Posts

Heavy Duty Racing – Featured Customer

Heavy Duty Racing is a manufacturing company based in Stafford, VA, that specializes in motocross, off-road motorcycle suspension, and 2-stroke engine modification. Its owner, Peter Payne, grew up racing motorcycles. Later in life, he even taught classes on how to race. Simply, Motocross and motorcycles became Peter’s passion.

Peter always looked for ways to enhance his motorcycle’s engine, but quickly realized that no shops in his area could design what he was looking for. To get access to the parts he would need, he would have to rely upon companies from far away, and would oftentimes be forced to wait more than three weeks for them to arrive. Because of this, Peter decided he would need to take part manufacturing into his own hands. He purchased a manual lathe, allowing him to make modifications to his two-stroke engines exactly how he wanted them. Quickly thereafter, Heavy Duty Racing was born.

Peter discussed with us his love of racing, how he first got into machining, the parts his shop has designed, and tips and tricks for new machinists.

How did you get started in machining?

Since I was a kid I have been riding motorcycles and racing motocross. I went to a tech school in the ’80s and learned diesel technologies. When I realized nobody in this area could help design the engines I wanted to make, I decided I needed to learn how to do it myself. I have a friend, George, who is a retired mold and die maker that also worked on motorcycle engines, I asked him for some advice on how to get started. George ended up teaching me all about machining and working on engines. I really learned from failures, by trying new things, and doing it every day. I started Heavy Duty Racing in 1997 and we have been modifying and designing the highest performing engines since then.

What machines and softwares are you using in your shop?

We currently have a Thormach PCNC 1100 and a Daluth Puma CNC Lathe (we call it The Beast, it’s angry and grumpy but it gets the job done). We also have a Bridgeport Mill, Manual Lathe, and a Tiggwell. When we were choosing software to use, they had to be easy and quick to learn. We weighed our options and decided to use Autodesk Fusion 360 about 5 years ago. We mostly machine cast iron and steel since most engines are made from those materials.

What sets Heavy Duty Racing apart from the competitors?

We have a small hands-on approach and treat every part with care. We don’t have a cookie-cutter process so we are very flexible when it comes to customer needs. Since each part is different, we don’t have set prices and have custom quoting on each part. We value our customers and tailor every build to the rider, based on the weight, fuel, and skill level of the rider. We make unique components for each rider so they can have the best experience when they hop on their bike. We are just focused on letting people do what they love.

What is the coolest project you have worked on?

In 2016, MX Tech Suspension in Illinois gave us the opportunity to build an engine for them to display at their event. We got to go to California to watch them demo the engine in front of thousands of people. It was very nerve-racking to watch it live but the experience was amazing. The engine was later featured on the cover of Motocross Action magazine. It was very cool to see something we dedicated so much hard time toward get that much recognition.

Why is high qualtiy tooling important to you?

We are making really difficult machine parts so we need tools that can last. Micro 100 tooling lasts and does the job. The thread mills we use are 3-4 mm and 14 mm and they last longer than any competition out there. The thread mills do not chip like the competition and the carbide is super strong. Breaking a tool is not cheap, so to keep one tool in the machine for how long we have has really saved me in the long run. We found Micro 100 one day looking through our distributor’s catalog and decided to try some of their boring bars. After about 5 holes, we realized that these tools are the best we have ever used! Micro has had everything I’ve been looking for in stock and ready to ship, so we have yet to need to try out their custom tools.

Most engine tolerances are no more than .005” taper. You need the tooling to hold tight tolerances, especially in engines. Just like with tooling, minimizing vibration is key to getting the engine to last longer. We need tight tolerances to maintain high quality and keep engines alive.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

The same advice I’ve given to my son: Don’t be ashamed to start from the bottom and learn from the ground, up. Everybody wants to make cool projects, but you need to learn what is going on around you to master the craft. Learn the processes and follow the steps. It’s very easy to break a tool, ruin a part, or even hurt yourself. Don’t be scared of quality tools! Buying the cheap stuff will help you with one job, but the quality tools last and will save you in multiple situations.

Follow Heavy Duty Racing on Instagram, and go check out their website to see more about them!

Hybrid Machining – Featured Customer

Located in Holland, MI, Hybrid Machining uses machining skills combined with 3 different 3D printing technologies to manufacture complex projects. Hybrid Machining is a manufacturing company that can take the customer’s design from start to finish, allowing customers to dictate their path. Rather than focusing on a single product, Hybrid has listened to customer needs and presented solutions that, in many cases, customers didn’t know were possible. Jeff Robinson, the owner, took some time out of his day to answer some questions about Hybrid Machining.

How did you get into manufacturing?  

I started working in an architectural shop during my high school years.  I quickly realized that there was a more advanced part of the industry that I was missing out on. Therefore, I started researching CNC Routing.  I fell in love with the technology and have been studying it ever since. 

What sort of machines and materials do you use in your shop?

We currently run a Datron Neo, Fanuc Robodrill, and a CR Onsrud 5-axis Router. We work primarily with wood, plastic, and non-ferrous materials. We currently use Autodesk Fusion 360, FeatureCAM, Powermill, Vectric Aspire, and AlphaCAM for CAM.  For CAD, we run Fusion 360, Inventor, and Solidworks.

When did you start using 3D printing and how has it benefitted you?

I have been 3D printing for just over a year.  It was the first technology that we initiated here at Hybrid Machining, and it has allowed us to provide the best solution to the customer no matter what the requirements are. By expanding into 3D printing, we can help the customer decide which technology will work the best for their part. Many times, we take the “Hybrid” approach and use both additive and subtractive technologies together.

How have you adapted during the Covid-19 outbreak and how has it changed your business?

We started by stopping normal production to form a non-profit called 3DC19 with other local, small business owners with the sole purpose of 3D printing and assembling plastic face shields.  Hybrid Machining became the distribution center for the efforts.  Collectively, we produced and donated 75K articles of PPE to local hospitals, nursing homes, doctor offices, and first responders.  You can learn more about the efforts at www.3DC19.com. We have also been machining a lot of acrylic face guards for customers so that we can help them to get their office staff back to work safely. 

What sets Hybrid Machining apart from the rest of the manufacturing community? 

We have a serious passion for educating our youth and local businesses on the rapid changes currently happening in the manufacturing industry and preparing them for the impact that Industry 4.0 will have on our lives in the future.  We want to produce knowledgeable people just as much as we produce products, and we do this in our unique Learning Lab.  We team up with local schools, vocational schools, and community colleges to help them spread the word about manufacturing.  We also intend to do ‘Lunch and Learns’ with local businesses to help them understand what other manufacturing methods and advanced materials are available on the market today.

What is the coolest project you have had come through the shop?

Many years ago, at my previous shop, we worked on the presidential handrail that the last three presidents stood behind during the inauguration.

Are you using HEM techniques to improve cycle times? 

Yes, we use a couple of the fastest and most nimble machines on the market: the Datron NEO and the Fanuc Robodrill.  We leverage the machine’s tools’ high accelerations and deceleration rates, along with HEM, to drastically reduce cycle times for our customers.  This allows us to be competitive against over-seas importers.

What do you have to lose other than cycle time? You purchased the entire tool, not just the tip, so use it!  You will be surprised how the different the machine will sound and you can get parts done faster with less tool wear.

Why is high quality tool performance important to you?

The tooling is super important to the success of a project because the tool is what is doing the work.  I like to tell people, “Why would you buy a high-end sports car with all bells and whistles and then put crappy tires on it?  All that power and handling is worthless unless you have good tires.”  The same goes for tooling.  You can have a half-million-dollar machine that is super-fast and accurate and yet still produce a terrible part with cheap tooling. 

When was a time that Harvey Tool, Helical Solutions, or Micro 100 saved the day?

Harvey Tool helped me get through some tough composite projects in the past.  Their technical support team was extremely knowledgeable on the subject matter and helped me pick the right tool and parameters to get the job done. 

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

NEVER STOP LEARNING.  Things may be going great at first and you think you have it all figured out, but then a new technology comes and swipes you off your feet.  Spend your spare time studying industry trends, talking to other business leaders, new and old, and preparing for the future.

 Is there anything else you would like to share with the In The Loupe community?

We are extremely thankful that Harvey Tool spends a lot of time developing ‘material-specific’ tooling.  We spend 90% of our time in that section of the catalog.  We recently tested out the new wood cutters and are extremely happy. We pushed these tools at speeds and feeds that are unbelievable.  We also use the Harvey Tool plastic cutters on a regular basis. 

Here at Hybrid Machining, we are blending the lines between routing and milling.  For many decades, the line had been fairly clear. There were certain types of jobs you ran on certain types of machines.  We are blurring those lines and are using the best tools for the jobs.  For instance, we use the 24K RPM spindle on the Robodrill to run it more like a router than a mill.  Therefore, we call it the “RoboRouter”.  We can produce wood and plastic parts at unbelievable speeds while achieving surface finishes that are off the charts.  This is not conventional practice, but the team at Hybrid Machining is willing to blaze the path forward for others to follow.

To check out more about Hybrid Machining go to their website or follow them on social media!

Harvey Performance Company Opens New 79,000-Square-Foot Manufacturing Plant in Gorham

GORHAM, ME (October 13, 2020) – Harvey Performance Company, the parent company of the Harvey Tool, Helical Solutions, and Micro 100 industrial cutting tool brands, last month opened the doors to a new, 79,000-square-foot, state-of-the-art manufacturing facility in Gorham, Maine, to support the tremendous growth and product demand its brands continue to experience.

Harvey Performance Company was quickly outgrowing its Sanford Drive facility in Gorham, Maine, where Helical Solutions products have been manufactured for more than 15 years. The new manufacturing facility, which is just 5 minutes away on Raceway Drive, will become home to Helical Solutions product manufacturing and will serve as an innovation hub for all Harvey Performance Company brands.

“We couldn’t be more excited about this new facility,” said Harvey Performance Company Senior Vice President of Sales Jerry Gleisner. “We’re quite literally opening the doors to countless opportunities for us to serve our customers in ways unmatched in the industry.”

“This new facility is an exciting step for our business, as this investment will create opportunities for us to continue to grow,” said Harvey Performance Company Vice President of Operations Steve Vatcher. “In light of the COVID-19 Pandemic, we worked closely with state and local officials to ensure that the completion of our new facility was done in a way that prioritized the health and safety of all involved. I couldn’t be more proud of how everyone came together to make this facility a reality during these unprecedented times.

“When it is safe to do so, we look forward to hosting the Gorham community, our neighbors for more than 15 years, at our new home for a ribbon cutting ceremony to share this exciting milestone with us.”

Harvey Performance Company’s New Manufacturing Plant Will:

  • Expand upon its current research and development capabilities to design, test, and manufacture innovative and high performing cutting tools.
  • Accelerate Harvey Performance Company’s new product growth while maintaining its in-stock status and same-day shipping options for all catalog standard items.
  • Host its distributor partners and customers in a state-of-the-art setting that showcases its capabilities.
  • Meet the needs of the market by scaling the size of Harvey Performance Company’s business in the future, through added machines and personnel.
  • Attract, recruit, and retain high-quality employees, engineers, and operators with a high-class work environment.

Schon DSGN – Featured Customer

In 2012, engineer Ian Schon wanted to put his skill for design to the test. He decided to challenge himself by designing a normal, everyday item: a pen. His goal was to take the pen from the design concept to manufacturing it within his own shop. Ian designed his pen how he thought a pen should be: durable, reliable, compact, leak-proof, and easy to use. Most of all, though, he wanted the pen to be of a superior quality, not something easily lost or thrown away.

With the design concept in place, Ian started his work on engineering and manufacturing his new pen. He made many prototypes, and with each discovered new features and additions to better his design. Today, Ian manufacturers his pens through local fabrications in Massachusetts, using local supplies. He makes them from 6061 Aluminum, unique in that it molds to its users’ hand, over time. His pens are designed to outlast its user and be passed on through generations.

Ian was kind enough to take time out of his busy schedule to answer some questions about his manufacturing success.

What sets Schon DSGN apart from competition?

I think I have a unique approach to designing and manufacturing. I design things that I like, and make them the way that I want to.  I don’t rush things out the door. I’m not thinking about scale, growth, making a big shop, etc. I just want to live a simple life where I make cool objects, sell them, and have enough time in the week to sneak out into the woods and ride my bike. This ethos takes the pressure off a lot, and that makes the workflow freer without as much stress as I had in my past career as a product development engineer.

This workflow isn’t for everyone. it’s not a winning combo for massive business success, per se, and if you audited me you would tell me I’m holding back by not scaling and hiring, but I like it. I see myself as a hybrid between artist and entrepreneur. I love doing things start to finish, blank paper to finished part on the machine. Owning that entire workflow allows for harmony of engineering, machining, tooling, finishing, R+D, marketing, etc. Further, it ensures that I don’t miss critical inflection points in the process that are ripe for process evolution and innovation, resulting in a better product in the end.

I’m sure the way I do things will change over time, but for now I’m still figuring things out and since I work largely alone (I have one amazing helper right now assisting with assembly, finishing, and shipping) I have lots of flexibility to change things and not get stuck in my ways.

Also, by working alone, I control the music. Key!

Where did your passion for pens come from?

My friend Mike had a cool pen he got from a local shop and I was like “man I like that,” so I made one with some “improvements.” At the time, in my mind, they were improvements, but I have learned now that they were preferences, really. I made a crappy pen on a lathe at the MIT MITERS shop back in 2010, and that summer I bought a Clausing lathe on craigslist for $300 and some tooling and started figuring it all out. I made a bunch of pens, wrote with them, kept evolving them, and eventually people asked me to make pens for them.  I didn’t really intend to start a business or anything, I just wanted to make cool stuff and use it. Bottle openers, knives, bike frames, etc. I made lots of stuff. Pens just stuck with me and I kept pushing on it as a project for my design portfolio. Eventually it became something bigger. Turns out my pen preferences were shared with other people.

What is the most difficult product you have had to make and why?

Making watch cases – wow. What an awful part to try and make on a desktop Taig 3 axis mill and a Hardinge lathe in my apartment! I started working on machining watch cases in 2012, and I finished my first one in my apartment in 2015 (to be fair, I was working on lots of other stuff during that time! But yeah, years…). What a journey. Taught me a lot. Biting off more than you can chew is a great way to learn something. 

What is the most interesting product you’ve made?

When I worked at Essential Design in Boston I worked on the front end of a Mass Spectrometer. The requirements on the device were wild. We had high voltage, chemical resistance, crazy tolerances, mechanism design, machining, injection molding – truly a little bit of everything! It was a fun challenge that I was fortunate to be a part of. Biomolecule nanoscale analysis device. Try saying that ten times fast.

I have something fountain pen related in the works now that I find more interesting, and very, very complex, but it’s under wraps a bit longer. Stay tuned. 

Who is the most famous contact that you have worked on a project with?

I have made watches for some incredible customers, but I unfortunately cannot talk about who they are. Most of my watch work outside of my own parts is also under NDA which is a bummer, but hey it was great work regardless.

Same thing with the pens. I know that some of my pen are in the touring cases of a few musicians, one of which is in the rock and roll hall of fame. But I have to keep it tight!

Before leaving to work for myself, I was part of a design team at IDEO in Cambridge that designed the new Simplisafe Home Security System. As an engineer and designer, I got listed on the patents. That wasn’t machining and was more design and engineering of injection molded plastic assemblies,  but it was still cool, though! Cutting my teeth in the design industry before machining helps me a lot with the creative process in the workshop. Lots of overlap.

What capabilities does your shop have?

I utilize Citizen L series sliding headstock machines to run my company. These are Swiss Machines (though made in Japan) with twin spindles and have live tooling for milling operations. I got into this type of machining after getting advice from friends in the industry and subcontracting my work to shops with these style of machines for 7 years.

Beyond the Swiss Machines, I have a new Precision Matthews Manual Mill, a Southbend Model A, a Hardinge Cataract Lathe, and a bunch of smaller Derbyshire lathes and mills. Most of these are for maintenance related tasks – quick mods and fixtures and my watchmaking/R&D stuff. I also have a Bantam Tools Desktop CNC machine on the way, a nice machine for quick milled fixtures in aluminum and nonferrous materials. I tested this machine during their development phases and was really impressed.

What CAM/CAD software are you using?

I use Fusion 360 for quick milled stuff, but most of my parts are programmed by hand since the lathe programming for Swiss work can be done without much CAM. I’m sure I could be doing things better on the programming side, but hey, every day I learn something new. Who knows what I’ll be doing a year or two from now?

What is your favorite material to work with and why?

Brass and Copper. The chips aren’t stringy, it’s easy to cut quickly and the parts have this nice hefty feel to them. Since I make pens, the weight is a big piece of the feeling of a pen. The only downside is I’m constantly figuring out ways to not dent the parts as they are coming off the machines! My brass parts are like tiny brass mallets and they LOVE to get dinged up in the ejection cycles. I ended up making custom parts catchers and modifying the chutes on the machines to navigate this. I might have some conveyors in my future….yeah. Too many projects!

Why is high quality tool performance important to you?

It’s not just important, it’s SUPER important. As a solo machinist running my own machines, being able to call a tooling company and get answers on how I should run a tool, adjust its RPM, feed, DOC, or cutting strategy to get a better result is invaluable. I find that as much as I’m paying for tool performance, I’m also paying for expertise, wisdom and answers. Knowing everything is cool and all (and I know some of you out there know everything under the sun), but since I don’t know everything, it’s so nice to be able to pick up a phone and have someone in my corner. These tech support people are so crucial. Being humble and letting support guide me through my tooling challenges has helped me grow a lot. It’s like having a staff of experienced machinists working at my company, for free! Can’t beat that. Micro 100 and Helical have helped me tons with their great support.

When was a time that Harvey, Helical or Micro product really came through and helped your business?

The Helical team (shout out to Dalton) helped me nail some machining on some very wild faceted pens I was working on this month. When I switched to Helical, my finishes got crazy good. I just listened to recommendations, bought a bunch of stuff, and kept trying what Dalton told me to. Eventually, that led to a good recipe and manageable tool wear. It was great!

I also like how representatives from the Harvey/Helical/Micro family often cross reference each other and help me find the right solution, regardless of which company I’m getting it from. Nice system.

The quiet hero in my shop is my Micro 100 quick change system. It just works great. Fast to swap tools, easy to setup, cannot argue with it! Too good. 

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Find a mentor who supports you and challenges you. Find a good tooling company, or good tooling companies, and make good relationships with their tech support so you can get answers. Make good relationships with service technicians who can help you fix your machines. Be a good person. Don’t let yourself become a hot head under the pressure of this industry (since it can be hard at times!), cooler heads prevail, always. Be open to seeing things from other viewpoints (in life and in machining), don’t be afraid to flip a part around and start over from square one.

To learn more about Ian and Schon DSGN, follow them @schon_dsgn and @the_schon on Instagram and check out his website. And, to learn more about how Ian got his start in the manufacturing industry, check out this video.

Understanding Wood Properties for CNC Woodworking Projects

Machinists oftentimes confuse wood for being an “easy to machine material” because of how much softer the material is than metal. In some sense this is true, as you can program wood cutting parameters with much higher feed rates compared to that of most metals. On the other hand, however, wood has many unique properties that need to be accounted for in order to optimize the cutting process for maximum efficiency.

Types of Wood

There are 3 main categories of wood: hardwood, softwood and engineered wood.

Hardwood

The textbook definition of a hardwood tree is an angiosperm, more commonly referred to as a broadleaf tree. A few examples would be oak, birch, and maple trees. These types of trees are often used for making high quality furniture, decks, flooring, and construction components.

Softwood

A softwood is a coniferous tree, sometimes known as a gymnosperm. These are typically less dense than hardwoods and are therefore associated with being easier to machine. Do not let the name fool you: some soft woods are harder than some hardwoods. Harvey Tool’s Speeds and Feeds Charts for its offering of Material Specific End Mills for Wood are categorized by Janka hardness for this exact reason. Janka hardness is a modified hardness scale with a test specifically designed for classifying types of wood.

Softwood is used to make furniture, but can also be used for doors, window panes, and paper products. A couple of examples are pine and cedar trees. Table 1 lists 20 common woods with their Janka hardness.

Common Name:Janka Imperial Hardness:
Balsa90
Buckeye, Yellow350
Willow, Black360
Pine, Sugar380
Cottonwood, Eastern430
Chesnut, American540
Pine, Red560
Douglas-Fir, Interior North600
Birch, Gray760
Ash, Black850
Cedar, Eastern Red900
Cherry, American Black950
Walnut, Black1010
Beech, American1300
Oak, White1360
Maple, Sugar1450
Apple1730
Cherry, Brazilian2350
Olive2700
Rosewood, Indian3170
Table 1: Janka Hardness of Common Woods

Engineered Woods

Engineered wood, or composite wood, is any type of wood fiber, particle, or strand material held together with an adhesive or binding agent. Although some of these materials are easier to machine than solid woods, the adhesive holding the material together can be extremely abrasive. This can cause premature tool wear and create difficulties when machining. It’s important to note that some types of engineered woods are more difficult to machine than others, specifically those with a higher amount of binding material. These types should be programmed with less aggressive speeds and feeds. For example, medium density fiberboard (MDF) if more difficult to machine than plywood, but much easier to machine than phenolic.

Figure 1: Example of Medium Density Fiberboard

Properties of Wood

Grain Size

Technically speaking, wood can be considered a natural composite material as it consists of strong and flexible cellulose fibers held together by a stiffer glue-like matrix composed of lignin and hemicellulose. If you think in terms of construction, the cellulose fibers would be the steel rebar, and the concrete would be the lignin and hemicellulose. Wood with large cellulose fibers are considered to be coarse-grained (oak and ash). Woods that have smaller and fewer fibers are considered fine-grained (pine and maple). Softwoods tend to be fine-grained and are therefore stereotyped as being easier to machine since they do not have as many strong fibers to shear. It’s important to note that not all hardwood trees are coarse grained and not all softwood trees are fine-grained.

Figure 2: Simplified diagram of fibers that constitute natural wood. The cellulose fibers run vertically in this depiction.

Moisture Content (MC)

Moisture content (MC) is one of the most important variables to consider when machining wood. An extremely common problem with building anything with wood is its tendency to warp. Moisture variability in the air inevitably affects the moisture content within the wood. Any change in moisture content (whether an increase or a decrease) will disturb the shape of the workpiece. This is why one must take into account what type of moisture a product will be exposed to in its final resting place.

Equilibrium Moisture Content (EMC)

Equilibrium moisture content (EMC) occurs when wood has reached a balance point in its moisture content. Interior EMC values across the United States average at about 8%, with exterior values averaging around 12%. These values vary around the country due to the differences in temperature and humidity. For example, the southeastern United States have an average interior EMC of 11% while the southwest averages about 6% (excluding the coastal region). It’s important to consider what region and application the final product is going to encounter so that the wood with the correct moisture content can be selected before machining. Most species of flat-grain wood will change size 1% for every 4% change in MC. The direction of warping depends on the grain orientation.

Figure 4: Average regional indoor EMC

Generally, power requirements for an operation rise with increasing moisture content, mainly because of the surge in density. Density of wood increases with rising MC. The additional power may be necessary to push a heavier chip out of the cutting zone. It’s worth noting that, like synthetic polymers, wood is a viscoelastic material that absorbs energy as it becomes wetter. The proportional limit of its mechanical properties intensifies as MC increases.

When machining some types of wood, cutting region temperature will surge with increasing MC, but in other species it will decline. Be safe and avoid rapid tool wear by decreasing SFM when machining a wood with a moisture content above 10%. Harvey Tool Speeds and Feeds Charts suggest a decrease of 30 per MC percentage point. As always, though, it depends on the type of wood being machined and the type of operation being performed.

Temperature change is not the only reason higher moisture content is associated with rapid tool wear. Moisture within wood isn’t just associated with water, but also with resins, sugars, oils, starches, alkaloids, and tannin present within the water. These substances react particularly well with high speed steel, and to a lesser degree with carbide.

Knots

A knot is a portion of a branch or limb that has become incorporated in the trunk of a tree. The influence of knots on the mechanical properties of wood is due to the interruption of continuity and change in direction of wood fibers associated with it. These properties are lower in this portion of the wood because the fibers around the knot are distorted and lead to stress concentrations. “Checking” (cracking due to shrinking) often occurs around knots during drying. Hardness and strength perpendicular to the grain are exceptions to generally lower mechanical properties. Because of these last two exceptions, machining parameters should be reduced when encountering a knotted portion of the workpiece to avoid shock loading.

Figure 5: Photo of a typical knot

Titan Ring Design – Featured Customer

Officially started in 2015, Titan Ring Design is a high quality machine shop that designs rings, as well as mechanical tie clips, art based designs, and freelance custom designs. While working at a machine shop that produced top notch parts for just about every type of field you can imagine, now owner of Titan Ring Design, Trevor Hirschi, noticed that the machining industry is mostly about cranking out a mass quantity of the highest quality parts as quickly as possible. This often resulted in compromised tolerances and part finishes, something Trevor aimed to change. Quality always comes first in his projects.

Whether you are looking for a band for an upcoming wedding, looking to replace or upgrade your current wedding ring, or just want something unique and beautiful, Trevor’s designs are different than anything else. Trevor was able to take the time and answer some questions for us about his business, machining techniques, tooling, and a lot more.

How was Titan Ring Design started?

Titan Ring Designs is a part time, passion/hobby business of mine that I sort of started at the time I was ring shopping for a wedding ring back in 2013. I didn’t like what was available on the market and was inspired by a former Oakley designer to machine my own. I had been introduced to machining in High School at a technical college and had been working as a machinist since graduating in 2007, so I decided to make my own wedding ring. It sort of snowballed into my business in 2015, after finally deciding to make it official with a business license and some sales. Some further work experience in California for McWhinney Designs brought me greater motivation and encouragement to keep going and helped me get to where I am today. I now offer several different CNC Milled [wedding] rings, as well as a mechanical tie clip, some occasional art based designs, and freelance custom design and mill work. I also teach machining full time  at the same tech college I graduated from in my own education and enjoy sharing my knowledge and love for machining with those interested in the career.

What capabilities does your shop have?

Custom Design in CAD/CAM, 3axis CNC Mill work, Small Scale Lathe Work, Tumbling, Finishing, Assembling, 3D Printing/Rapid Prototyping. I cut 6-4 Titanium primarily, but also work with Stainless Steel for fasteners, Aluminum and some Steel for fixtures, and Polycarbonate for prototyping ideas. I teach machining technology full time, so I have access to SolidWorks, MasterCam, Fusion360, and NC Simul. We currently have a Haas OfficeMill 3axis, Levin High Precision Instrument Maker’s Lathe, Prusa i3 MK2S 3D Printer in the shop.

What sets Titan Ring Design apart from the competition?

There are lots of people making interesting rings today, but most are done on lathes. Anyone can make a round part on a lathe. Very few of them make rings on a mill, and I feel that gives the opportunity to be creative and allows you to think outside the box more. I try to stand out in that field by offering something that makes you think about the value of the design process more by interrupting and challenging the norm. I also like to take on work that is outside of jewelry, but still highly design related. Most other ring makers stick with just rings.

What is your favorite part of the job and what other passions do you have?

Making cool stuff! Most machinists only end up making whatever comes through the shop, which can be cool, but most of the time you have no idea what you’re making, just some part for Customer X, Y, or Z. Being a small, design centered business, I get to come up with ideas for what to make next, and most of the time I start out making something that wasn’t ever intended to be marketed, it was simply something I wanted for myself that I found others were interested in too. I discovered machining in high school and fell in love with it when I started making parts for my dirt bikes and truck. I’ve been hooked ever since but I do have other passions. I’ve always had a big interest in LED lighting and flashlights. I’m perpetually working on different ideas for making one of my own, which will happen eventually. I’m also a bit of a health-nut and enjoy being outdoors and spending time with my family.

Who is the most famous contact that you have worked on a project with?

I made a ring for an NFL player once, but I don’t follow football and his name didn’t stick out to me so I’ve forgotten who he was. I also had the privilege of working for McWhinney Designs and made some truly remarkable products in the openable wedding ring niche market. I gained more skill in design, machining, craftsmanship, and engineering while working for Jeff McWhinney. We’re good friends and often work together to help each other when one of us gets stumped on something.

What is the most difficult project you have worked on?

I was commissioned to design from the ground up and machine was a custom set of all-titanium cabinet door handle pulls for a very high end wine cabinet. Each handle was an assembly of 32 pieces, all machined from billet 6-4 Titanium. They required over 400 individual CAM toolpath operations, 35 unique machine setups, and well over 300 hours to complete, including finishing and assembly. More than anything, it was extremely time intensive in programming, set up, and machine time. The design was a fair bit challenging in my mind and initial modeling, but didn’t compete with what it took to actually produce them. I grossly underestimated and underbid the job. But in the end, I really enjoyed making a truly one of a kind, Tour-De-Force product, even if it was completely overkill for its purpose. I enjoy making that kind of stuff, and the lessons you learn from it.

What is your favorite project you have worked on?

It’s really simple and was initially designed just because I wanted it for myself, but I have a mechanical titanium tie clip that I really enjoy making. It’s quite unique in that, as far as I know, to this day, it is the only CNC machined mechanical titanium tie clip you’ll find anywhere in the world. It puts a little bling in your formal attire, for those times you have to go full suit and tie.

Why is high quality tool performance important to you?

Because I cut mostly titanium, tools wear out quickly if you don’t have a rigid set up, the right coolant, proper feeds & speeds, and of course, high quality tooling. Harvey Tool makes such a wide variety of micro tooling that works so well in the industry of making small titanium parts, where I like to fit into. I’ve used a fair spread across Harvey’s offering and have always been impressed with performance and the feeds and speeds guides are top notch too. I had an application that required a .0035” internal corner radius which landed me with a .007” end mill. It’s still hard to comprehend tooling in this league. My machine actually recommends only tooling under 1/4” shank size, so I don’t get into Helical’s range too often. But I’ve used Helical 1/2” end mills extensively at other job shops and they are definitely made for eating metal. I was using another tool brand’s key cutters for some undercut hinges and would wear through them much more often than I thought was reasonable. When I finally decided to try Harvey’s key cutters, I was blown away with how much longer they have lasted me. Truly a game changer!

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Be creative. Machining is such a rewarding career that has limitless possibilities of what you can achieve. Follow your passion and have fun with it! If you end up in a dead end shop doing something you don’t like, go somewhere else. There are so many shops that need help right now and chances are good that you can find a better shop that suits your style.

Is there anything else you would like to share with the In The Loupe community?

To those machine shops out in industry, do whatever you can to be supportive of your local trade schools that are teaching the upcoming machinist workforce. They really need your support and in turn will bring you the employees you depend on.

Please take the time to check out Titan Ring Designs website or follow them on Instagram @titanringdesigns

Chipbreaker Tooling: Not Just for Roughing

When many people think about solid carbide tools with chip breakers, they are usually tooling up for a roughing application. While the chip breaker tool is a great choice for such applications, it can be utilized in a number of other areas too. In this post, we’ll examine many other benefits of the chip breaker style of tooling.

High Efficiency Milling (HEM)

High Efficiency Milling (HEM) uses CAM software to program advanced toolpaths that reduce cutting forces. These tool paths employ smaller end mills with a higher number of flutes (for a stronger core) running at higher speeds and feeds. This strategy includes a light radial depth of cut (RDOC), high axial depth of cut (ADOC), and a controlled angle of engagement.

Helical’s chipbreaking tools include serrated indents along the edge of flute for the entire length of cut. Because HEM utilizes heavy axial depths of cuts, these tools are able to break long chips into smaller ones. In addition to improving chip control and reducing cutting resistance, chipbreaker tools also help in decreasing heat load within the chips. This delays tool wear along the cutting edge and improves cutting performance. 

Check out this testimony from a Helical Solutions customer:

“We were able to get going with the 7 flute tools with the chipbreaker. I have to say the difference was INCREDIBLE! We can now rough the entire part with one tool. Also, the operator doesn’t have to open the door to clear chips hardly at all. We were able to rough and finish a 4.15 dia. bore 2 inches deep through the part without having to clear chips at all. Before we had to clear the chips out at least 15-20 times. Many thanks for your support.”

Slotting

When slotting, a major concern is chip control. A large buildup of chips can cause the recutting of chips, which adds a lot of heat back into the tool. Chip buildup can also cause a heavy amount of chattering. Both of these conditions are detrimental to tool life. A chip breaking tool can help reduce chip build-up when slotting which will extend tool life. Remember when slotting that 4 flute tools should be utilized in steel. For aluminum and other non- ferrous materials, a 3 flute tool is best.

Trochoidal Slotting

Trochoidal slotting is a form of slotting that uses HEM techniques to form a slot. Trochoidal milling implements a series of circular cuts to create a slot wider than the cutting tool’s cutting diameter. Using the logic listed in the earlier paragraphs of this article, a chipbreaker should be used when performing this operation.

Advantages of Trochoidal Slotting:

Decreased cutting forces

Reduced heat

Greater machining accuracy

Improved tool life

Faster cycle times

One tool for multiple slot sizes

Finishing

A little known fact about Helical’s chipbreaker style tool is that the chip breakers are offset flute to flute, which allows for a quality finish on the walls of the part. When utilizing light depths of cuts, high-quality finishes can be achieved.

Hardenability of Steel

Many types of steel have a beneficial response to a method of heat treatment known as quenching. One of the most important criteria in the selection process of a workpiece material is hardenability. Hardenability describes how deep a metal can be hardened upon quenching from high temperature, and can also be referred to as the depth of hardening.

Steel At Microscopic Scale:

The first level of classification of steels at a microscopic level is their crystal structure, the way in which atoms are arranged in space. Body-Centered Cubic (BCC) and Face Centered Cubic (FCC) configurations are examples of metallic crystal structures. Examples of BCC and FCC crystal structures can be seen below in Figure 1. Keep in mind that the images in Figure 1 are meant to display atomic position and that the distance between the atoms is exaggerated.

Figure 1: Example of a BCC crystal structure (left) and FCC crystal structure (right)

The next level of classification is a phase. A phase is a uniform portion of a material that has the same physical and chemical properties. Steel has 3 different phases:

  1. Austenite: Face-Centered cubic iron; also iron and steel alloys that have the FCC crystal structure.
  2. Ferrite: Body-centered cubic iron and steel alloys that have a BCC crystal structure.
  3. Cementite: Iron carbide (Fe3C)

The final level of classification discussed in this article is the microstructure. The three phases seen above can be combined to form different microstructures of steel. Examples of these microstructures and their general mechanical properties are shown below:

  • Martensite: the hardest and strongest microstructure, yet the most brittle
  • Pearlite: Hard, strong, and ductile but not particularly tough
  • Bainite: has desirable strength-ductility combination, harder than pearlite but not as hard as martensite

Hardening at Microscopic Scale:

The hardenability of steel is a function of the carbon content of the material, other alloying elements, and the grain size of the austenite. Austenite is a gamma phase iron and at high temperatures its atomic structure undergoes a transition from a BCC configuration to an FCC configuration.

High hardenability refers to the ability of the alloy to produce a high martensite percentage throughout the body of the material upon quenching. Hardened steels are created by rapidly quenching the material from a high temperature. This involves a rapid transition from a state of 100% austenite to a high percentage of martensite. If the steel is more than 0.15% carbon, the martensite becomes a highly strained body-centered cubic form and is supersaturated with carbon. The carbon effectively shuts down most slip planes within the microstructure, creating a very hard and brittle material. If the quenching rate is not fast enough, carbon will diffuse out of the austenitic phase. The steel then becomes pearlite, bainite, or if kept hot long enough, ferrite. None of the microstructures just stated have the same strength as martensite after tempering and are generally seen as unfavorable for most applications.

The successful heat treatment of a steel depends on three factors:

  1. The size and shape of the specimen
  2. The composition of the steel
  3. The method of quenching

1. The size and shape of the specimen

During the quenching process, heat must be transferred to the surface of the specimen before it can be dissipated into the quenching medium. Consequently, the rate at which the interior of the specimen cools is dependent on its surface area to volume ratio. The larger the ratio, the more rapid the specimen will cool and therefore the deeper the hardening effect. For example, a 3-inch cylindrical bar with a 1-inch diameter will have a higher hardenability than a 3-inch bar with a 1.5-inch diameter. Because of this effect, parts with more corners and edges are more amendable to hardening by quenching than regular and rounded shapes. Figure 2 is a sample time-temperature transformation (TTT) diagram of the cooling curves of an oil-quenched 95 mm bar. The surface will transform into 100% martensite while the core will contain some bainite and thus have a lower hardness.

Figure 2: Sample time temperature transformation (TTT) diagram also known as an isothermal transformation diagram

2.  The composition of the steel

It’s important to remember that different alloys of steel contain different elemental compositions. The ratio of these elements relative to the amount of iron within the steel yield a wide variety of mechanical properties. Increasing the carbon content makes steel harder and stronger but less ductile. The predominant alloying element of stainless steels in chromium, which gives the metal its strong resistance to corrosion. Since humans have been tinkering with the composition of steel for over a millennium, the number of combinations is endless.

Because there are so many combinations that yield so many different mechanical properties, standardized tests are used to help categorize different types of steel. A common test for hardenability is the Jominy Test, shown in Figure 3 below. During this test a standard block of material is heated until it is 100% austenite. The block is then quickly moved to an apparatus where it is water quenched. The surface, or the area in contact with the water, is immediately cooled and the rate of cooling drops as a function of distance from the surface. A flat is then ground onto the block along the length of the sample. The hardness at various points is measured along this flat. This data is then plotted in a hardenability chart with hardness as the y-axis and distance as the x-axis.

Figure 3: Diagram of a Jominy end quench specimen mounted during quenching (left) and post hardness testing (right)

Hardenability curves are constructed from the results of Jominy Tests. Examples of a few steel alloy curves are shown in Figure 4. With a diminishing cooling rate (steeper drop in hardness over a short distance), more time is allowed for carbon diffusion and the formation of a greater proportion of softer pearlite. This means less martensite and a lower hardenability. A material that retains higher hardness values over relatively long distances is considered highly hardenable. Also, the greater the difference in hardness between the two ends, the lower the hardenability. It is typical of hardenability curves that as the distance from the quenched end increases, the cooling rate decreases. 1040 steel initially has the same hardness as both 4140 and 4340 but cools extremely quickly over the length of the sample. 4140 and 4340 steel cool at a more gradual rate and therefore have a higher hardenability. 4340 has a less extreme rate of coolness relative to 4140 and thus has the highest hardenability of the trio.

Figure 4: Hardenability charts for 4140, 1040 and 4340 steels

Hardenability curves are dependent on carbon content. A greater percentage of carbon present in steel will increase its hardness. It should be noted that all three alloys in Figure 4 contain the same amount of carbon (0.40% C).  Carbon is not the only alloying element that can have an effect on hardenability. The disparity in hardenability behavior between these three steels can be explained in terms of their alloying elements. Table 1 below shows a comparison of the alloying content in each of the steels. 1040 is a plain carbon steel and therefore has the lowest hardenability as there are no other elements besides iron to block the carbon atoms from escaping the matrix. The nickel added to 4340 allows for a slightly greater amount of martensite to form compared to 4140, giving it the highest hardenability of these three alloys. Most metallic alloying elements slow down the formation of pearlite, ferrite and bainite, therefore they increase a steel’s hardenability.

Table 1: Shows the alloying contents of 4340, 4140, and 1040 steel

Type of Steel: Nickel (wt %): Molybdenum (wt %): Chromium (wt %):
4340 1.85% 0.25% 0.80%
4140 0.00% 0.20% 1.00%
1040 0.00% 0.00% 0.00%

There can be a variation in hardenability within one material group. During the industrial production of steel, there are always slight unavoidable variations in the elemental composition and average grain size from one batch to another. Most of the time a material’s hardenability is represented by maximum and minimum curves set as limits.

Hardenability also increases with increasing austenitic grain size. A grain is an individual crystal in a polycrystalline metal. Think of a stained glass window (like the one seen below), the colored glass would be the grains while the soldering material holding it altogether would be the grain boundaries. Austenite, ferrite, and cementite are all different types of grains that make up the different microstructures of steel. It is at the grain boundaries that the pearlite and bainite will form. This is detrimental to the hardening process as martensite is the desired microstructure, the other types get in the way of its growth. Martensite forms from the rapid cooling of austenite grains and its transformation process is still not well understood. With increasing grain size, there are more austenite grains and fewer grain boundaries. Therefore, there are fewer opportunities for microstructures like pearlite and bainite to form and more opportunities for martensite to form.

Figure 5: The colorful glass pieces represent grains of austenite which transforms into the desirable martensite upon quenching. The black portions in between the color portions represent grain boundaries. Sites where pearlite or bainite will form upon quenching.

3. The method of quenching

As previously stated, the type of quench affects the cooling rate. Using oil, water, aqueous polymer quenchants, or air will yield a different hardness through the interior of the workpiece. This also shifts the hardenability curves. Water produces the most severe quench followed by oil and then air. Aqueous polymer quenchants provide quenching rates between those of water and oil and can be tailored to specific applications by changing the polymer concentration and temperature. The degree of agitation also affects the rate of heat removal. The faster the quenching medium moves across the specimen, the greater the quenching effectiveness. Oil quenches are generally used when a water quench may be too severe for a type of steel as it may crack or warp upon treatment.

Figure 6: Metalworker quenching casts in an oil bath

Machining Hardened Steels:

The type of cutter that should be chosen for processing tools chosen for machining a workpiece after hardening depends on a few different variables. Not counting the geometric requirements specific to the application, two of the most important variables are the material hardness and its hardenability. Some relatively high-stress applications require a minimum of 80% martensite to be produced throughout the interior of the workpiece. Usually, moderately stressed parts only require about 50% martensite throughout the workpiece. When machining a quenched metal with very low hardenability a standard coated solid carbide tool may work without a problem. This is because the hardest portion of the workpiece is limited to its surface. When machining a steel with a high hardenability it is recommended that you use a cutter with specialized geometry that is for that specific application. High hardenability will result in a workpiece that is hard throughout its entire volume. Harvey Tool has a number of different cutters for hardened steel throughout the catalog, including drills, end mills, keyseat cutters, and engravers.

Summary:

Hardenability is a measure of the depth to which a ferrous alloy may be hardened by the formation of martensite throughout its entire volume, surface to core. It is an important material property you must consider when choosing a steel as well as cutting tools for a particular application. The hardening of any steel depends on the size and shape of the part, the molecular composition of the steel, and the type of quenching method used.

Save Time With Quick Change Tooling

Making a manual tool change on any CNC machine is never a timely or rewarding process. Typically, a tool change in a standard holder can take up to 5 minutes. Add that up a few times, and suddenly you have added significant minutes to your production time.

As CNC machine tool and cutting tool technology has advanced, there are more multi-functional tools available to help you avoid tool changes. However, sometimes it just isn’t feasible, and multiple tool changes are needed. Luckily, Micro 100 has developed a revolutionary new method to speed up tool changes significantly.

What is the Micro-Quik™ Tooling System?

Developed in Micro 100’s world-class grinding facility in Meridian, Idaho, the Micro 100 Micro-Quik™ tooling system is held to the same standards and tight tolerances as all of the Micro 100 carbide tooling.

The quick change tooling system allows for highly repeatable tool changes that save countless hours without sacrificing performance. This system combines a unique tool holder with a unique tool design to deliver highly repeatable and accurate results.

Each quick change tool holder features a locating/locking set screw to secure the tool and a locating pin which helps align the tool for repeatability. Removing a tool is as simple as loosening the set screw and inserting its replacement.

During tool changes, the precision ground bevel on the rear of the tool aligns with a locating pin inside the tool holder. The distance from this locational point to the tip of the tool is highly controlled under tight tolerances, meaning that the Micro-Quik™ tooling system ensures a very high degree of tool length and centerline repeatability. The “L4” dimension on all of our quick change tools, as seen in the image above, remains consistent across the entire product line. Check out the video below for a demonstration of the Micro 100 Micro-Quik™ system in action!

Quick Change Tooling Benefits

The most obvious benefit to using Micro 100’s Micro-Quik™ system is the time savings that come with easier tool changes. By using the quick change holders in combination with quick change tooling, it is easy to reduce tool changes from 5 minutes to under 30 seconds, resulting in a 90% decrease in time spent swapping out tools. This is a significant benefit to the system, but there are benefits once the tool is in the machine as well.

As mentioned above, the distance from the locational point on each tool shank to the tip of the tool is highly controlled, meaning that regardless of which type of tool you insert into the holder, your stick out will remain the same. This allows you to have confidence in the tooling and does not require additional touch offs, which is another major time saver.

By removing additional touch-offs and tool changes from your workflow, you also reduce the chances for human or machine error. Improper touch-offs or tool change errors can cause costly machine crashes and result in serious repairs and downtime. With the Micro 100 Micro-Quik™ system, initial setups become much easier, allowing you to hit the cycle start button with total confidence for each run.

By making a few simple changes to your tool holding configurations and adopting the Micro-Quik™ system, your shop can save thousands in time saved, with less machine downtime and increased part production. To learn more about the Micro 100 Micro-Quik™ cutting tools and tool holders, please visit (URL here to quick change page).

KAD Models – Featured Customer

Established in 2012, KAD Models is a small, yet steadily growing prototype machine shop, which originated in the San Francisco Bay Area and has since opened its second location in Vermont. They have been a regional leader in the advanced manufacturing space for many years, and operate in close connection with other machine shops and related businesses like turning facilities, anodizers, welders, and more. KAD Models staff is comprised of diverse occupational backgrounds (e.g. mechanic, industrial engineer, blacksmith, etc.). Further, they have invested into their local community college and technical training programs to support an expanding talent pipeline for advanced manufacturing.

Brian Kippen is the owner & founder of KAD Models & Prototypes, Inc. Before launching KAD with model maker John Dove, Brian worked as the Director of Operations at A&J Product Solutions and a machinist at Performance Structures. Brian is drawn to the challenge of making design concepts into reality, and motivated by the ever-changing landscape of machining. Brian took time to speak with us about KAD Models, his experiences, machining techniques, and so much more.

Can you give us a little background on how KAD Models was started?

I worked for a few years repairing automobiles, then following high school, I attended college for about three weeks. After some strong encouragement from my mom, I moved out west. I joined the Marines, broke both of my feet, and was honorably discharged. Then, I got my broken foot in the door at a machine shop and knew what I wanted to be when I grew up. After years of working as a machinist, I went into business with one of my previous employers. After a year and a half, the partnership degraded and I made the decision to buy out my partner.

It’s been really gratifying to see the business grow and get to know different types of customers as the shop’s reputation spreads. One of the reasons I wanted to start my own shop is that I really wanted to see the industry evolve in a new way, to better meet people’s needs. It’s been really great to see that decision and the investments I’ve made in building KAD pay off.

We produce approximately $1.5M of parts for 100+ distinct clients each year.  Since its founding in 2012, KAD has continued on a steady path of growth, adding staff, equipment, and clients without marketing or advertising. We build a broad range of products such as automotive drive axles, silicone cardiovascular valves, and fully functional consumer product models. Due to the nature of prototyping, no component is outside of the realm of possibility. 

What machines are currently in your shop?

We use Haas CNC machines. At our West coast facility, we have six machines, five vertical 4 AXIS machining centers with capacities up to 26” Y AND 50” X and one 5 AXIS universal machining center. At our East coast facility, we currently have two new CNC ONE 3 AXIS and one 5 AXIS universal machining center paired with a Trinity Automation AX5 robotic cell. I decided to get a 5 axis milling machine earlier last year because I felt we should invest before the absolute necessity arose. I’m excited about the creative options it opened up and it’s been fun to put it to good use. We are currently using both Fusion 360 and Surfcam software.

What sets KAD Models apart from the competition?

Our quick turnaround time of 3-5 days with our ability to tackle very complex parts sets KAD apart from a majority of manufacturers.

I also think our willingness to really dig in with the client and get to know what they need and why. We have a really creative team here at KAD and thrive at not only building complex parts, but helping industrial designers and engineers think through manufacturing, design, and usage requirements to build the simplest, most effective product we can. I’ve created prototypes before, just from a conversation with someone – not even a CAD drawing. It’s these types of interesting challenges that made me want to be a machinist in the first place and that keeps me engaged and excited day-to-day.

KAD Models is an innovative company. Can you speak about what innovations KAD makes?

Well, KAD works with some of the most innovative companies out there, across all kinds of industries: medical devices, aerospace, automotive, and consumer electronics. We help people at the forefront of innovation bring their ideas to life, so I’d say innovation is basically our bread and butter. As far as our innovations in process, as I said before, KAD has a really creative team. Since we are well known for prototyping and since prototype manufacturing need not follow all the common work holding rules, we break them on a daily basis.

What is your favorite part of your job?

I love the challenge of taking on seemingly impossible ideas and turning them into tangible things. I’m really satisfied when I can come home after a long day and have held the things I’ve made in my hands. I’m also really proud to be a business owner. It’s incredibly rewarding to see a team you’ve taught and grown to take on and be inspired by the same types of problems as you. It’s been really cool to see what we’ve been able to accomplish for our clients. My personal passion remains automotive.  KAD has reverse-engineered many no longer available automobile components and designed parts that upgrade vintage Datsuns.

Why is high-quality tooling important to you?

In prototyping, you often get one chance in order to make deadlines. High quality and high-performance tools allow you to get this done without question. Given 95% of our tooling is either Helical or Harvey, I would say that high-quality tooling helps us out on a daily basis. We also use High Efficiency Milling (HEM) techniques, which Helical is optimized for. We find with long cutters and with deep pockets, HEM is almost a must.  Often though, on shallow areas, it’s overkill.  As with salt, there can be too much. 

If you could give one piece of advice to a new machinist what would it be?

Fail fast and fail often. Then learn from your mistakes. 

I think the biggest thing is getting to know other machinists, learning other methods, and being open to alternative ideas. It’s important to keep your mind open because there’s always more than one way to machine something. One of the things I’ve found most rewarding about running my own shop is getting to set the tone of how we work with other shops and adjacent industries. I’m really passionate about the manufacturing community as a whole and I’m glad blogs like this exist to help draw connections amongst us.

Also, don’t be afraid to challenge the status quo. I love working with new machinists because they bring different ideas to the table. That’s really important for innovation and to keep us all moving forward.

Feel free to check them out at www.kadmodels.com or on Instagram @kadmodels or stop by their west coast shop in California or new east coast location in Vermont.