating in 2007, so I decided to make my own wedding ring. It sort of snowballed into my business in 2015, after finally deciding to make it official with a business license and some sales. Some further work experience in California for McWhinney Designs brought me greater motivation and encouragement to keep going and helped me get to where I am today. I now offer several different CNC Milled [wedding] rings, as well as a mechanical tie clip, some occasional art based designs, and freelance custom design and mill work. I also teach machining full time  at the same tech college I graduated from in my own education and enjoy sharing my knowledge and love for machining with those interested in the career.

machined propeller art from Titan Ring Design
Photo Courtesy of: Trevor Hirschi, Titan Ring Design

What capabilities does your shop have?

Custom Design in CAD/CAM, 3axis CNC Mill work, Small Scale Lathe Work, Tumbling, Finishing, Assembling, 3D Printing/Rapid Prototyping. I cut 6-4 Titanium primarily, but also work with Stainless Steel for fasteners, Aluminum and some Steel for fixtures, and Polycarbonate for prototyping ideas. I teach machining technology full time, so I have access to SolidWorks, MasterCam, Fusion360, and NC Simul. We currently have a Haas OfficeMill 3axis, Levin High Precision Instrument Maker’s Lathe, Prusa i3 MK2S 3D Printer in the shop.

What sets Titan Ring Design apart from the competition?

There are lots of people making interesting rings today, but most are done on lathes. Anyone can make a round part on a lathe. Very few of them make rings on a mill, and I feel that gives the opportunity to be creative and allows you to think outside the box more. I try to stand out in that field by offering something that makes you think about the value of the design process more by interrupting and challenging the norm. I also like to take on work that is outside of jewelry, but still highly design related. Most other ring makers stick with just rings.

Titan Ring Design machining facility
Photo Courtesy of: Trevor Hirschi, Titan Ring Design

What is your favorite part of the job and what other passions do you have?

Making cool stuff! Most machinists only end up making whatever comes through the shop, which can be cool, but most of the time you have no idea what you’re making, just some part for Customer X, Y, or Z. Being a small, design centered business, I get to come up with ideas for what to make next, and most of the time I start out making something that wasn’t ever intended to be marketed, it was simply something I wanted for myself that I found others were interested in too. I discovered machining in high school and fell in love with it when I started making parts for my dirt bikes and truck. I’ve been hooked ever since but I do have other passions. I’ve always had a big interest in LED lighting and flashlights. I’m perpetually working on different ideas for making one of my own, which will happen eventually. I’m also a bit of a health-nut and enjoy being outdoors and spending time with my family.

Who is the most famous contact that you have worked on a project with?

I made a ring for an NFL player once, but I don’t follow football and his name didn’t stick out to me so I’ve forgotten who he was. I also had the privilege of working for McWhinney Designs and made some truly remarkable products in the openable wedding ring niche market. I gained more skill in design, machining, craftsmanship, and engineering while working for Jeff McWhinney. We’re good friends and often work together to help each other when one of us gets stumped on something.

machined metal art from Titan Ring Design
Photo Courtesy of: Trevor Hirschi, Titan Ring Design

What is the most difficult project you have worked on?

I was commissioned to design from the ground up and machine was a custom set of all-titanium cabinet door handle pulls for a very high end wine cabinet. Each handle was an assembly of 32 pieces, all machined from billet 6-4 Titanium. They required over 400 individual CAM toolpath operations, 35 unique machine setups, and well over 300 hours to complete, including finishing and assembly. More than anything, it was extremely time intensive in programming, set up, and machine time. The design was a fair bit challenging in my mind and initial modeling, but didn’t compete with what it took to actually produce them. I grossly underestimated and underbid the job. But in the end, I really enjoyed making a truly one of a kind, Tour-De-Force product, even if it was completely overkill for its purpose. I enjoy making that kind of stuff, and the lessons you learn from it.

What is your favorite project you have worked on?

It’s really simple and was initially designed just because I wanted it for myself, but I have a mechanical titanium tie clip that I really enjoy making. It’s quite unique in that, as far as I know, to this day, it is the only CNC machined mechanical titanium tie clip you’ll find anywhere in the world. It puts a little bling in your formal attire, for those times you have to go full suit and tie.

machined metal band from Titan Ring Design
Photo Courtesy of: Trevor Hirschi, Titan Ring Design

Why is high quality tool performance important to you?

Because I cut mostly titanium, tools wear out quickly if you don’t have a rigid set up, the right coolant, proper feeds & speeds, and of course, high quality tooling. Harvey Tool makes such a wide variety of micro tooling that works so well in the industry of making small titanium parts, where I like to fit into. I’ve used a fair spread across Harvey’s offering and have always been impressed with performance and the feeds and speeds guides are top notch too. I had an application that required a .0035” internal corner radius which landed me with a .007” end mill. It’s still hard to comprehend tooling in this league. My machine actually recommends only tooling under 1/4” shank size, so I don’t get into Helical’s range too often. But I’ve used Helical 1/2” end mills extensively at other job shops and they are definitely made for eating metal. I was using another tool brand’s key cutters for some undercut hinges and would wear through them much more often than I thought was reasonable. When I finally decided to try Harvey’s key cutters, I was blown away with how much longer they have lasted me. Truly a game changer!

harvey tool end mills with Titan Ring Design machined tie clip
Photo Courtesy of: Trevor Hirschi, Titan Ring Design

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Be creative. Machining is such a rewarding career that has limitless possibilities of what you can achieve. Follow your passion and have fun with it! If you end up in a dead end shop doing something you don’t like, go somewhere else. There are so many shops that need help right now and chances are good that you can find a better shop that suits your style.

Is there anything else you would like to share with the In The Loupe community?

To those machine shops out in industry, do whatever you can to be supportive of your local trade schools that are teaching the upcoming machinist workforce. They really need your support and in turn will bring you the employees you depend on.

Please take the time to check out Titan Ring Designs website or follow them on Instagram @titanringdesigns

KAD Models – Featured Customer

Featured Image Courtesy of KAD Models

Established in 2012, KAD Models is a small, yet steadily growing prototype machine shop, which originated in the San Francisco Bay Area and has since opened its second location in Vermont. They have been a regional leader in the advanced manufacturing space for many years, and operate in close connection with other machine shops and related businesses like turning facilities, anodizers, welders, and more. KAD Models staff is comprised of diverse occupational backgrounds (e.g. mechanic, industrial engineer, blacksmith, etc.). Further, they have invested into their local community college and technical training programs to support an expanding talent pipeline for advanced manufacturing.

Brian Kippen is the owner & founder of KAD Models & Prototypes, Inc. Before launching KAD with model maker John Dove, Brian worked as the Director of Operations at A&J Product Solutions and a machinist at Performance Structures. Brian is drawn to the challenge of making design concepts into reality, and motivated by the ever-changing landscape of machining. Brian took time to speak with us about KAD Models, his experiences, machining techniques, and so much more.

KAD Models cnc machining a custom part
Photo Courtesy of: KAD Models

Can you give us a little background on how KAD Models was started?

I worked for a few years repairing automobiles, then following high school, I attended college for about three weeks. After some strong encouragement from my mom, I moved out west. I joined the Marines, broke both of my feet, and was honorably discharged. Then, I got my broken foot in the door at a machine shop and knew what I wanted to be when I grew up. After years of working as a machinist, I went into business with one of my previous employers. After a year and a half, the partnership degraded and I made the decision to buy out my partner.

It’s been really gratifying to see the business grow and get to know different types of customers as the shop’s reputation spreads. One of the reasons I wanted to start my own shop is that I really wanted to see the industry evolve in a new way, to better meet people’s needs. It’s been really great to see that decision and the investments I’ve made in building KAD pay off.

We produce approximately $1.5M of parts for 100+ distinct clients each year.  Since its founding in 2012, KAD has continued on a steady path of growth, adding staff, equipment, and clients without marketing or advertising. We build a broad range of products such as automotive drive axles, silicone cardiovascular valves, and fully functional consumer product models. Due to the nature of prototyping, no component is outside of the realm of possibility. 

What machines are currently in your shop?

We use Haas CNC machines. At our West coast facility, we have six machines, five vertical 4 AXIS machining centers with capacities up to 26” Y AND 50” X and one 5 AXIS universal machining center. At our East coast facility, we currently have two new CNC ONE 3 AXIS and one 5 AXIS universal machining center paired with a Trinity Automation AX5 robotic cell. I decided to get a 5 axis milling machine earlier last year because I felt we should invest before the absolute necessity arose. I’m excited about the creative options it opened up and it’s been fun to put it to good use. We are currently using both Fusion 360 and Surfcam software.

What sets KAD Models apart from the competition?

Our quick turnaround time of 3-5 days with our ability to tackle very complex parts sets KAD apart from a majority of manufacturers.

I also think our willingness to really dig in with the client and get to know what they need and why. We have a really creative team here at KAD and thrive at not only building complex parts, but helping industrial designers and engineers think through manufacturing, design, and usage requirements to build the simplest, most effective product we can. I’ve created prototypes before, just from a conversation with someone – not even a CAD drawing. It’s these types of interesting challenges that made me want to be a machinist in the first place and that keeps me engaged and excited day-to-day.

end mill machining metal
Photo Courtesy of: KAD Models

KAD Models is an innovative company. Can you speak about what innovations KAD makes?

Well, KAD works with some of the most innovative companies out there, across all kinds of industries: medical devices, aerospace, automotive, and consumer electronics. We help people at the forefront of innovation bring their ideas to life, so I’d say innovation is basically our bread and butter. As far as our innovations in process, as I said before, KAD has a really creative team. Since we are well known for prototyping and since prototype manufacturing need not follow all the common work holding rules, we break them on a daily basis.

What is your favorite part of your job?

I love the challenge of taking on seemingly impossible ideas and turning them into tangible things. I’m really satisfied when I can come home after a long day and have held the things I’ve made in my hands. I’m also really proud to be a business owner. It’s incredibly rewarding to see a team you’ve taught and grown to take on and be inspired by the same types of problems as you. It’s been really cool to see what we’ve been able to accomplish for our clients. My personal passion remains automotive.  KAD has reverse-engineered many no longer available automobile components and designed parts that upgrade vintage Datsuns.

assortment of prototype parts made by Kad Models
Photo Courtesy of: KAD Models

Why is high-quality tooling important to you?

In prototyping, you often get one chance in order to make deadlines. High quality and high-performance tools allow you to get this done without question. Given 95% of our tooling is either Helical or Harvey, I would say that high-quality tooling helps us out on a daily basis. We also use High Efficiency Milling (HEM) techniques, which Helical is optimized for. We find with long cutters and with deep pockets, HEM is almost a must.  Often though, on shallow areas, it’s overkill.  As with salt, there can be too much. 

cnc machined metal wine rack
Photo Courtesy of: KAD Models

If you could give one piece of advice to a new machinist what would it be?

Fail fast and fail often. Then learn from your mistakes. 

I think the biggest thing is getting to know other machinists, learning other methods, and being open to alternative ideas. It’s important to keep your mind open because there’s always more than one way to machine something. One of the things I’ve found most rewarding about running my own shop is getting to set the tone of how we work with other shops and adjacent industries. I’m really passionate about the manufacturing community as a whole and I’m glad blogs like this exist to help draw connections amongst us.

Also, don’t be afraid to challenge the status quo. I love working with new machinists because they bring different ideas to the table. That’s really important for innovation and to keep us all moving forward.

Feel free to check them out at www.kadmodels.com or on Instagram @kadmodels or stop by their west coast shop in California or new east coast location in Vermont.

New Dublin Ship Fittings – Featured Customer

Featured Image Courtesy of Lucas Gilbert, New Dublin Ship Fittings

New Dublin Ship Fittings was established in 2017 by Lucas Gilbert, and is located on the scenic south shore of Nova Scotia, Canada.  Lucas began his career with a formal education in machining and mechanical engineering. In the early 2000’s, Lucas got into the traditional shipbuilding industry made famous in the region he grew up in, Lunenburg County, Nova Scotia. It is then when Lucas identified the need for quality marine hardware and began making fittings in his free time. After some time, Lucas was able to start New Dublin Ship Fittings and pursue his lifelong dream of opening a machine shop and producing custom yacht hardware.

Lucas was our grand prize winner in the #MadeWithMicro100 Video Contest! He received the $1,000 Amazon gift card, a Micro-Quik™ Quick Change System with some tooling, and a chance to be In the Loupe’s Featured Customer for February. Lucas was able to take some time out of his busy schedule to discuss his shop, how he got started in machining, and the unique products he manufactures.

How did you start New Dublin Ship Fittings?

I went to school for machine shop and then mechanical engineering, only to end up working as a boat builder for 15 years. It was during my time as a boat builder that I started making hardware in my free time for projects we were working on. Eventually, that grew into full-time work. Right now, we manufacture custom silicon bronze and stainless fittings only. Eventually, we will move into a bronze hardware product line.

New Dublin Ship Fittings shop

Photo Courtesy of: New Dublin Ship Fittings

Where did your passion for marine hardware come from?

I’ve always loved metalworking. I grew up playing in my father’s knife shop, so when I got into wooden boats, it was only a matter of time before I started making small bits of hardware. Before hardware, I would play around making woodworking tools such as chisels, hand planes, spokeshaves, etc.

What can be found in your shop?

The shop has a 13”x 30” and 16”x 60” manual lathe, a Bridgeport Milling Machine, Burgmaster Turret Drill Press, Gang Drill, Bandsaw, 30-ton hydraulic press, #2 Hossfeld Bender, GTAW, and GMAW Welding Machines, as well as a full foundry set up with 90 pounds of bronze pour capacity. We generally only work in 655 silicon bronze and 316 stainless steel.

cnc machined boat parts

Photo Courtesy of: New Dublin Ship Fittings

What projects have you worked on at New Dublin Ship Fittings that stand out to you?

I’ve been lucky to work on several amazing projects over the years. Two that stand out are a 48’ Motorsailer Ketch built by Tern Boatworks, as well as the 63’ Fusion Schooner Farfarer, built by Covey Island Boatworks. Both boats we built most of the bronze deck hardware for.

cnc milled boat cleat

Photo Courtesy of: New Dublin Ship Fittings

I’ve made many interesting fittings over the years. I prefer to work with bronze, so I generally have the most fun working on those. I’m generally the most interested when the part is very
challenging to make and custom work parts are often very challenging. I’m asked to build or machine a component that was originally built in a factory and is difficult to reproduce with limited machinery and tooling, but I enjoy figuring out how to make it work.

Why is high-quality tooling important to you?

When I first started I would buy cheaper tooling to “get by” but the longer I did it, the more I realized that cheaper tooling doesn’t pay off. If you want to do quality work in a timely fashion, you need to invest in good tooling.

What Micro 100 Tools are you currently using?

Currently, we just have the Micro 100 brazed on tooling but we have been trying to move more into inserts so we are going to try out Micro’s indexable tooling line. After receiving the Micro-Quik™ Quick Change System, we are looking forward to trying out more of what (Micro 100) has to offer. This new system should help us reduce tool change time, saving us some money in the long run.

cnc machined rigging

Photo Courtesy of: New Dublin Ship Fittings

What makes New Dublin Ship Fittings stand out from the competition?

I think the real value I can offer boat builders and owners over a standard job shop is my experience with building boats. I understand how the fitting will be used and can offer suggestions as to how to improve the design.

If you could give one piece of advice to a new machinist what would it be?

The advice I would give to new machinists is to start slow and learn the machines and techniques before you try to make parts quickly. There is a lot of pressure in shops to make parts as fast as possible, but you’ll never be as fast as you can be if you don’t learn the processes properly first. Also, learn to sharpen drill bits well!

5 Things to Know About Helical’s High Feed End Mills

Helical Solutions‘ High Feed End Mills provide many opportunities for machinists, and feature a special end profile to increase machining efficiencies. A High Feed End Mill is a High Efficiency Milling (HEM) style tool with specialized end geometry that utilizes chip thinning, allowing for drastically increased feed rates in certain applications. While standard end mills have square, corner radius, or ball profiles, this Helical tool has a specialized, very specific design that takes advantage of chip thinning, resulting in a tool that can be pushed harder than a traditional end mill.

Below are 5 things that all machinists should know about this exciting Helical Solutions product offering.

1. They excel in applications with light axial depths of cut

A High Feed End Mill is designed to take a large radial depth of cut (65% to 100% of the cutter diameter) with a small axial depth of cut (2.5% to 5% diameter) depending on the application. This makes them perfect for face milling, roughing, slotting, deep pocketing, and 3D milling. Where HEM toolpaths involve light radial depths of cut and heavy axial depths of cut, these utilize high radial depths of cut and smaller axial depths of cut.

2. This tool reduces radial cutting forces

The end profile of this tool is designed to direct cutting forces upward along the axis of the tool and into the spindle. This reduces radial cutting forces which cause deflection, allowing for longer reach tools while reducing chatter and other issues that may otherwise lead to tool failure. The reduction of radial cutting forces makes this tool excellent for use in machines with lower horsepower, and in thin wall machining applications.

3. High Feed End Mills are rigid tools

The design and short length of cut of these end mills work in tandem with the end geometry to produce a tool with a strong core, further limiting deflection and allowing for tools with greater reach lengths.

Push Harder in HEM With Helical Solutions’ High Feed End Mills

4. They can reduce cycle times

In high RDOC, low ADOC applications, these tools can be pushed significantly faster than traditional end mills, saving time and money over the life of the tool.

5. High Feed End Mills are well suited for hard materials

The rigidity and strength of High Feed End Mills make them excellent in challenging to machine materials. Helical’s High Feed End Mills come coated with Tplus coating, which offers high hardness and extended tool life in high temp alloys and ferrous materials up to 45Rc.

In summary, these tools with specialized end geometry that utilizes chip thinning and light axial depths of cut to allow for significantly increased feed rates in face milling, slotting, roughing, deep pocket milling, and 3D milling applications. The end profile of a High Feed End Mill applies cutting forces back up into the spindle, reducing radial forces that lead to deflection in long reach applications. Combining this end geometry with a stubby length of cut results in a tool that is incredibly rigid and well suited for harder, difficult to machine materials.

Benefits & Drawbacks of High and Low Helix Angles

While many factors impact the outcome of a machining operation, one often overlooked factor is the cutting tool’s helix angle. The Helix angle of a tool is measured by the angle formed between the centerline of the tool and a straight line tangent along the cutting edge.

A higher helix angle, usually 40° or more, will wrap around the tool “faster,” while a “slower” helix angle is usually less than 40°.

When choosing a tool for a machining operation, machinists often consider the material, the tooling dimensions and the flute count. The helix angle must also be considered to contribute to efficient chip evacuation, better part finish, prolonged tool life, and reduced cycle times.

Helix Angles Rule of Thumb

One general rule of thumb is that as the helix angle increases, the length of engagement along the cutting edge will decrease. That said,
there are many benefits and drawbacks to slow and high helix angles that can impact any machining operation.

Slow Helix Tool <40°

Benefits

  • Enhanced Strength – A larger core creates a strong tool that can resist deflection, or the force that will bend a tool under pressure.
  • Reduced Lifting – A slow helix will decrease a part from lifting off of the worktable in settings that are less secure.
  • Larger Chip Evacuation – The slow helix allows the tool to create a large chip, great for hogging out material.

Drawbacks

  • Rough Finish – A slow helix end mill takes a large chip, but can sometimes struggle to evacuate the chip. This inefficiency can result in a sub-par part finish.
  • Slower Feed Rate – The increased radial force of a slow helix end mill requires running the end mill at a slower feed rate.

High Helix Tool >40°

Benefits

  • Lower Radial Force – The tool will run quieter and smoother due to better shearing action, and allow for less deflection and more stability in thin wall applications.
  • Efficient Chip Evacuation – As the helix angle increases, the length of cutting edge engagement will decrease, and the axial force will increase. This lifts chips out and away, resulting in efficient chip evacuation.
  • Improved Part Finish – With lower radial forces, high helix tools are able to cut through material much more easily with a better shearing action, leaving an improved surface finish.

Drawbacks

  • Weaker Cutting Teeth – With a higher helix, the teeth of a tool will be thinner, and therefore thinner.
  • Deflection Risk – The smaller teeth of the high helix tool will increase the risk of deflection, or the force that will bend a tool under pressure. This limits how fast you can push high helix tools.
  • Increased Risk of Tool Failure – If deflection isn’t properly managed, this can result in a poor finish quality and tool failure.

Helix Angle: An Important Decision

In summary, a machinist must consider many factors when choosing tools for each application. Among the material, the finish requirements, and acceptable run times, a machinist must also consider the helix angle of each tool being used. A slow helix end mill will allow for larger chip formation, increased tool strength and reduce lifting forces. However, it may not leave an excellent finish. A high helix end mill will allow for efficient chip evacuation and excellent part finish, but may be subject to increased deflection, which can lead to tool breakage if not properly managed.

High Efficiency Milling for Titanium Made Easy With Helical’s New HVTI Cutter

Titanium is a notoriously difficult material to machine, especially in aggressive toolpaths, such as those associated with High Efficiency Milling (HEM). Helical Solutions’ new line of tooling, the HVTI-6 series of end mills for titanium, is optimized specifically for this purpose, and proven to provide 20% more tool life than a competitor’s similar tool.

At face level, these new Helical end mills for titanium feature corner radius geometry, 6 flutes, and are Aplus coated for optimal tool life and increased cutting performance. But there is much more to these end mills than the typical geometry of standard 6 flute tools. The HVTI-6 was designed with a combination of a unique rake, core, and edge design that give it a leg up over standard 6 flute tools for milling titanium while cutting HEM toolpaths. Click here to watch the HVTI-6 in action!

End Mills for Titanium

The design of the HVTI-6 was the result of significant testing by the Harvey Performance Company Innovation and New Product Development teams. These teams spent many months testing tools, doing in-depth analysis on materials and tool geometry, and pushing these tools through dozens of hours in the cut at testing sites across the country.

The new HVTI-6 cutter experienced higher metal removal rates (MRR) and 20% longer tool life while performing HEM in Titanium when compared to a standard 6 flute tool offered by a Helical Solutions competitor. This type of tool life improvement will produce huge cost savings on tooling, as well as shortened cycle times and lower cost per part.

Helical HVTI Titanium

The Harvey Performance Innovation team targeted Titanium grade Ti6Al4V for their testing, which accounts for the vast majority of the Titanium being machined in North America. The test part was designed and programmed to allow for a more defined agility test of the tool, taking the tool into key geometry cutting exercises like tight corners, long straight line cuts, and rapid movement.

Many hours were spent with Lyndex-Nikken, manufacturers of high-quality rotary tables, tool holders, and machining accessories, at their Chicago headquarters. By working with the team at Lyndex-Nikken, the Harvey Performance Company team was able to test under optimal conditions with top-of-the-line tool holders, work holding, and machining centers. Lyndex was also available to provide their expert support on tool holding techniques and were an integral part of the testing process for these tools. Video of the impressive test cuts taken at the Lyndex facility can be seen below.

WATCH THE HVTI IN ACTION

In these tests, the HVTI end mills for titanium was able to run HEM toolpaths at 400 SFM and 120 IPM in Ti6Al4V, which served as the baseline for most of the testing.

While the standard 6 flute tools offered by Helical will still perform to high standards in Titanium and other hard materials (steels, exotic metals, cast iron), the HVTI-6 is a specialized, material-specific tool designed specifically for HEM toolpaths in Titanium. Advanced speeds and feeds for these new tools are already available in Machining Advisor Pro, and the complete offering is now available in the Helical CAM tool libraries for easy programming.

To learn more about the HVTI 6 Flute End Mills for Titanium, please visit the Helical Solutions website. To learn more about HEM techniques, download the HEM Guidebook for a complete guide on this advanced toolpath.

Simplify Your Cutting Tool Orders

With the launch of the new Helical Solutions website, Harvey Performance Company is proud to introduce a new way to order Helical cutting tools. Now, users of our new website are able to send a “shopping cart” of Helical tools they’re interested in directly to their distributor to place an order, or share it with a colleague. Let’s dive into the details about this functionality and learn how you can take advantage of the time savings associated with sending a “shopping cart” to your distributor for simplified ordering.

Get Started with a HelicalTool.com Account

First, you must create an account on HelicalTool.com. Having an account on the Helical website allows you to save and edit “shopping carts,” which can be sent to a distributor to place an order; choose a preferred distributor; auto-fill your information in any important forms; and to manage your shipping information.

Create Helical Account for Helical Shopping Cart

Now that you have an account, it is time to start creating your first “shopping cart.”

Creating a “Shopping Cart”

To begin creating a new shopping cart, simply click on the “My Carts” text in the top right menu. This will take you to the management portal, where you can add a new “shopping cart” by selecting “Create New Shopping Cart.”

Helical Solutions Order

Once complete, you can name your “shopping cart” anything you would like. One example might be creating a collection of tools for each of your jobs, or for different machines in the shop. In this case, we will name it “Aluminum Roughing Job.” You can create as many different “shopping carts” as you would like; they’ll never be removed from your account unless you choose to delete them, allowing you to go back to past tooling orders whenever you’d like.

Helical Solutions Website

Now that you have a “shopping cart” created, it is time to start adding tools to it!

Adding Tools to Your Helical “Shopping Cart”

There are multiple ways to add tooling to your “shopping cart,” but the easiest method is by heading to a product table. In this example, we will be adding tooling from our 3 Flute, Corner Radius – 35° Helix product line. We want to add a quantity of 5 of EDP #59033 to our “shopping cart.” To do this, simply click on the “Add To Cart” icon located in the table row next to pricing and tool descriptions. This will open up a small window where we can manage our selection. The first step will be to choose which “shopping cart” we want to add this tool to, so we will select our “Aluminum Roughing Job” collection.

Helical Online Ordering

Since this tool is offered uncoated and Zplus coated, we need to select which option we would like from the drop down menu. For this example, we will select the Zplus coated tool. Now, we simply need to update our quantity to “5”, and click “Add To Cart.” That tool will now appear in your “shopping cart” in the quantity selected.

If you need more information on a tool, you can click on an EDP number to be brought to the tool details page, where you can also add that EDP to your collection.

If you know the EDP number you need and want to check stock levels, use our Check Stock feature to check quantities on hand, and then add the tools to your “shopping cart” right from the Check Stock page.

Helical Shopping Cart checking stock

Now, it is time to send the “shopping cart” to place an order with your distributor!

Placing An Order With Your Distributor

Once you have completed adding tools to your Helical “shopping cart,” navigate back to the My Carts page to review it. From here, you can update quantities, see list pricing, and access valuable resources.

On the right side of the My Cart screen, you will see an option to “Send to Distributor.” Click on the text to expand the drop down. If you have previously added a preferred distributor from your account page and they are participating in our Shopping Cart Program, you will see their information in this area.

If you have not yet selected a preferred distributor, select “Update My Distributor.” This will bring you to a new page where you can select your state and see all participating distributors in your area. Select one distributor as your preferred distributor, and then head back to the My Cart page.

Now that you have a distributor selected, you can do a final review of the “shopping cart,” and then simply click “Send Cart.” This will send an email order directly to your distributor with all of your shipping information, your list of tools and requested quantities, and your contact information. You will also receive a copy of this email for your records.

Helical Shopping Cart Distributor

Within 1 business day, the distributor will follow up with you to confirm the order, process payment, and get the tools shipped out and on the way to your shop. No more phone calls or emails – just a single click, and your order is in the hands of our distributor partners.

To get started with this exciting new way to shop for Helical cutting tools, click here to begin creating an account on HelicalTool.com!

How Boring Bar Geometries Impact Cutting Operations

Boring is a turning operation that allows a machinist to make a pre-existing hole bigger through multiple iterations of internal boring. It has a number of advantages over traditional hole finishing methods:

  • The ability to cost-effectively produce a hole outside standard drill sizes
  • The creation of more precise holes, and therefore tighter tolerances
  • A greater finish quality
  • The opportunity to create multiple dimensions within the bore itself
boring bar dimension explanation

Solid carbide boring bars, such as those offered by Micro 100,  have a few standard dimensions that give the tool basic functionality in removing material from an internal bore. These include:

Minimum Bore Diameter (D1): The minimum diameter of a hole for the cutting end of the tool to completely fit inside without making contact at opposing sides

Maximum Bore Depth (L2): Maximum depth that the tool can reach inside a hole without contact from the shank portion

Shank Diameter (D2): Diameter of the portion of the tool in contact with the tool holder

Overall Length (L1): Total length of the tool

Centerline Offset (F): The distance between a tool’s tip and the shank’s centerline axis

Micro100 Continues to Set the Standard for Boring Bars, Shop Today.

Tool Selection

In order to minimize tool deflection and therefore risk of tool failure, it is important to choose a tool with a max bore depth that is only slightly larger than the length it is intended to cut. It is also beneficial to maximize the boring bar and shank diameter as this will increase the rigidity of the tool. This must be balanced with leaving enough room for chips to evacuate. This balance ultimately comes down to the material being bored. A harder material with a lower feed rate and depths of cut may not need as much space for chips to evacuate, but may require a larger and more rigid tool. Conversely, a softer material with more aggressive running parameters will need more room for chip evacuation, but may not require as rigid of a tool.

Geometries

In addition, they have a number of different geometric features in order to adequately handle the three types of forces acting upon the tool during this machining process. During a standard boring operation, the greatest of these forces is tangential, followed by feed (sometimes called axial), and finally radial. Tangential force acts perpendicular to the rake surface and pushes the tool away from the centerline. Feed force does not cause deflection, but pushes back on the tool and acts parallel to the centerline. Radial force pushes the tool towards the center of the bore.

Defining the Geometric Features of a Boring Bar:

Nose Radius: the roundness of a tool’s cutting point

Side Clearance (Radial Clearance): The angle measuring the tilt of the nose relative to the axis parallel to the centerline of the tool

End Clearance (Axial Clearance): The angle measuring the tilt of the end face relative to the axis running perpendicular to the centerline of the tool

Side Rake Angle: The angle measuring the sideways tilt of the side face of the tool

Back Rake Angle: The angle measuring the degree to which the back face is tilted in relation to the centerline of the workpiece

Side Relief Angle: The angle measuring how far the bottom face is tilted away from the workpiece

End Relief Angle: The angle measuring the tilt of the end face relative to the line running perpendicular to the center axis of the tool

boring bar geometric features

Effects of Geometric Features on Cutting Operations:

Nose Radius: A large nose radius makes more contact with the workpiece, extending the life of the tool and the cutting edge as well as leaving a better finish. However, too large of a radius will lead to chatter as the tool is more exposed to tangential and radial cutting forces.

Another way this feature affects the cutting action is in determining how much of the cutting edge is struck by tangential force. The magnitude of this effect is largely dependent on the feed and depth of cut. Different combinations of depth of cuts and nose angles will result in either shorter or longer lengths of the cutting edge being exposed to the tangential force. The overall effect being the degree of edge wear. If only a small portion of the cutting edge is exposed to a large force it would be worn down faster than if a longer portion of the edge is succumb to the same force. This phenomenon also occurs with the increase and decrease of the end cutting edge angle.

End Cutting Edge Angle: The main purpose of the end cutting angle is for clearance when cutting in the positive Z direction (moving into the hole). This clearance allows the nose radius to be the main point of contact between the tool and the workpiece. Increasing the end cutting edge angle in the positive direction decreases the strength of the tip, but also decreases feed force. This is another situation where balance of tip strength and cutting force reduction must be found. It is also important to note that the angle may need to be changed depending on the type of boring one is performing.

Side Rake Angle: The nose angle is one geometric dimension that determines how much of the cutting edge is hit by tangential force but the side rake angle determines how much that force is redistributed into radial force. A positive rake angle means a lower tangential cutting force as allows for a greater amount of shearing action. However, this angle cannot be too great as it compromises cutting edge integrity by leaving less material for the nose angle and side relief angle.

Back Rake Angle: Sometimes called the top rake angle, the back rake angle for solid carbide boring bars is ground to help control the flow of chips cut on the end portion of the tool. This feature cannot have too sharp of a positive angle as it decreases the tools strength.

Side and End Relief Angles: Like the end cutting edge angle, the main purpose of the side and end relief angles are to provide clearance so that the tools non-cutting portion doesn’t rub against the workpiece. If the angles are too small then there is a risk of abrasion between the tool and the workpiece. This friction leads to increased tool wear, vibration and poor surface finish. The angle measurements will generally be between 0° and 20°.

Boring Bar Geometries Summarized

Boring bars have a few overall dimensions that allow for the boring of a hole without running the tool holder into the workpiece, or breaking the tool instantly upon contact. Solid carbide boring bars have a variety of angles that are combined differently to distribute the 3 types of cutting forces in order to take full advantage of the tool. Maximizing tool performance requires the combination of choosing the right tool along with the appropriate feed rate, depth of cut and RPM. These factors are dependent on the size of the hole, amount of material that needs to be removed, and mechanical properties of the workpiece.