Posts

KAD Models – Featured Customer

Established in 2012, KAD Models is a small, yet steadily growing prototype machine shop, which originated in the San Francisco Bay Area and has since opened its second location in Vermont. They have been a regional leader in the advanced manufacturing space for many years, and operate in close connection with other machine shops and related businesses like turning facilities, anodizers, welders, and more. KAD Models staff is comprised of diverse occupational backgrounds (e.g. mechanic, industrial engineer, blacksmith, etc.). Further, they have invested into their local community college and technical training programs to support an expanding talent pipeline for advanced manufacturing.

Brian Kippen is the owner & founder of KAD Models & Prototypes, Inc. Before launching KAD with model maker John Dove, Brian worked as the Director of Operations at A&J Product Solutions and a machinist at Performance Structures. Brian is drawn to the challenge of making design concepts into reality, and motivated by the ever-changing landscape of machining. Brian took time to speak with us about KAD Models, his experiences, machining techniques, and so much more.

Can you give us a little background on how KAD Models was started?

I worked for a few years repairing automobiles, then following high school, I attended college for about three weeks. After some strong encouragement from my mom, I moved out west. I joined the Marines, broke both of my feet, and was honorably discharged. Then, I got my broken foot in the door at a machine shop and knew what I wanted to be when I grew up. After years of working as a machinist, I went into business with one of my previous employers. After a year and a half, the partnership degraded and I made the decision to buy out my partner.

It’s been really gratifying to see the business grow and get to know different types of customers as the shop’s reputation spreads. One of the reasons I wanted to start my own shop is that I really wanted to see the industry evolve in a new way, to better meet people’s needs. It’s been really great to see that decision and the investments I’ve made in building KAD pay off.

We produce approximately $1.5M of parts for 100+ distinct clients each year.  Since its founding in 2012, KAD has continued on a steady path of growth, adding staff, equipment, and clients without marketing or advertising. We build a broad range of products such as automotive drive axles, silicone cardiovascular valves, and fully functional consumer product models. Due to the nature of prototyping, no component is outside of the realm of possibility. 

What machines are currently in your shop?

We use Haas CNC machines. At our West coast facility, we have six machines, five vertical 4 AXIS machining centers with capacities up to 26” Y AND 50” X and one 5 AXIS universal machining center. At our East coast facility, we currently have two new CNC ONE 3 AXIS and one 5 AXIS universal machining center paired with a Trinity Automation AX5 robotic cell. I decided to get a 5 axis milling machine earlier last year because I felt we should invest before the absolute necessity arose. I’m excited about the creative options it opened up and it’s been fun to put it to good use. We are currently using both Fusion 360 and Surfcam software.

What sets KAD Models apart from the competition?

Our quick turnaround time of 3-5 days with our ability to tackle very complex parts sets KAD apart from a majority of manufacturers.

I also think our willingness to really dig in with the client and get to know what they need and why. We have a really creative team here at KAD and thrive at not only building complex parts, but helping industrial designers and engineers think through manufacturing, design, and usage requirements to build the simplest, most effective product we can. I’ve created prototypes before, just from a conversation with someone – not even a CAD drawing. It’s these types of interesting challenges that made me want to be a machinist in the first place and that keeps me engaged and excited day-to-day.

KAD Models is an innovative company. Can you speak about what innovations KAD makes?

Well, KAD works with some of the most innovative companies out there, across all kinds of industries: medical devices, aerospace, automotive, and consumer electronics. We help people at the forefront of innovation bring their ideas to life, so I’d say innovation is basically our bread and butter. As far as our innovations in process, as I said before, KAD has a really creative team. Since we are well known for prototyping and since prototype manufacturing need not follow all the common work holding rules, we break them on a daily basis.

What is your favorite part of your job?

I love the challenge of taking on seemingly impossible ideas and turning them into tangible things. I’m really satisfied when I can come home after a long day and have held the things I’ve made in my hands. I’m also really proud to be a business owner. It’s incredibly rewarding to see a team you’ve taught and grown to take on and be inspired by the same types of problems as you. It’s been really cool to see what we’ve been able to accomplish for our clients. My personal passion remains automotive.  KAD has reverse-engineered many no longer available automobile components and designed parts that upgrade vintage Datsuns.

Why is high-quality tooling important to you?

In prototyping, you often get one chance in order to make deadlines. High quality and high-performance tools allow you to get this done without question. Given 95% of our tooling is either Helical or Harvey, I would say that high-quality tooling helps us out on a daily basis. We also use High Efficiency Milling (HEM) techniques, which Helical is optimized for. We find with long cutters and with deep pockets, HEM is almost a must.  Often though, on shallow areas, it’s overkill.  As with salt, there can be too much. 

If you could give one piece of advice to a new machinist what would it be?

Fail fast and fail often. Then learn from your mistakes. 

I think the biggest thing is getting to know other machinists, learning other methods, and being open to alternative ideas. It’s important to keep your mind open because there’s always more than one way to machine something. One of the things I’ve found most rewarding about running my own shop is getting to set the tone of how we work with other shops and adjacent industries. I’m really passionate about the manufacturing community as a whole and I’m glad blogs like this exist to help draw connections amongst us.

Also, don’t be afraid to challenge the status quo. I love working with new machinists because they bring different ideas to the table. That’s really important for innovation and to keep us all moving forward.

Feel free to check them out at www.kadmodels.com or on Instagram @kadmodels or stop by their west coast shop in California or new east coast location in Vermont.

Benefits & Drawbacks of High and Low Helix Angles

While many factors impact the outcome of a machining operation, one often overlooked factor is the cutting tool’s helix angle. The Helix angle of a tool is measured by the angle formed between the centerline of the tool and a straight line tangent along the cutting edge.

A higher helix angle, usually 40° or more, will wrap around the tool “faster,” while a “slower” helix angle is usually less than 40°.

When choosing a tool for a machining operation, machinists often consider the material, the tooling dimensions and the flute count. The helix angle must also be considered to contribute to efficient chip evacuation, better part finish, prolonged tool life, and reduced cycle times.

Helix Angles Rule of Thumb

One general rule of thumb is that as the helix angle increases, the length of engagement along the cutting edge will decrease. That said,
there are many benefits and drawbacks to slow and high helix angles that can impact any machining operation.

Slow Helix Tool <40°

Benefits

  • Enhanced Strength – A larger core creates a strong tool that can resist deflection, or the force that will bend a tool under pressure.
  • Reduced Lifting – A slow helix will decrease a part from lifting off of the worktable in settings that are less secure.
  • Larger Chip Evacuation – The slow helix allows the tool to create a large chip, great for hogging out material.

Drawbacks

  • Rough Finish – A slow helix end mill takes a large chip, but can sometimes struggle to evacuate the chip. This inefficiency can result in a sub-par part finish.
  • Slower Feed Rate – The increased radial force of a slow helix end mill requires running the end mill at a slower feed rate.

High Helix Tool >40°

Benefits

  • Lower Radial Force – The tool will run quieter and smoother due to better shearing action, and allow for less deflection and more stability in thin wall applications.
  • Efficient Chip Evacuation – As the helix angle increases, the length of cutting edge engagement will decrease, and the axial force will increase. This lifts chips out and away, resulting in efficient chip evacuation.
  • Improved Part Finish – With lower radial forces, high helix tools are able to cut through material much more easily with a better shearing action, leaving an improved surface finish.

Drawbacks

  • Weaker Cutting Teeth – With a higher helix, the teeth of a tool will be thinner, and therefore thinner.
  • Deflection Risk – The smaller teeth of the high helix tool will increase the risk of deflection, or the force that will bend a tool under pressure. This limits how fast you can push high helix tools.
  • Increased Risk of Tool Failure – If deflection isn’t properly managed, this can result in a poor finish quality and tool failure.

Helix Angle: An Important Decision

In summary, a machinist must consider many factors when choosing tools for each application. Among the material, the finish requirements, and acceptable run times, a machinist must also consider the helix angle of each tool being used. A slow helix end mill will allow for larger chip formation, increased tool strength and reduce lifting forces. However, it may not leave an excellent finish. A high helix end mill will allow for efficient chip evacuation and excellent part finish, but may be subject to increased deflection, which can lead to tool breakage if not properly managed.

Axis CNC Inc. – Featured Customer

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

Show Us What You #MadeWithMicro100

Are you proud of the parts you #MadeWithMicro100? Show us with a video of the parts you are making, the Micro 100 Tool used, and the story behind how that part came to be, for a chance to win a $1,000 Amazon gift card grand prize!

With the recent addition of the Micro 100 brand to the Harvey Performance Company family, we want to know how you have been utilizing its expansive tooling offering. Has Micro 100’s Micro-Quik™ system helped you save time and money? Do you have a favorite tool that gets the job done for you every time? Has Micro 100 tooling saved you from a jam? We want to know! Send us a video on Instagram and show us what you #MadeWithMicro100!

How to Participate

Using #MadeWithMicro100 and @micro_100, tag your video of the Micro 100 tools machining your parts on Instagram or Facebook. Remember, don’t share anything that could get you in trouble! Proprietary parts and trade secrets should not be on display.

Official Contest Rules

Contest Dates:

  • The contest will run between December 5, 2019 to January 17, 2020. Submit as many entries as you’d like! Entries that are submitted before or after the contest period will not be considered for the top prizes (But we’d still like to see them!)

The Important Stuff:

  1. Take a video of your Micro 100 tool in action, clear and visible.
  2. Share your video on social media using #MadeWithMicro100 and tagging @Micro_100.
  3. Detail the story behind the project (tool number(s), operation, running parameters, etc.)

Prizes

All submissions will be considered for the $1,000 Amazon gift card grand prize. Of these entries, the most impressive (10) will be put up to popular vote. All entries put up to vote will be featured on our new customer testimonial page on our website with their name, social media account, and video displayed for everybody to see.

We’ll pick our favorites, but the final say is up to you. Public voting will begin on January 21, 2020, and a winner will be announced on January 28, 2020.

The top five entries will be sent Micro 100’s Micro-Quik™ tool change system with a few of our quick change tools. The top three entries will be offered a spot as a “Featured Customer” on our “In The Loupe” blog!

The Fine Print:

  • Please ensure that you have permission from both your employer and customer to post a video.
  • All entries must be the original work of the person identified in the entry.
  • No purchase necessary to enter or win. A purchase will not increase your chances of winning.
  • On January 28, 2020, the top 5 winners will be announced to the public. The Top 5 selected winners will receive a prize. The odds of being selected depend on the number of entries received. If a potential winner cannot be contacted within five (5) days after the date of first attempt, an alternative winner may be selected.
  • The potential winners will be notified via social media. Each potential winner must complete a release form granting Micro 100 full permission to publish the winner’s submitted video. If a potential winner cannot be contacted, or fails to submit the release form, the potential winner forfeits prize. Potential winners must continue to comply with all terms and conditions of these official contest rules, and winning is contingent upon fulfilling all requirements.
  • Participation in the contest constitutes entrants’ full and unconditional agreement to and acceptance of these official rules and decisions. Winning a prize is contingent upon being compliant with these official rules and fulfilling all other requirements.
  • The Micro 100 Video Contest is open to residents in US and Canada who are at least 18 years old at the time of entry.

Selecting the Right Chamfer Cutter Tip Geometry

A chamfer cutter, or a chamfer mill, can be found at any machine shop, assembly floor, or hobbyist’s garage. These cutters are simple tools that are used for chamfering or beveling any part in a wide variety of materials. There are many reasons to chamfer a part, ranging from fluid flow and safety, to part aesthetics.

Due to the diversity of needs, tooling manufacturers offer many different angles and sizes of chamfer cutters, and as well as different types of chamfer cutter tip geometries. Harvey Tool, for instance, offers 21 different angles per side, ranging from 15° to 80°, flute counts of 2 to 6, and shank diameters starting at 1/8” up to 1 inch.

After finding a tool with the exact angle they’re looking for, a customer may have to choose a certain chamfer cutter tip that would best suit their operation. Common types of chamfer cutter tips include pointed, flat end, and end cutting. The following three types of chamfer cutter tip styles, offered by Harvey Tool, each serve a unique purpose.

Three Types of Harvey Tool Chamfer Cutters

Type I: Pointed

This style of chamfer cutter is the only Harvey Tool option that comes to a sharp point. The pointed tip allows the cutter to perform in smaller grooves, slots, and holes, relative to the other two types. This style also allows for easier programming and touch-offs, since the point can be easily located. It’s due to its tip that this version of the cutter has the longest length of cut (with the tool coming to a finished point), compared to the flat end of the other types of chamfer cutters. With only a 2 flute option, this is the most straightforward version of a chamfer cutter offered by Harvey Tool.

Type II: Flat End, Non-End Cutting

Type II chamfer cutters are very similar to the type I style, but feature an end that’s ground down to a flat, non-cutting tip. This flat “tip” removes the pointed part of the chamfer, which is the weakest part of the tool. Due to this change in tool geometry, this tool is given an additional measurement for how much longer the tool would be if it came to a point. This measurement is known as “distance to theoretical sharp corner,” which helps with the programming of the tool. The advantage of the flat end of the cutter now allows for multiple flutes to exist on the tapered profile of the chamfer cutter. With more flutes, this chamfer has improved tool life and finish. The flat, non-end cutting tip flat does limit its use in narrow slots, but another advantage is a lower profile angle with better angular velocity at the tip.

Type III: Flat End, End Cutting

Type III chamfer cutters are an improved and more advanced version of the type II style. The type III boasts a flat end tip with 2 flutes meeting at the center, creating a center cutting-capable version of the type II cutter. The center cutting geometry of this cutter makes it possible to cut with its flat tip. This cutting allows the chamfer cutter to lightly cut into the top of a part to the bottom of it, rather than leave material behind when cutting a chamfer. There are many situations where blending of a tapered wall and floor is needed, and this is where these chamfer cutters shine. The tip diameter is also held to a tight tolerance, which significantly helps with programing it.

In conclusion, there could be many suitable cutters for a single job, and there are many questions you must ask prior to picking your ideal tool. Choosing the right angle comes down to making sure that the angle on the chamfer cutter matches the angle on the part. One needs to be cautious of how the angles are called out, as well. Is the angle an “included angle” or “angle per side?” Is the angle called off of the vertical or horizontal? Next, the larger the shank diameter, the stronger the chamfer and the longer the length of cut, but now, interference with walls or fixtures need to be considered. Flute count comes down to material and finish. Softer materials tend to want less flutes for better chip evacuation, while more flutes will help with finish. After addressing each of these considerations, the correct style of chamfer for your job should be abundantly clear.

The Geometries and Purposes of a Slitting Saw

When a machinist needs to cut material significantly deeper than wide, a Slitting Saw is an ideal choice to get the job done. A Slitting Saw is unique due to its composition and rigidity, which allows it to hold up in a variety of both straightforward and tricky to machine materials.

What is a Slitting Saw?

A Slitting Saw is a flat (with or without a dish), circular-shaped saw that has a hole in the middle and teeth on the outer diameter. Used in conjunction with an arbor, a Slitting Saw is intended for machining purposes that require a large amount of material to be removed within a small diameter, such as slotting or cutoff applications.

Other names for Slitting Saws include (but are not limited to) Slitting Cutters, Slotting Cutters, Jewelers Saws, and Slitting Knives. Both Jewelers Saws and Slitting Knives are particular types of Slitting Saws. Jewelers Saws have a high tooth count enabling them to cut tiny, precise features, and Slitting Knives are Slitting Saws with no teeth at all. On Jewelers Saws, the tooth counts are generally much higher than other types of saws in order to make the cuts as accurate as possible.

Key Terminology

Why Use a Slitting Saw?

These saws are designed for cutting into both ferrous and non-ferrous materials, and by utilizing their unique shape and geometries, they can cut thin slot type features on parts more efficiently than any other machining tool.

Common Applications:

  1. Separating Two Pieces of Material
    1. If an application calls for cutting a piece of material, such as a rod, in half, then a slitting saw will work well to cut the pieces apart while increasing efficiency.
  2. Undercutting Applications
    1. Saws can perform undercutting applications if mounted correctly, which can eliminate the need to remount the workpiece completely.
  3. Slotting into Material
    1. Capable of creating thin slots with a significant depth of cut, Slitting Saws can be just the right tool for the job!

When Not to Use a Slitting Saw

While it may look similar to a stainless steel circular saw blade from a hardware store, a Slitting Saw should never be used with construction tools such as a table or circular saw.  Brittle saw blades such as slitting saws will shatter when used on manual machines, and can cause injury when not used on the proper set up.

In Conclusion

Slitting Saws can be beneficial to a wide variety of machining processes, and it is vital to understand their geometries and purpose before attempting to utilize them in the shop. They are a great tool to have in the shop and can assist with getting jobs done as quickly and efficiently as possible.

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

Liberty Machine – Featured Customer

Liberty Machine, Inc. is a small Aerospace and Defense-focused machine shop located out of owner Seth Madore’s garage in Gray, Maine. In just a few years, Liberty Machine has transformed from a side hustle into a full-fledged machine shop with customers all over the world.

We were given the chance to visit Seth at his shop in Maine and interview him for this post. We picked Seth’s mind about entrepreneurship, the online manufacturing community, some interesting home construction choices made to accommodate a machine shop, and more.

Thanks for having us come out and visit the shop for this Featured Customer post. To get started, tell us a little bit about Liberty Machine’s history, and what sort of products you typically manufacture.

I founded Liberty Machine, Inc. out of my garage about 6 years ago while I was still working full-time at one of Maine’s largest (and best) Aerospace and Defense shops. I was working close to around 80-100 hours a week, maintaining my full-time job as well as coming home and making chips in the evenings and weekends. At first, I was doing a lot of smaller pieces and one-off parts, such as fixtures and prototype work to help build up a customer base and make enough money to eventually upgrade my machine.

In the early years, I was using an old 1982 Matsuura MC-500 Mill that I picked up for around $6,000. I used that machine to generate enough cash flow and eventually pull the trigger on a 2015 DMG Mori Duravertical 5100 with a 4th axis, probing and high-pressure coolant which really allowed me to take on the type of aerospace and defense work I had been doing at my day job and make the leap into full time entrepreneurship in my own shop. Now, we have the capabilities to focus on aerospace and defense work for major clients all over the country.

We are still working out of my garage, with myself and one other employee, but there are hopes for further expansion in the future as we acquire more work and expand our customer base. If you want to keep up with our shop, follow us on Instagram @liberty_machine!

Liberty Machine

You have a great shop here and are definitely maximizing the space. How much square footage are you working with?

Currently, we are working out of a 940 sq/ft shop. We “technically” have room for one more CNC mill if we really squeezed things together. I don’t think that is in the cards though; it is more likely that we will move to a larger space if and when the time comes for expansion. Heat management and air quality are real issues when working in small spaces with low ceilings, which is something we deal with currently.

What sort of machines and software do you have here in the shop?

For now, we have two VMC’s and a decent amount of inspection equipment. We have the DMG Mori machine I previously mentioned, as well as a 2016 Kitamura-3XD. Both machines have 12k spindles, Renishaw probes, and feature coolant through spindles.

For inspection equipment, we have a 2014 Mitutoyo QM-Height 350 Digital Height Gage, a 2003 Brown & Sharpe Gage 2000 CMM with Renishaw MIP Articulating Probe Head, and a 2003 Mitutoyo PH-A14 Optical Comparator. We also recently acquired a Scienscope Stereo/Digital microscope. This allows us to perform visual inspection of our parts at an extreme amount of detail.

Liberty Machine

There are still holes in our inspection lineup, so we are always looking at adding onto what we do to provide our customers with quality machined products.

For CAD/CAM software, we use Autodesk’s Fusion 360 as well as Inventor HSM.

You mentioned using Fusion 360 for CAD/CAM. Some of our readers may know you from the Autodesk CAM forums as an “Autodesk Expert Elite.” How did that come together?

About 4-5 years ago, I knew I needed a legal, supported, capable CAM solution. After several “30-day trials” of the more affordable packages, I stumbled upon Fusion 360. Having a fair amount of experience with Esprit and MasterCAM, I taught myself Fusion 360 in between running my shop and trying to spend what little time I had with my wife and children. Even though I had prior experience in other CAM packages, I still had lots of questions. I turned to the Fusion CAM Forums for assistance. The employees and other users were excellent to work with and got me sorted out quickly.

Liberty Machine

After I became more comfortable with the Fusion 360 software, I decided to spend some of my free time helping others by answering their questions on the forums. I wanted to give back to the community that had helped me learn. Autodesk eventually took notice of my constant presence on the forums and granted me the title of “Autodesk Expert Elite,” an honor given to some of their most prolific community members and advocates. Now I work with them to help test new features, provide insight from a user’s point of view, and participate in events like Autodesk University.

How did you first get involved in manufacturing?

I will be honest – I never meant to end up working in manufacturing. When I was a teen, I had glamorous ideas about law enforcement, federal work and so forth. But, life doesn’t always work out that way (I met a wonderful girl and goals shifted, so I started looking for alternate career paths).

My friend (future brother-in-law) was a machinist, so I started asking about his work and what it involved. He was working in a “job shop” using all sorts of cool machines and technology I had never really heard about. I was very excited about this career shift and I pursued it with fervor. 19 years later and I still LOVE this trade. The thing that intrigued me most about manufacturing, and the real reason I became so fixated on the trade, was the integral role the machinist plays in every aspect of manufactured society. I believe it is the most fundamental profession there is, and I take great pride in it. The evolution of the trade from manual machining to skilled programmers running CNC machines has always fascinated me as well and has kept pushing me to learn more and continue growing as a machinist.

Liberty Machine

Is it true that you built an addition to your garage specifically for the DMG Mori machine?

That is true! Before I bought the machine, I knew it was going to be too tall for my existing space, and was also going to need a solid foundation to sit on (it weighs 7 tons). Before the machine arrived, I had a concrete slab poured right against the side wall of the existing garage, and placed the DMG Mori on that slab.

After a couple days of unfortunate rain and multiple layers of tarps covering the machine, I had several family members (carpenters by trade) help me build the addition. Ok…I helped them. They were able to get it all framed and covered in just one day, breaking down the side wall of the garage and literally building the new space around the dimensions of the machine. Like they say, if there is a will, there is a way!

Running a shop out of your garage must have been a challenge to startup. What were some of the growing pains you experienced as this shop was built out?

On a professional level, the struggle was real. Two jobs, huge payments on the horizon, wondering where all the work (and money) is going to come from… As I mentioned, at that point, I was working 100 hours a week between the two jobs, and really feeling wiped out at the end of each week. However, the hard work did eventually pay off. Once I was able to get the DMG Mori and prove to customers that I had the capabilities to go full-time on my own, it was all worth it.

Liberty Machine

Outside of that, there were the literal growing pains, like cutting holes in my garage ceiling to fit the column on the Kitamura machine, and of course, building an addition to house the DMG. But like I said, it was all worth it in the end to own my own shop.

What is the best thing about working for yourself?

I’d say the best thing about working out of my shop (and for myself) is seeing my family on a daily basis. Yes, I still work 60-70 hours a week, but to have breakfast with them each morning before our day starts and have the flexibility to shift schedules around for doctor visits and other “life stuff” is worth its weight in gold. We are all so busy in life and I think we suffer as a society because of it. I want my children to know what it’s like to have a parent that is around. Busy, yes. But still present.

You mentioned that you had used a lot of Harvey and Helical tools at your last job. However, once you were on your own, you could choose any tooling you wanted to use. What made you stick with the Harvey Performance Company brands as your go-to tools?

The thing with Harvey Tool and Helical products that keep me coming back is the consistency of quality. I know that when I buy one of these tools, I am going to get a high-performing tool that has gone through multiple levels of inspection and is consistently ground within the tight tolerances that were promised. I honestly cannot remember a single time I have had to send any Harvey or Helical tools back for quality issues.

Liberty Machine

I tell friends and others in the manufacturing community about the tools, and the hurdle is always getting them to look past the slightly higher cost. That additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance.

Can you remember a key moment where Harvey Tool/Helical products really saved the day?

Truthfully, Harvey and Helical are my first thought when I’m looking at a challenging feature on a new part. If they offer something that looks like it will work, I don’t even look for an alternative. Order it, get it in house. I’d say where Harvey helps the most is their awesome selection of long reach/stub flute end mills for stainless steel. I cut so much of that, so it’s great to have a vendor stock what is truly needed.

Liberty Machine

Would you recommend entrepreneurship to other young machinists hoping to open their own shop some day?

Yes! But like all things in life, “It depends.” Entrepreneurship is certainly not for everyone. The amount of work required to get a shop rolling and out of “crisis-mode” is insane. There is no other term for it. If you have a significant other in your life, MAKE SURE they are on the same page as you. I am blessed to have a wife by my side who sees the end goal and is understanding of the sacrifice needed in the short-term for the long-term benefit of our family.

What advice might you want to give to someone starting in this trade?

Don’t stop learning. Keep your ears open and your mouth shut. That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.

Contouring Considerations

What is Contouring?

Contouring a part means creating a fine finish on an irregular or uneven surface. Dissimilar to finishing a flat or even part, contouring involves the finishing of a rounded, curved, or otherwise uniquely shaped part.

Contouring & 5-Axis Machining

5-axis machines are particularly suitable for contouring applications. Because contouring involves the finishing of an intricate or unique part, the multiple axes of movement in play with 5-axis Machining allow for the tool to access tough-to-reach areas, as well as follow intricate tool paths.

 Recent Contouring Advances

Advanced CAM software can now write the G-Code (the step-by-step program needed to create a finished part) for a machinists application, which has drastically simplified contouring applications. Simply, rather than spend several hours writing the code for an application, the software now handles this step. Despite these advances, most young machinists are still required to write their own G-Codes early on in their careers to gain valuable familiarity with the machines and their abilities. CAM software, for many, is a luxury earned with time.

Benefits of Advanced CAM Software

1. Increased Time Savings
Because contouring requires very specific tooling movements and rapidly changing cutting parameters, ridding machinists of the burden of writing their own complex code can save valuable prep time and reduce machining downtime.

2. Reduced Cycle Times
Generated G-Codes can cut several minutes off of a cycle time by removing redundancies within the application. Rather than contouring an area of the part that does not require it, or has been machined already, the CAM Software locates the very specific areas that require machining time and attention to maximize efficiency.

3. Improved Consistency
CAM Programs that are packaged with CAD Software such as SolidWorks are typically the best in terms of consistency and ability to handle complex designs. While the CAD Software helps a machinist generate the part, the CAM Program tells a machine how to make it.

Contouring Tips

Utilize Proper Cut Depths

Prior to running a contouring operation, an initial roughing cut is taken to remove material in steps on the Z-axis so to leave a limited amount of material for the final contouring pass. In this step, it’s pivotal to leave the right amount of material for contouring — too much material for the contouring pass can result in poor surface finish or a damaged part or tool, while too little material can lead to prolonged cycle time, decreased productivity and a sub par end result.

The contouring application should remove from .010″ to 25% of the tool’s cutter diameter. During contouring, it’s possible for the feeds to decrease while speeds increases, leading to a much smoother finish. It is also important to keep in mind that throughout the finishing cut, the amount of engagement between the tool’s cutting edge and the part will vary regularly – even within a single pass.

Use Best Suited Tooling

Ideal tool selection for contouring operations begins by choosing the proper profile of the tool. A large radius or ball profile is very often used for this operation because it does not leave as much evidence of a tool path. Rather, they effectively smooth the material along the face of the part. Undercutting End Mills, also known as lollipop cutters, have spherical ball profiles that make them excellent choices for contouring applications. Harvey Tool’s 300° Reduced Shank Undercutting End Mill, for example, features a high flute count to benefit part finish for light cut depths, while maintaining the ability to reach tough areas of the front or back side of a part.

Fact-Check G-Code

While advanced CAM Software will create the G-Code for an application, saving a machinist valuable time and money, accuracy of this code is still vitally important to the overall outcome of the final product. Machinists must look for issues such as wrong tool call out, rapids that come too close to the material, or even offsets that need correcting. Failure to look G-Code over prior to beginning machining can result in catastrophic machine failure and hundreds of thousands of dollars worth of damage.

Inserting an M01 – or a notation to the machine in the G-Code to stop and await machinist approval before moving on to the next step – can help a machinist to ensure that everything is approved with a next phase of an operation, or if any redundancy is set to occur, prior to continuation.

Contouring Summarized

Contouring is most often used in 5-axis machines as a finishing operation for uniquely shaped or intricate parts. After an initial roughing pass, the contouring operation – done most often with Undercutting End Mills or Ball End Mills, removes anywhere from .010″ to 25% of the cutter diameter in material from the part to ensure proper part specifications are met and a fine finish is achieved. During contouring, cut only at recommended depths, ensure that G-Code is correct, and use tooling best suited for this operation.

Milling Machines vs. Lathe Machines

Most modern manufacturing centers have both milling machines and lathe machines. Each machine follows the same machining principle, known as subtractive machining, where you begin with a block of material and then shape that material into the desired specifications. How the part is actually shaped is the key difference between the two machines. Understanding the differences in more depth will help in putting the right part in the right machine to maximize their capabilities.

 

cnc lathe

An Example of a Lathe Machine

cnc milling machine

An Example of a Milling Machine

Operation

The major difference between a milling machine and a lathe machine is the relationship of the workpiece and the tool.

Lathe Machines

In a lathe, the workpiece that is being machined spins about it’s axis, while the cutting tool does not. This is referred to as “turning”, and is effective for creating cylindrical parts. Common operations done on a lathe include drilling, boring, threading, ID and OD grooving, and parting. When looking to create quick, repeatable, and symmetrical cylindrical parts, the lathe machine is the best choice.

cnc lathe

Milling Machines

The opposite is true for milling machines. The tool in a milling machine rotates about its axis, while the workpiece does not. This allows the tool to approach the workpiece in many different orientations that more intricate and complex parts demand. If you can program it, you can make it in a milling machine as long as you have the proper clearance and choose the proper tooling.

milling machines

Best Practice

The best reason to use a milling machine for an upcoming project is the versatility. The tooling options for a milling machine are endless, with hundreds of available specialty cutting tools and various styles of end mills which make sure you are covered from start to finish on each job. A mill can also cut more complex pieces than a lathe. For example, it would impossible to efficiently machine something like an intake manifold for an engine on a lathe. For intricate parts like that, a milling machine would be required for successful machining.

While lathe machines are more limited in use than a milling machine, they are superior for cylindrical parts. While a mill can make the same cuts that a lathe does, it may need multiple setups to create the same part. When continuous production of cylindrical parts is necessary, a lathe will outperform the mill and increase both performance and efficiency.