Posts

The Geometries and Purposes of a Slitting Saw

When a machinist needs to cut material significantly deeper than wide, a Slitting Saw is an ideal choice to get the job done. A Slitting Saw is unique due to its composition and rigidity, which allows it to hold up in a variety of both straightforward and tricky to machine materials.

What is a Slitting Saw?

A Slitting Saw is a flat (with or without a dish), circular-shaped saw that has a hole in the middle and teeth on the outer diameter. Used in conjunction with an arbor, a Slitting Saw is intended for machining purposes that require a large amount of material to be removed within a small diameter, such as slotting or cutoff applications.

Other names for Slitting Saws include (but are not limited to) Slitting Cutters, Slotting Cutters, Jewelers Saws, and Slitting Knives. Both Jewelers Saws and Slitting Knives are particular types of Slitting Saws. Jewelers Saws have a high tooth count enabling them to cut tiny, precise features, and Slitting Knives are Slitting Saws with no teeth at all. On Jewelers Saws, the tooth counts are generally much higher than other types of saws in order to make the cuts as accurate as possible.

Key Terminology

Why Use a Slitting Saw?

These saws are designed for cutting into both ferrous and non-ferrous materials, and by utilizing their unique shape and geometries, they can cut thin slot type features on parts more efficiently than any other machining tool.

Common Applications:

  1. Separating Two Pieces of Material
    1. If an application calls for cutting a piece of material, such as a rod, in half, then a slitting saw will work well to cut the pieces apart while increasing efficiency.
  2. Undercutting Applications
    1. Saws can perform undercutting applications if mounted correctly, which can eliminate the need to remount the workpiece completely.
  3. Slotting into Material
    1. Capable of creating thin slots with a significant depth of cut, Slitting Saws can be just the right tool for the job!

When Not to Use a Slitting Saw

While it may look similar to a stainless steel circular saw blade from a hardware store, a Slitting Saw should never be used with construction tools such as a table or circular saw.  Brittle saw blades such as slitting saws will shatter when used on manual machines, and can cause injury when not used on the proper set up.

In Conclusion

Slitting Saws can be beneficial to a wide variety of machining processes, and it is vital to understand their geometries and purpose before attempting to utilize them in the shop. They are a great tool to have in the shop and can assist with getting jobs done as quickly and efficiently as possible.

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

Nueva Precision – Featured Customer

When it comes to CNC manufacturing services and product development solutions in the Denver, Colorado area, Eddie Casanueva has quickly made a name for himself with his company, Nueva Precision. Eddie has more than 22 years of manufacturing experience and 19 years of business experience, which he uses to help small businesses and entrepreneurs who are looking for product support and development.

Eddie was able to take time out of his busy schedule to talk with us for this Featured Customer post. We covered topics like Eddie’s incredible training and introduction to manufacturing, his experiences using reduced neck end mills, and his suggestions for must-have equipment in any CNC machine shop.

Thanks for taking the time to talk to us for this Featured Customer post. To get started, tell us a little bit about the history behind Nueva Precision and what sort of products you typically manufacture.

Nueva Precision was first incorporated at the end of 2016. Within three months, I was making chips on my own, largely doing prototype work.

I had recently sold my share in another company I co-founded and used that money to move into a larger home in the Denver area that could accommodate a machine shop business. We were lucky enough to find a home with some acreage and an existing oversized garage which was perfect for a shop. Now that I had the building, I had to do things like get the electrical and HVAC up to spec. It required having the city run a stronger electrical line to the building I would use as my shop, but once that was all figured out, we were ready to make some chips.

Nueva Precision

I started by buying a used Haas mill and a used Haas lathe. People initially reached out to me for work because of my quick delivery times. I was able to turn around parts in just a week or two since the business was new. However, within a month of operating those machines, I was already at max capacity with my current equipment. Unfortunately, my lead times had increased to a more standard 4-6 weeks due to the sheer amount of work I was getting. For the rest of 2017, I stuck with my original equipment and just did the best I could to keep up.

nueva precision

Do you have any future plans to expand your shop and capabilities further?

I do! In early 2018 I brought in a brand new VM3 Haas Mill to keep up with demand, but I was curious about how much more revenue that would create. I expected to see a 20-30% increase in revenue, but having another machine ended up doubling my revenue. Luckily my strong relationships with my customers helped me grow the business even as my lead times increased. With that in mind, I just ordered another Haas VM2 at the end of 2018 and am excited to take full advantage of that.

How has your family reacted to you running a business out of your home?

My family has been extremely supportive throughout the whole process. My wife Leandra in particular helps out a lot. She was a teacher for 19 years, but resigned from that profession to work on Nueva Precision. She has started to help out on the business side of things and has also started to help run machines and make parts. My oldest son Jaden (16) is interested in manufacturing and he has started working and making simple parts for us when he is available. All in all, we have a pretty good thing going here.

Eddie and Leandra Nueva Precision

Eddie and Leandra

Jaden nueva precision

Jaden working on parts

How did you first get involved in CNC machining and advanced manufacturing?

I am essentially self-taught in CNC machining. I got started in engineering and manufacturing as a student at the New Jersey Institute of Technology (NJIT) in the Mechanical Engineering program. It was a state school, so tuition costs weren’t bad but I still needed to support myself. I was going to school during the day and pumping gas at night to pay the bills. In my second year in school I came across an opportunity to work at an on-campus research center for manufacturing systems. It was funded by the state of New Jersey to help promote New Jersey industry. The job didn’t have much to do with my curriculum, but they supported some campus research and worked closely with the college on various projects.

The research center had all the workings of a machine shop. There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions of all the machinists and try to do more and more than the usual student employee. John – a talented toolmaker and experienced machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could. Next thing I know, they’re handing me prints and I am making parts. A few months down the road the machinists started teaching me programming on a Mazak controller. This went on for a year or so and I just soaked it all in.

nueva precision

Sounds like great experience! Where did you land your first full-time position in manufacturing?

I actually landed my first full-time job at the same manufacturing research center. The center had a CNC machinist programmer resign at the facility, so there was a job opening posted. I went to the director of the center and said I was interested in the position. I knew I had to work a lot to pay my tuition, and if I worked for the university I could get my tuition paid for while also making some real money. The director recommended me for the position, so I interviewed and landed the job. All of a sudden, I had benefits, vacation, real responsibilities, and full-time pay. I flipped my schedule around so I could go to school during nights and work during the day.

I learned so much about machining in my first job because of the unique situation I was in. Companies like Blaser Swisslube, Kennametal, and GibbsCAM were supplying us with product and support to work on process improvements for large New Jersey corporations like BF Goodrich Aerospace, US Can, etc. It progressed to the point where GibbsCAM was actually sending me to seminars to train me on different industry topics to further my education and improve the reports we were outputting.

nueva precision

I was in an amazing position to get all this training and I learned so much in the next 4-5 years. We had equipment like a Fadal 5-Axis CNC Machine and other high tech machines at my disposal, which were very hard to find at the time (mid-1990s). Nobody outside of the most elite machine shops were working in 5-axis, so I had a head start because of this unique job experience.

I actually never finished my degree and instead dove head first into manufacturing. I started my own business on the side and kept working at the research center until 2001 when I left to focus full-time on my new business, Spidertrax Offroad.

Can you tell us more about your experience with Spidertrax Offroad?

Spidertrax Offroad is a manufacturer of drivetrain parts for off-roading vehicles. I started Spidertrax with a partner whom I met in college. The company actually started making our first parts at the research center I was employed at. I asked my boss if I could start making parts off the clock on my own time, and he agreed to let me use the shop. This would have been around 1998, and by 2001 I was ready to take off on my own. My partner and I built that company up to 20 employees, and we were (and they still are) a well-respected brand in the off-roading community.

The hardest part about operating my own business and watching it grow was losing the ability to get out in the shop and actually do what I love, which is making parts. As the business grew, I had to take on more responsibility as a “business man,” and let go of many of the things I enjoyed doing as a machinist. I was very proud of what we had built, but I really wanted to get back to basics. So, in early 2017 I sold my half of Spidertrax Offroad to my partner and took that money to buy the new house and open Nueva Precision, Inc.

What sort of machines and CAM software do you have in your new shop?

Right now for CNC machines I have a 2018 Haas VM3, a 2018 Hass VM2, a 2012 Haas VF2, and a 2012 Haas TL2. I also have an engine lathe, a Bridgeport knee mill, Kaeser screw compressor, which I absolutely love, and a couple of Jet saws.

For software, I still use GibbsCAM. I have been using GibbsCAM since 1996 and have had countless hours of training and experience using it, so I think I’m a lifer.

haas vf2

Outside of tooling, what are some key components of your machining setup that you would recommend to others?

I started Nueva Precision without any sort of probing system in place, and using an umbrella style tool changer. I found out quickly that my time, especially being alone, is worth a lot. I highly recommend getting a solid probing system as well as a side mount tool changer. I added all of that to my VM3 and the effect was immediately noticeable. It is so much more efficient and faster.

Keeping software up-to-date is also key. It can be expensive, but it speaks for itself in just a few months. Any time I invest in technology, it seems to pay off pretty quick.

5th axis workholding

I also feel strongly about having solid workholding. I have a couple of the 5th Axis self-centering vises which are great, and a handful of Kurt vises, as well. I am also a big fan of the MMM-USA guys and their vise jaws and handles. For my shop, flexibility is key because I never know what can come through the door. I don’t do a lot of production work and spend much more time on prototype work, so flexibility is key. Having good quality workholding that I don’t need to worry about lets me swap parts in and out with ease.

As for tool holding, I ran into an issue last year where I was starting to see a lot of tool pullout and was scrapping too many parts as a result of aggressive roughing. I had to find a better solution, and I came across the REGO-FIX PowRgrip system. It might seem expensive compared to other simpler tool holder, but I think the upfront investment isn’t too bad considering the other options in that space. Again, I invested in technology, and immediately saw better results. I currently use the PowRgrip for finishing passes where I need good runout and heavy roughing where there is the highest risk of tool pullout.

REGO powRgrip

You use a lot of Helical’s Reduced Neck end mills. What are some tips or tricks you have learned by using these tools that you could share with others?

My experience with these tools is really new, but I find myself using more and more of them these days. In the beginning, I was afraid of end mills with a longer length of cut singing like crazy in the machine. I started experimenting with the reduced neck tools from Helical and was blown away by the rigidity. The tool pressure remains consistent throughout the part, so you will get the same great results on the top of the part as on the bottom.

I don’t know how many people are currently using them but it makes so much stuff possible. I have gone as large as ¾” diameter with the 5” reach and have never had an issue. Maintaining the low levels of runout is definitely key with these tools, which again comes back to having solid toolholding. Now that I have the REGO-FIX system, I am getting much better runout and plan to start pushing the reduced neck tools even harder.

helical reduced neck end mill

Most of my reduced neck end mills are the standard style, but the chipbreaker with the reduced neck has been a powerhouse for me as well. No matter what I tried with Helical’s reduced neck tooling, I have had success, so I would recommend the entire line if the situation calls for it. Just be careful with runout and make sure to double check your clearance!

What are some of your key Helical products that you use on a daily basis?

My main workhorse is Helical EDP 29422 – the ½” 45 Degree Chipbreaker for Aluminum. I swear I use that tool every single day across all of my machines. That tool is gold for me; it is night and day compared to standard roughers. It has a long enough flute length to be versatile or aggressive, depending on the situation. It is just a great tool. You will need a good holder for sure to keep it from pulling out when you get aggressive, but again my new software and tool holding helps with that.

helical solutions

Outside of performance, I love getting the smaller chips that the chipbreaker tools create. It is so much easier to clean a machine with small chips than long, stringy ones, which saves me time. I do all my roughing with chipbreakers. If you are making stringy chips while running HEM toolpaths, they can be a major pain to deal with.

My customers love the finish that Helical gives me as well. The wiper flat on the bottom of the H40ALV-3 end mill stands out as one of my favorite features on any of my tools. That tool gets me compliments on the floor finishes of pockets and enclosures all the time. Across the board, tool life and finish has been awesome with my Helical end mills. I currently use the Zplus coating for all my aluminum tools and have no complaints.

part finish

This summer I had the privilege of working on some aerospace parts that will be going up into space!  Most all parts were being machined from pre-hardened stainless steels and exotic alloys.  The Helical 5-flute and 7-flute endmills with the Aplus coating proved to be great tools to have in the arsenal.

What are your “go-to” Harvey Tool products?

For Harvey Tool, I use a lot of the full radius Keyseat Cutters to surface mill areas you can’t get to with a ball nose end mill. This saves me valuable time because I can avoid flipping the part to surface mill both sides by doing it all in one operation with the Keyseat Cutter.

keyseat cutter

Outside of the keyseats, I use a lot of miniature end mills with reduced shanks and chamfers mills in a variety of angles. I also use lollipops (undercutting end mills) to surface mill parts with hard-to-reach holes.

Overall, being able to look through a single catalog and find tons of options for neck diameters and cutter diameters is what sells me on the Harvey Tool product. It is really neat to have all those different tools available to me in one place – it’s a great catalog.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Main Differences Between Engravers & Marking Cutters

While similar on the surface, Half-round Engraving Cutters and Marking Cutters are actually very different. Both tools are unique in the geometries they possess, the benefits they offer, and the specific purposes they’re used for. Below are the key differences between Engraving Cutters and Marking Cutters that all machinists must know, as the engraving on a part is often a critical step in the machining process.

Engravers & Marking Cutters Serve Different Purposes

All Marking Cutters are Engraving Cutters, but not all Engraving Cutters are Marking Cutters. This is because Marking Cutters are a “type” of engraving tool. By virtue of their sturdier geometry, Marking Cutters are suited for applications requiring repetition such as the engraving of serial numbers onto parts. Harvey Tool has been able to customize specific tool geometries for ferrous and non-ferrous applications, offering Marking Cutters for material specific purposes.

engraver

Engraving Cutters, on the other hand, are meant for finer detailed applications that require intricate designs such as engraving a wedding band or a complex brand design.

engraver

These Tools Have Unique Geometry Features

Historically, Engraving Cutters have been made as a half round style tool. This tool allows for a true point, which is better for fine detail, but can easily break if not run correctly. Because of this, Engraving Cutters have performed well in softer materials such as aluminum and wood, especially for jobs that require an artistic engraving with fine detail.

Marking cutters are not as widely seen throughout the industry, however. These tools hold up in harder-to-machine materials exceedingly well. Marking Cutters are a form of Engraving Cutter that contain 2 flutes and a web at the tip, meaning that the tool has a stronger tip and is less susceptible to breakage.

engraver

While these tools do not contain a true point (due to their web), they do feature shear flutes for better cutting action and the ability to evacuate chips easier when compared to a half-round engraver.

Harvey Tool Product Offering

Harvey Tool offers a wide variety of both Engraving Cutters and Marking Cutters. Choose from a selection of pointed, double-ended, tip radius, and tipped-off Engraving Cutter styles in 15 included angles ranging from 10° to 120°.

engraver

Marking Cutters are fully stocked in tip radius or tipped-off options, and are designed specifically for either ferrous or non-ferrous materials. Marking Cutters are offered in included angles from 20° to 120°.

While Engraving Cutters are offered uncoated or in AlTiN, AlTiN Nano, or Amorphous Diamond coatings, Marking Cutters are fully stocked in uncoated, AlTiN, or TiB2 coated styles.

Marking Cutters & Engravers Summarized

While both Engraving Cutters and Marking Cutters can accomplish similar tasks, each tool has its own advantages and purpose. Selecting the correct tool is based largely on preference and applicability to the job at hand. Factors that could impact your selection would be final Depth of Cut, Width of Cut, the angle needing to be achieved, and the desired detail of the engraving.

Liberty Machine – Featured Customer

Liberty Machine, Inc. is a small Aerospace and Defense-focused machine shop located out of owner Seth Madore’s garage in Gray, Maine. In just a few years, Liberty Machine has transformed from a side hustle into a full-fledged machine shop with customers all over the world.

We were given the chance to visit Seth at his shop in Maine and interview him for this post. We picked Seth’s mind about entrepreneurship, the online manufacturing community, some interesting home construction choices made to accommodate a machine shop, and more.

Thanks for having us come out and visit the shop for this Featured Customer post. To get started, tell us a little bit about Liberty Machine’s history, and what sort of products you typically manufacture.

I founded Liberty Machine, Inc. out of my garage about 6 years ago while I was still working full-time at one of Maine’s largest (and best) Aerospace and Defense shops. I was working close to around 80-100 hours a week, maintaining my full-time job as well as coming home and making chips in the evenings and weekends. At first, I was doing a lot of smaller pieces and one-off parts, such as fixtures and prototype work to help build up a customer base and make enough money to eventually upgrade my machine.

In the early years, I was using an old 1982 Matsuura MC-500 Mill that I picked up for around $6,000. I used that machine to generate enough cash flow and eventually pull the trigger on a 2015 DMG Mori Duravertical 5100 with a 4th axis, probing and high-pressure coolant which really allowed me to take on the type of aerospace and defense work I had been doing at my day job and make the leap into full time entrepreneurship in my own shop. Now, we have the capabilities to focus on aerospace and defense work for major clients all over the country.

We are still working out of my garage, with myself and one other employee, but there are hopes for further expansion in the future as we acquire more work and expand our customer base. If you want to keep up with our shop, follow us on Instagram @liberty_machine!

Liberty Machine

You have a great shop here and are definitely maximizing the space. How much square footage are you working with?

Currently, we are working out of a 940 sq/ft shop. We “technically” have room for one more CNC mill if we really squeezed things together. I don’t think that is in the cards though; it is more likely that we will move to a larger space if and when the time comes for expansion. Heat management and air quality are real issues when working in small spaces with low ceilings, which is something we deal with currently.

What sort of machines and software do you have here in the shop?

For now, we have two VMC’s and a decent amount of inspection equipment. We have the DMG Mori machine I previously mentioned, as well as a 2016 Kitamura-3XD. Both machines have 12k spindles, Renishaw probes, and feature coolant through spindles.

For inspection equipment, we have a 2014 Mitutoyo QM-Height 350 Digital Height Gage, a 2003 Brown & Sharpe Gage 2000 CMM with Renishaw MIP Articulating Probe Head, and a 2003 Mitutoyo PH-A14 Optical Comparator. We also recently acquired a Scienscope Stereo/Digital microscope. This allows us to perform visual inspection of our parts at an extreme amount of detail.

Liberty Machine

There are still holes in our inspection lineup, so we are always looking at adding onto what we do to provide our customers with quality machined products.

For CAD/CAM software, we use Autodesk’s Fusion 360 as well as Inventor HSM.

You mentioned using Fusion 360 for CAD/CAM. Some of our readers may know you from the Autodesk CAM forums as an “Autodesk Expert Elite.” How did that come together?

About 4-5 years ago, I knew I needed a legal, supported, capable CAM solution. After several “30-day trials” of the more affordable packages, I stumbled upon Fusion 360. Having a fair amount of experience with Esprit and MasterCAM, I taught myself Fusion 360 in between running my shop and trying to spend what little time I had with my wife and children. Even though I had prior experience in other CAM packages, I still had lots of questions. I turned to the Fusion CAM Forums for assistance. The employees and other users were excellent to work with and got me sorted out quickly.

Liberty Machine

After I became more comfortable with the Fusion 360 software, I decided to spend some of my free time helping others by answering their questions on the forums. I wanted to give back to the community that had helped me learn. Autodesk eventually took notice of my constant presence on the forums and granted me the title of “Autodesk Expert Elite,” an honor given to some of their most prolific community members and advocates. Now I work with them to help test new features, provide insight from a user’s point of view, and participate in events like Autodesk University.

How did you first get involved in manufacturing?

I will be honest – I never meant to end up working in manufacturing. When I was a teen, I had glamorous ideas about law enforcement, federal work and so forth. But, life doesn’t always work out that way (I met a wonderful girl and goals shifted, so I started looking for alternate career paths).

My friend (future brother-in-law) was a machinist, so I started asking about his work and what it involved. He was working in a “job shop” using all sorts of cool machines and technology I had never really heard about. I was very excited about this career shift and I pursued it with fervor. 19 years later and I still LOVE this trade. The thing that intrigued me most about manufacturing, and the real reason I became so fixated on the trade, was the integral role the machinist plays in every aspect of manufactured society. I believe it is the most fundamental profession there is, and I take great pride in it. The evolution of the trade from manual machining to skilled programmers running CNC machines has always fascinated me as well and has kept pushing me to learn more and continue growing as a machinist.

Liberty Machine

Is it true that you built an addition to your garage specifically for the DMG Mori machine?

That is true! Before I bought the machine, I knew it was going to be too tall for my existing space, and was also going to need a solid foundation to sit on (it weighs 7 tons). Before the machine arrived, I had a concrete slab poured right against the side wall of the existing garage, and placed the DMG Mori on that slab.

After a couple days of unfortunate rain and multiple layers of tarps covering the machine, I had several family members (carpenters by trade) help me build the addition. Ok…I helped them. They were able to get it all framed and covered in just one day, breaking down the side wall of the garage and literally building the new space around the dimensions of the machine. Like they say, if there is a will, there is a way!

Running a shop out of your garage must have been a challenge to startup. What were some of the growing pains you experienced as this shop was built out?

On a professional level, the struggle was real. Two jobs, huge payments on the horizon, wondering where all the work (and money) is going to come from… As I mentioned, at that point, I was working 100 hours a week between the two jobs, and really feeling wiped out at the end of each week. However, the hard work did eventually pay off. Once I was able to get the DMG Mori and prove to customers that I had the capabilities to go full-time on my own, it was all worth it.

Liberty Machine

Outside of that, there were the literal growing pains, like cutting holes in my garage ceiling to fit the column on the Kitamura machine, and of course, building an addition to house the DMG. But like I said, it was all worth it in the end to own my own shop.

What is the best thing about working for yourself?

I’d say the best thing about working out of my shop (and for myself) is seeing my family on a daily basis. Yes, I still work 60-70 hours a week, but to have breakfast with them each morning before our day starts and have the flexibility to shift schedules around for doctor visits and other “life stuff” is worth its weight in gold. We are all so busy in life and I think we suffer as a society because of it. I want my children to know what it’s like to have a parent that is around. Busy, yes. But still present.

You mentioned that you had used a lot of Harvey and Helical tools at your last job. However, once you were on your own, you could choose any tooling you wanted to use. What made you stick with the Harvey Performance Company brands as your go-to tools?

The thing with Harvey Tool and Helical products that keep me coming back is the consistency of quality. I know that when I buy one of these tools, I am going to get a high-performing tool that has gone through multiple levels of inspection and is consistently ground within the tight tolerances that were promised. I honestly cannot remember a single time I have had to send any Harvey or Helical tools back for quality issues.

Liberty Machine

I tell friends and others in the manufacturing community about the tools, and the hurdle is always getting them to look past the slightly higher cost. That additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance.

Can you remember a key moment where Harvey Tool/Helical products really saved the day?

Truthfully, Harvey and Helical are my first thought when I’m looking at a challenging feature on a new part. If they offer something that looks like it will work, I don’t even look for an alternative. Order it, get it in house. I’d say where Harvey helps the most is their awesome selection of long reach/stub flute end mills for stainless steel. I cut so much of that, so it’s great to have a vendor stock what is truly needed.

Liberty Machine

Would you recommend entrepreneurship to other young machinists hoping to open their own shop some day?

Yes! But like all things in life, “It depends.” Entrepreneurship is certainly not for everyone. The amount of work required to get a shop rolling and out of “crisis-mode” is insane. There is no other term for it. If you have a significant other in your life, MAKE SURE they are on the same page as you. I am blessed to have a wife by my side who sees the end goal and is understanding of the sacrifice needed in the short-term for the long-term benefit of our family.

What advice might you want to give to someone starting in this trade?

Don’t stop learning. Keep your ears open and your mouth shut. That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.

Workholding Styles & Considerations

Machinists have a number of variables to consider when setting up workholding devices for a machining operation. When it comes to workholding, there are some major differences between holding a loosely toleranced duplicate part with a 10-minute cycle time and holding a tightly toleranced specialized part with a 10-hour cycle time. Determining which method works best for your machining job is essential to maintaining an efficient operation.

Workholding Devices

Ideal workholding devices have easily repeatable setups. For this reason, some machines have standard workholding devices. Vises are generally used with milling machines while chucks or collets are used when running a lathe machine. Sometimes, a part may need a customized workholding setup in order to secure the piece properly during machining. Fixtures and jigs are examples of customized workholding devices.

Fixtures and Jigs

A jig is a work holding device that holds, supports and locates a workpiece and guides the cutting tool into a specific operation (usually through the use of one or more bushings). A fixture is essentially the same type of device, but the main difference is that it does not guide the cutting tool into a specified operation. Fixtures are typically used in milling operations while jigs are generally used in drilling, reaming, tapping and boring. Jigs and fixtures are more precise relative to standard workholding devices, which leads to tighter tolerances. They can also be indexable, allowing them to control the cutting tool movement as well as workpiece movement. Both jigs and fixtures are made up of the same basic components: fixture bodies, locators, supports, and clamps.

The 4 Fixture Bodies

There are 4 basic types of fixture bodies: faceplates, baseplates, angle plates, and tombstones.

Faceplates: Typically used in lathe operations, where components are secured to the faceplate and then mounted onto the spindle.

Baseplates: Common in milling and drilling operations and are mounted to the worktable.

Angle plates: Two plates perpendicular to each other but some are adjustable or customized to change the angle of the workpiece.

Tombstones: Large vertically oriented rectangular fixtures that orients a workpiece perpendicular to the worktable. Tombstones also have two sides to accommodate multiple parts.

workholding

Locators

Locators are characterized by four criteria: assembled, integral, fixed, and adjustable. Assembled locators, can be attached and removed from the fixture, which is contrary to integral locators that are built into the fixture. Fixed locators allow for no moving components, while adjustable locators permit movement through the use of threads and/or springs, and can adjust to a workpiece’s size. These can be combined to provide the appropriate rigidity-assembly convenience ratio. For example, a V-locator fixture is the combination of assembled and fixed locators. It can be secured to a fixture but has no moving components.

workholding

Supports

Supports do exactly what their name suggests, they support the workpiece during the machining process to avoid workpiece deformation. These components can double as locators and also come fixed, adjustable and integral, or assembled. Generally, supports are placed under the workpiece during manufacturing but this also depends on the geometry of the workpiece, the machine being operated and where the cutting tool will make contact. Supports can come in different shapes and sizes. For example, rest buttons are smaller support components used in series either from underneath the workpiece or from the sides. Concurrently, parallel supports are placed on either side of the part to provide general support.

workholding

Clamps

Clamps are devices used for strengthening or holding things together, and come in different shapes, sizes and strengths. Vises and chucks have movable jaws and are considered standard clamps. One atypical example is the toggle clamp, which has a pivot pin that acts as a fulcrum for a lever system. One of the more convenient types is a power clamping system. There are two type of power clamping methods: hydraulic and pneumatic.

workholding

Example of a standard fixture setup.

Hydraulic Systems

Hydraulic Systems create a gripping force by attaining power from compressing a liquid. This type of power clamp is generally used with larger workpieces as it usually takes up less space relative to pneumatic clamps.

Pneumatic clamps

Pneumatic clamps attain their gripping force from the power created by a compressed gas (usually air). These systems are generally bulkier and are used for smaller workpieces that require less room on the worktable. Power clamping offers a few advantages over conventional clamping. First, these systems can be activated and deactivated quickly to save on changeover time. Second, they place uniform pressure on the part, which help prevent errors and deformation. A significant disadvantage they pose is the cost of a system but this can be quickly offset by production time saved.

Key Guidelines to Follow

Lastly, there are a few guidelines to follow when choosing the appropriate fixture or jig setup.

Ensure Proper Tolerancing

The tolerances of the workholding device being used should be 20%-50% tighter than those of the workpiece.

Utilize Acceptable Locating & Supporting Pieces

Locating and supporting pieces should be made of a hardened material to prevent wear and allow for several uses without the workpieces they support falling out of tolerance. Supports and locators should also be standardized so that they can be easily replaced.

Place Clamps in Correct Locations

Clamps should be placed above the locations of supports to allow the force of the clamp to pass into the support without deforming the workpiece. Clamps, locators and supports should also be placed to distribute cutting forces as evenly as possible throughout the part. The setup should allow for easy clamping and not require much change over time

Maximize Machining Flexibility

The design of the fixture or jigs should maximize the amount of operations that can be performed in one orientation. During the machining operation, the setup should be rigid and stable.

Bottom Line

Workholding can be accomplished in a number of different ways and accomplish the same task of successfully gripping a part during a machining operation with the end result being in tolerance. The quality of this workholding may differ greatly as some setups will be more efficient than others. For example, there is no reason to create an elaborate jig for creating a small slot down the center of a rectangular brick of aluminum; a vise grip would work just fine. Maximizing the efficiency and effectiveness of an operators’ workholding setup will boost productivity by saving on changeover, time as well as cost of scrapped, out of tolerance parts.

Understanding Threads & Thread Mills

Thread milling can present a machinist many challenges. While thread mills are capable of producing threads with relative ease, there are a lot of considerations that machinists must make prior to beginning the job in order to gain consistent results. To conceptualize these features and choose the right tool, machinists must first understand basic thread milling applications.

 

What is a thread?

The primary function of a thread is to form a coupling between two different mechanisms. Think of the cap on your water bottle. The cap couples with the top of the bottle in order to create a water tight seal. This coupling can transmit motion and help to obtain mechanical advantages.  Below are some important terms to know in order to understand threads.

Root – That surface of the thread which joins the flanks of adjacent thread forms and is immediately adjacent to the cylinder or cone from which the thread projects.

Flank – The flank of a thread is either surface connecting the crest with the root. The flank surface intersection with an axial plane is theoretically a straight line.

Crest – This is that surface of a thread which joins the flanks of the thread and is farthest from the cylinder or cone from which the thread projects.

Pitch – The pitch of a thread having uniform spacing is the distance measured parallelwith its axis between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis. Pitch is equal to the lead divided by the number of thread starts.

Major Diameter – On a straight thread the major diameter is that of the major cylinder.On a taper thread the major diameter at a given position on the thread axis is that of the major cone at that position.

Minor Diameter – On a straight thread the minor diameter is that of the minor cylinder. On a taper thread the minor diameter at a given position on the thread axis is that of the minor cone at that position.

Helix Angle – On a straight thread, the helix angle is the angle made by the helix of the thread and its relation to the thread axis. On a taper thread, the helix angle at a given axial position is the angle made by the conical spiral of the thread with the axis of the thread. The helix angle is the complement of the lead angle.

Depth of Thread Engagement – The depth (or height) of thread engagement between two coaxially assembled mating threads is the radial distance by which their thread forms overlap each other.

External Thread – A thread on a cylindrical or conical external surface.

Internal Thread – A thread on a cylindrical or conical internal surface.

Class of Thread – The class of a thread is an alphanumerical designation to indicate the standard grade of tolerance and allowance specified for a thread.

Source: Machinery’s Handbook 29th Edition

Types of Threads & Their Common Applications:

ISO Metric, American UN: This thread type is used for general purposes, including for screws. Features a 60° thread form.

British Standard, Whitworth: This thread form includes a 55° thread form and is often used when a water tight seal is needed.

NPT: Meaning National Pipe Tapered, this thread, like the Whitworth Thread Form, is also internal. See the above video for an example of an NPT thread.

UNJ, MJ: This type of thread is often used in the Aerospace industry and features a radius at the root of the thread.

ACME, Trapezoidal: ACME threads are screw thread profiles that feature a trapezoidal outline, and are most commonly used for power screws.

Buttress Threads: Designed for applications that involve particularly high stresses along the thread axis in one direction. The thread angle on these threads is 45° with a perpendicular flat on the front or “load resisting face.”         

Thread Designations

Threads must hold certain tolerances, known as thread designations, in order to join together properly. International standards have been developed for threads. Below are examples of Metric, UN, and Acme Thread Designations. It is important to note that not all designations will be uniform, as some tolerances will include diameter tolerances while others will include class of fit.

Metric Thread Designations              

M12 x 1.75 – 4h – LH

In this scenario, “M” designates a Metric Thread Designation, 12 refers to the Nominal Diameter, 1.75 is the pitch, 4h is the “Class of Fit,” and “LH” means “Left-Hand.”

UN Thread Designations

¾ 10 UNC 2A LH

For this UN Thread Designation, ¾ refers to the thread’s major diameter, where 10 references the number of threads per inch. UNC stands for the thread series; and 2A means the class of thread. The “A” is used to designate external threads, while “B” is for internal threads. For these style threads, there are 6 other classes of fit; 1B, 2B, and 3B for internal threads; and 1A, 2A, and 3A for external threads.

ACME Thread Designations

A 1 025 20-X

For this ACME Thread Designation, A refers to “Acme,” while 1 is the number of thread starts. The basic major diameter is called out by 025 (Meaning 1/4”) while 20 is the callout for number of threads per inch. X is a placeholder for a number designating the purpose of the thread. A number 1 means it’s for a screw, while 2 means it’s for a nut, and 3 refers to a flange.

How are threads measured?

Threads are measured using go and no-go gauges. These gauges are inspection tools used to ensure the that the thread is the right size and has the correct pitch. The go gauge ensures the pitch diameter falls below the maximum requirement, while the no-go gauge verifies that the pitch diameter is above the minimum requirement. These gauges must be used carefully to ensure that the threads are not damaged.

Thread Milling Considerations

Thread milling is the interpolation of a thread mill around or inside a workpiece to create a desired thread form on a workpiece. Multiple radial passes during milling offer good chip control. Remember, though, that thread milling needs to be performed on machines capable of moving on the X, Y, and Z axis simultaneously.

5 Tips for Successful Thread Milling Operations:

1.  Opt for a Quality Tooling Manufacturer

There is no substitute for adequate tooling. To avoid tool failure and machining mishaps, opt for a quality manufacturer for High Performance Drills for your starter holes, as well as for your thread milling solutions. Harvey Tool fully stocks several types of threadmills, including Single Form, Tri-Form, and Multi-Form Thread Milling Cutters. In addition, the 60° Double Angle Shank Cutter can be used for thread milling.

thread milling

Image Courtesy of  @Avantmfg

2. Select a Proper Cutter Diameter

Choose only a cutter diameter as large as you need. A smaller cutter diameter will help achieve higher quality threads.

3. Ensure You’re Comfortable with Your Tool Path

Your chosen tool path will determine left hand or right hand threads.

Right-hand internal thread milling is where cutters move counterclockwise in an upwards direction to ensure that climb milling is achieved.

Left-hand internal thread milling a left-hand thread follows in the opposite direction, from top to bottom, also in a counterclockwise path to ensure that climb milling is achieved.

4. Assess Number of Radial Passes Needed

In difficult applications, using more passes may be necessary to achieve desired quality. Separating the thread milling operation into several radial passes achieves a finer quality of thread and improves security against tool breakage in difficult materials. In addition, thread milling with several radial passes also improves thread tolerance due to reduced tool deflection. This gives greater security in long overhangs and unstable conditions.

5. Review Chip Evacuation Strategy

Are you taking the necessary steps to avoid chip recutting due to inefficient chip evacuation? If not, your thread may fall out of tolerance. Opt for a strategy that includes coolant, lubricant, and tool retractions.

In Summary

Just looking at a threading tool can be confusing – it is sometimes hard to conceptualize how these tools are able to get the job done. But with proper understanding of call, methods, and best practices, machinists can feel confident when beginning their operation.

Form Factory – Featured Customer

Form Factory is a machine shop located in Portland, Oregon focused primarily on prototype work, taking 3D CAD models and making them a physical reality through CNC precision machining. Over the past 14 years, Form Factory has grown from a one man operation with a single CNC mill into a highly respected shop in the Northwest US, making prototype models for clients all over the world. Harvey Tool customers may recognize the name Form Factory from their photo on the front cover of the Fall 2018 Catalog, as they were the first place winners of the #MachineTheImpossible Catalog Cover Contest!

We talked with Brian Ross, Founder/Owner of Form Factory, to learn about how he suggests entrepreneurs and inventors think about prototyping their ideas, his unique experience working on many different models, his winning part in the #MachineTheImpossible contest, and more!

Thanks for taking the time to talk with us for this Featured Customer post. To get started, tell us a little bit about Form Factory, how you got started, and what sort of products you manufacture.

Prior to starting my own business, I had worked as a machinist at 4 different prototyping firms which is where I learned the trade and got the itch to run my own shop. I started Form Factory myself just over 14 years ago with a single Haas VF1. I had no client base and a bunch of loans. It was a scary time for me to jump in to entrepreneurship. Now, we have three CNC machines, various other components and machines, and four full-time employees.

At Form Factory we focus primarily on industrial design models and prototypes. We do a lot of work in the electronics industry, making prototypes of cell phones, laptops, printers, and other consumer electronics. Many of our models are created for display at trade shows or in Kickstarter and other product announcement videos, but we also do a fair share of working prototypes as well. It all depends on what the client wants, and we pride ourselves on the ability to deliver exactly what they need.

form factory

What sort of machines and software do you use in your shop?

We currently have 3 CNC mills – a Haas VF1, Haas VF2, and Haas VF3. We like using machines made in the USA because we like making products in the USA. Haas is what I knew and had run predominantly, and Haas is fairly common in the Northwest so it was easier to find skilled employees in the area who knew these machines well.

We use Mastercam for our CAM software, which is what I learned on. It also seems to be very common in this area which makes for an easy transition for new employees.

form factory

What were some of the keys to success as you built Form Factory from the ground up?

I based much of Form Factory’s business model on my past experiences in manufacturing. Many of the other small companies I had worked for ended up closing, even though the guys on the shop floor would be working lots of overtime and we had plenty of business. What I realized was that these other places often closed because of greed, over-expansion, and rapid growth which they could not sustain. They ended up overextending themselves and they could not keep the doors open as a result.

I like the spot I am in now because while we can certainly expand, we have found a happy medium. We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Being a small company, word of mouth is one of our only forms of marketing. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty, which is key to running a good business.

form factory

Working Prototype of a “Smart Ball” Charger for Adidas

Prototype manufacturing is a very competitive segment of this industry. What sets Form Factory apart from the competition?

Understanding how model making relates to industrial design separates us from a typical machine shop. We can take a prototype design or simple drawing and we are able to implement all of the functionality into a prototype model. We do not deal much with the actual production run, which will come later, so we have the ability to focus more on the prototype and a customer’s exact needs to get a product off the ground. This level of expertise and focus sets us apart from your typical shop.

For example, if the model is for photography purposes, a trade show display, or a promotional video, appearance will be key. We will spend more time working on building what we consider to be a true work of art; something that will immediately stand out to the consumer, but may lack in complete functionality. If the client requires a fully functioning prototype, we will spend more time making sure that all of the components work as intended over multiple stages of design. The final result may be a bit “uglier” than a prototype designed for appearance alone, but it will work as intended.

Let’s say I have an idea for a new product. What should I know about getting my design manufactured?

Right now, especially with 3D printing and cheap overseas manufacturing, it can seem very easy to prototype a new product. However, these options are not always the best route to take to get a quality prototype. With 3D printing, you get a huge step down in resolution and quality, although you can save in cost. You can also save on cost by having things made overseas, but the communication can easily breakdown and the quality is often lower. The other factor is that virtually anyone can end up copying your product overseas and you have very little protection against that.

form factory

By going with a local machine shop and sticking with CNC-machined parts, you are guaranteed to get a higher quality finished product with better communication. We do a ton of back and forth communication with our clients to understand their exact design intent. With a prototype, there are often a lot of blanks that need to be filled in to completely understand the product, and we do our best to communicate with the client to deliver the perfect piece, and always on time. Sure, your cost may be higher, but the entire process will be smoother and the time saved on revisions or scrapping poor quality prototypes is invaluable.

It sounds like you guys take a lot of pride in the work you do, which is great!

Absolutely! Our models are all one of a kind works of art. We can take things from the early stages where a client might have an idea drawn on a napkin, all the way to a fully functional piece.

Our goal is always to make parts look like they grew that way. In my opinion, taking a solid block of material and making it into a finished part is truly a work of art. We work hard to determine where the burrs are, what the radiuses are, and how the finish should look, amongst many other variables. We take a lot of pride in the finished appearance and want everyone in the shop to produce the same level of quality as their co-workers. We hold all ourselves and our work to very high standards.

form factory

Finished Laptop Display Models

How has the online machinist community helped your business/changed your thinking/helped you grow as a machinist/business owner?

I follow tons of great machinists and other companies on Instagram.  It’s funny how quick you can get an idea from a simple picture or short video of another project somebody else is working on.  I love machining because after 25 years, I am still learning so much every day.  The machines, the software, and the tooling are changing so fast its hard to keep up.  Every day I see something on Instagram that makes me say “Oh WOW!” or “Hey, I can do my part that way!”  I was machining before there was an internet, so I really appreciate having an on-line community, and body of knowledge to draw from. You can find us on Instagram @FormFactory!

We loved the ball in chain part you created for our #MachineTheImpossible Fall 2018 Catalog Cover contest, and so did our followers, as they voted you into first place. Tell us a little more about that part.

So that piece was something I had been wanting to try for a while to challenge myself. It was not a part for a customer or part of a job, but simply a practice in more complex machining. The entire part was actually machined from one solid piece of aluminum on a 3 axis mill. With some clever fixturing and a few setups, I was able to make it work!

machine the impossible

Harvey Tool’s Tapered and Long Reach End Mills played a huge part in the creation. There would have been no way for me to get at those impossible angles or hard to reach areas without the multiple available dimensions and angles that you guys offer. In total, that piece took me about 20 hours, but it was a great piece to learn with and it definitely paid off in the end! As a small business, getting that exposure and marketing from being on your catalog cover was huge, and we appreciate the opportunity you gave us and the entire machinist community.

To a small business like yours, what did it mean to you to be highlighted on the Fall 2018 catalog cover?

I found out we had won when one of my customer’s emailed me congratulations! I was blown away! Even to be chosen as a finalist was exciting. The Harvey Tool Catalog is the ONE catalog we always have around the shop at the ready. I have been a Harvey fan for two decades, so making the cover of the catalog was pretty awesome!

In your career, how has Harvey Tool helped you #MachineTheImpossible?

Being able to overnight tools straight to the shop on a moment’s notice has saved us too many times to count. Harvey Tool makes some of the most impossible reach tooling; I still don’t know how they do it. ‘Back in the day” I would grind my own relief on an old Deckel. There’s nothing quite like looking for that extra 50 thou of reach and snapping off the tool! Now I let Harvey do ALL of that work for me, so I can focus on the machining. It takes nice tools to make nice parts. If you need tools that are always accurately relieved to just under the tool diameter, crazy sharp, and balanced, then look no further than Harvey Tool.

form factory

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Find the ‘Distance to Go’ setting or view on your machine’s control, and hit ‘feed hold’ with the first plunge of every new tool you set, and every new work offset, 100% of the time. It will save your mill and your parts from disaster. Machining is the art of doing thousands of simple things, exactly right and in the right order. The hard part is to keep your focus and pay keen attention through the entire process. Understand how easy it is to make a simple mistake, and how quickly you can be starting over. Allow yourself room for mistakes along the way by triple checking BEFORE your mill lets you know it’s too late. If you have other things on your mind, don’t machine parts.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Experience the Benefits of Staggered Tooth Keyseats

Keyseat Cutters, also known as Woodruff Cutters, Keyway Cutters, and T-Slot Cutters, are commonly used in machine shops. Many machinists opt to use this tool to put a slot on the side of a part in an efficient manner, rather than rotating the workpiece and using a traditional end mill. A Staggered Tooth Keyseat Cutter has alternating right-hand and left hand shear flutes and is right-hand cut, whereas a traditional keyseat cutter has all straight flutes and is right-hand cut. Simply, the unique geometry of a Staggered Tooth Keyseat Cutter gives the tool its own set of advantages including the ability to index within the slot, increase feed rates, and achieve better part finish.

staggered tooth keyseat cutter

Three Key Benefits

Indexing

The alternating right-and-left-hand flutes of a Harvey Tool Staggered Tooth Keyseat Cutters are relieved on both sides of its head, meaning that it allows for both end cutting and back cutting. This adds to the versatility of the staggered tooth keyseat cutter, where one singular tool can be indexed axially within a slot to expand the slot to a specific uncommon dimension. This can save space in a machinist’s magazine and reduce machine time by eliminating the need to swap to a new tool.

Increased Feed Rates

Due to the unique geometry of a Staggered Tooth Keyseat Cutter, chips evacuate efficiently and at a faster rate than that of a Straight Flute Keyseat Cutter. The unique flutes of Staggered Tooth Keyseat Cutters are a combination of right-and-left-hand shear flutes, but both types are right-hand cutting. This results in the tool’s teeth alternating between upcut and downcut. Chip packing and chip recutting is less of a concern with running this tool, and results in increased chip loads compared to that of a standard keyseat with the same number of flutes. Because of this, the tool can account for chiploads of about 10% higher than the norm, resulting in heightened feed rates and shorter cycle times overall.

Better Part Finish

Staggered Tooth Keyseat Cutters have “teeth”, or flutes, that are ground at an angle creating a shear flute geometry. This geometry minimizes chip recutting, chip dragging and reduces the force needed to cut into the material. Chip recutting and dragging are minimized because chips are evacuated out of the top and bottom of the head on the side of the cutter that is not engaged in the material. Shear flutes also reduce vibrations that can lead to chatter and poor finish. By minimizing cutting forces, vibration, and chatter, a machinist can expect a better part finish.

staggered tooth keyseat cutter

Image courtesy of @edc_machining

Staggered Tooth Keyseat Cutter Diverse Product Offering

On top of the higher performance one will experience when using the Stagger Tooth Keyseats, there are also multiple options available with various combinations to suit multiple machining needs. This style is offered in a square and corner radius profile which helps if a fillet or sharp corner is needed. There are also multiple cutter diameters ranging from 1/8” to 5/8”. The increased diameter comes with an increase of radial depth of cut, allowing deeper slots to be achievable. Within the most popular cutter diameters, ¼”, 3/8”, and ½” there are also deep slotting options with even greater radial depth of cuts for increased slot depths. On top of the diameters and radii, there are also multiple cutter widths to choose from to create different slots in one go. Finally, an uncoated and AlTiN coatings are available to further increase tool life and performance depending on the material that is being cut.

Opt for a Smoother Operation

A Staggered Tooth Keyseat Cutter adds versatility to a tool magazine. It can be indexed axially to expand slots to make multiple widths, allowing machinists to progress operations in a more efficient manner where tool changes are not required. Further, this tool will help to reduce harmonics and chatter, as well as minimize recutting. This works to create a smoother operation with less force on the cutter, resulting in a better finish compared to a Standard Keyseat Cutter.

For more information on Harvey Tool Staggered Tooth Keyseat Cutters and its applications, visit Harvey Tool’s Keyseat Cutter page.

B&R Custom Machining- Featured Customer

B&R Custom Machining is a rapidly expanding aerospace machine shop located in Ontario, Canada, focused primarily on aerospace and military/defense manufacturing. Over the past 17 years, B&R has grown from a 5 person shop with a few manual mills and lathes, into one of Canada’s most highly respected manufacturing facilities, with nearly 40 employees and 21 precision CNC machines.

B&R focuses on quality assurance and constant improvement, mastering the intimacies of metal cutting and maintaining the highest levels of quality through their unique shop management philosophies. They seek to consistently execute on clear contracts through accurate delivery, competitive price, and high quality machined components.

We talked with Brad Jantzi, Co-Founder and Technical Manager of B&R Custom Machining, to learn about how he started in the industry, his experience with High Efficiency Milling, what he looks for most in a cutting tool, and more!

B&R Custom machining

Can you tell us a little bit about how B&R Custom Machining started, and a little background about yourself and the company?

My brother (Ryan Jantzi, CEO/Co-Founder) and I started working in manufacturing back in 2001, when we were just 20/21 years old. We had 5 employees (including ourselves), a few manual mills and lathes, and we were wrapping our parts in newspaper for shipping. We took over from a preexisting shop and assumed their sales and machines.

We bought our first CNC machine in 2003, and immediately recognized the power of CNC and the opportunities it could open up for us. Now, we have 21 CNC machines, 38 employees, and more requests for work than we can keep up with, which is a good thing for the business. We are constantly expanding our team to elevate the business and take on even more work, and are currently hiring for multiple positions if anyone in Ontario is looking for some challenging and rewarding work!

What kind of CNC machines are you guys working with?

Right now we have a lot of Okuma and Matsuura machines, many of which have 5 axis capabilities, and all of them with high RPM spindles. In fact, our “slowest” machine runs at 15k RPM, with our fastest running at 46k. One of our high production machines is our Matsuura LX160, which has the 46k RPM spindle. We use a ton of Harvey Tool and Helical product on that machine and really get to utilize the RPMs.

B&R Custom Machining

What sort of material are you cutting?

We work with Aluminum predominantly, but also with a lot of super alloys like Invar, Kovar, Inconel, Custom 455 Stainless, and lots of Titanium. Some of those super alloys are really tricky stuff to machine. Once we learn about them and study them, we keep a recorded database of information to help us dial in parameters. Our head programmer/part planner keeps track of all that information, and our staff will frequently reference old jobs for new parts.

Sounds like a great system you guys have in place. How did B&R Custom Machining get into aerospace manufacturing?

It is a bit of a funny story actually. Just about 12 years ago we were contacted by someone working at Comdev, which is close to our shop, who was looking to have some parts made. We started a business relationship with him, and made him his parts. He was happy with the work, and so we eventually got involved in his company’s switch division and started to make more and more aerospace parts.

aerospace machining

We immediately saw the potential of aerospace manufacturing, and it promoted where we wanted to go with CNC machining, so it was a natural fit. It really was a case of being in the right place at the right time and seizing the moment. If an opportunity comes up and you aren’t ready for it, you miss it. You have to be hungry enough to see an opportunity, and confident enough to grab it, while also being competent enough to handle the request. So, we took advantage of what we were given, and we grew and went from there.

Who are some of the major players who you work with?

We have great relationships with Honeywell, MDA Brampton, and MDA Quebec. We actually worked on parts for a Mars Rover with MDA that was commissioned by the Canadian Space Agency, which was really cool to be a part of.

Working with large companies like that means quality is key. Why is high quality tool performance important to you?

High quality and superior tool performance is huge. Aside from cutting conditions, there are two quick things that cause poor performance on a tool: tool life and consistency of the tool quality. One without the other means nothing. We all can measure tool life pretty readily, and there is a clear advantage that some tools have over others, but inconsistent quality can sneak up on you and cause trouble. If you have a tool manufacturer that is only producing a quality tool even 95% of the time, that might seem ok, but that means that 5% of the time you suffer something wrong on the machine. Many times, you won’t know where that trouble is coming from. This causes you to pause the machine, investigate, source the problem, and then ultimately switch the tool and create a new program. It becomes an ordeal. Sometimes it is not as simple as manually adjusting the feed knob, especially when you need to rely on it as a “proven program” the next time around.

So, say the probability of a shortcoming on a machine is “x” with one brand of tooling, but is half of that with a brand like Harvey Tool. Sure, the Harvey Tool product might be 10-20% higher in upfront cost, but that pales in comparison to buying cheaper tools and losing time and money due to machine downtime caused by tool failure. The shop rate for an average machine is right around $100/hour, so machine downtime is much more expensive than the added cost of a quality tool.

B&R Custom machining

Inconsistent tool quality can be extremely dangerous to play around with, even outside of machine downtime. We create based on a specific tool and a certain level of expected performance. If that tool cannot be consistent, we now jeopardize an expensive part. The machine never went down, but the part is no good because we programmed based on consistency in tool quality. Again, the cost of scrapped parts heavily outweighs the upfront cost of quality tooling. Tooling is a low cost of what we do here, but poor tooling can cost us thousands versus a few dollars more for quality tools. Too many people focus on the upfront cost, and don’t look downstream through the rest of the process to see how poor quality tooling can affect your business in a much bigger way. We get to see the whole picture because I am involved from cradle to grave, gaining feedback and knowledge along the way.

That’s great feedback Brad, and I think it is important for people to understand what you have laid out here. Speaking of tool performance, have you guys been using High Efficiency Milling techniques in the shop?

Absolutely. We feel that we are on the front edge of efficient milling. We are quite capable of all the latest techniques, as our programmers are well-versed and up to date. For our larger production work, we have programs dialed in that allow us to push the tools to their limits and significantly cut down our cycle times.

What advice would you have for others who are interested in High Efficiency Milling?

Make sure you are smart about using HEM. If we have one-off parts, particularly expensive ones, that do not have time restraints, we want to make sure we have a safe toolpath that will get us the result we want (in terms of quality and cutting security), rather than pushing the thresholds and taking extra time to program the HEM toolpaths. HEM makes total sense for large production runs, but make sure you know when to, and when not to use these techniques to get the most out of HEM.

B&R Custom machining

Have you been using Machining Advisor Pro in your shop when you run Helical end mills?

We have been, and it makes for a great point of reference for the Helical end mills. It has become a part of our new employee training, teaching them about speeds and feeds, how hard they can push the Helical tools, and where the safe zones are. Our more experienced guys also frequent it for new situations where they have no data. Machining Advisor Pro helps to verify what we thought we knew, or helps us get the confidence to start planning for a new job.

If you could give one piece of advice to a new machinist, or someone looking to take the #PlungeIntoMachining for the first time, what would it be?

Learn the intimacies of metal cutting. Get ultra-familiar with the results of what is actually happening with your tool, your setup, your part, and your machine. As well, don’t be limited to thinking “it sounds good,” or “it’s going good so far, so that must be acceptable.” In order to push the tools and confirm they are performing well and making money, you need to identify and understand where the threshold of failure is, and back off the right amount. This doesn’t end here though. Cutting conditions change as the tools, holders, machines, and parts change. Learning the nuances of this fluctuating environment and adapting accordingly is essential. Verify your dimensions, mitigate against risk, and control the variables.

Also, get intimate with what causes tools to succeed and fail, and keep a log of it for reference. Develop a passion for cutting; don’t just punch in and punch out each shift. Here at B&R, we are looking for continuous improvement, and employees who can add value. Don’t stand around all day with your arms folded, but keep constant logs of what’s going on and always be learning and thinking of how to understand what is happening, and improve on it. That is what makes a great machinist, and a successful shop.

B&R custom machining