Posts

The Secret Mechanics of High Feed End Mills

A High Feed End Mill is a type of High-Efficiency Milling (HEM) tool with a specialized end profile that allows the tool to utilize chip thinning to have dramatically increased feed rates. These tools are meant to operate with an extremely low axial depth so that the cutting action takes place along the curved edge of the bottom profile. This allows for a few different phenomena to occur:

  • The low lead angle causes most of the cutting force to be transferred axially back into the spindle. This amounts to less deflection, as there is much less radial force pushing the cutter off its center axis.
  • The extended curved profile of the bottom edge causes a chip thinning effect that allows for aggressive feed rates.

The Low Lead Angle of a High Feed End Mill

As seen in Figure 1 below, when a High Feed End Mill is properly engaged in a workpiece, the low lead angle, combined with a low axial depth of cut, transfers the majority of the cutting force upward along the center axis of the tool. A low amount of radial force allows for longer reaches to be employed without the adverse effects of chatter, which will lead to tool failure. This is beneficial for applications that require a low amount of radial force, such as machining thin walls or contouring deep pockets.

high feed mill roughing
Figure 1: Isometric view of a feed mill engaged in a straight roughing pass (left), A snapshot front-facing view of this cut (right)

Feed Mills Have Aggressive Feed Rates

Figure 1 also depicts an instantaneous snapshot of the chip being formed when engaged in a proper roughing tool path. Notice how the chip (marked by diagonal lines) thins as it approaches the center axis of the tool. This is due to the curved geometry of the bottom edge. Because of this chip thinning phenomenon, the feed of the tool must be increased so that the tool is actively engaged in cutting and does not rub against the workpiece. Rubbing will increase friction, which in turn raises the level of heat around the cutting zone and causes premature tool wear. Because this tool requires an increased chip load to maintain a viable cutting edge, the tool has been given the name “High Feed Mill.”

high feed end mill ad

Other Phenomena Due to Curved Geometry of Bottom Edge

The curved geometry of the bottom edge also sanctions for the following actions to occur:

  • A programmable radius being added to a CAM tool path
  • Scallops forming during facing operations
  • Different-shaped chips created during slotting applications, compared to HEM roughing

Programmable Radius

Helical Solutions’ High Feed End Mills has a double radius bottom edge design. Because of this, the exact profile cannot be easily programmed by some CAM software. Therefore, a theoretical radius is used to allow for easy integration.  Simply program a bullnose tool path and use the theoretical radius (seen below in Figure 2) from the dimensions table as the corner radius.

high feed mill programmable radius
Figure 2: Programmable radius of a double radius profile tool

Managing Scallops

A scallop is a cusp of material left behind by cutting tools with curved profiles. Three major factors that determine the height and width of scallops are:

  1. Axial Depth of Cut
  2. Radial Depth of Cut
  3. Curvature of Bottom Edge or Lead Angle

Figure 3 below is a depiction of the scallop profile of a typical roughing cut with a 65% radial step over and 4% axial depth of cut. The shaded region represents the scallop that is left behind after 2 roughing passes and runs parallel to the tool path.

roughing cut scallop profile
Figure 3: Back view of roughing cut with a 65% radial step over

Figures 4 and 5 show the effects of radial and axial depth of cuts on the height and width of scallops. These figures should be viewed in the context of Figure 3. Percentage by diameter is used rather than standard units of measurement to show that this effect can be predicted at any tool size. Figure 4 shows that a scallop begins to form when the tool is programmed to have a radial step over between 35% and 40%. The height increases exponentially until it is maximized at the axial depth of cut. Figure 5 shows that there is a linear relationship between the radial step over and scallop width. No relationship is seen between scallop width and axial depth of cut as long as ADOC and the radius of curvature of the bottom cutting edge remains consistent.

graph of scallop height versus depth of cut
Figure 4: Graph of Scallop Height vs. Depth of Cut
graph of scallop width versus depth of cut
Figure 5: Scallop Width vs. Depth of Cut

From the graphs in Figures 4 and 5 we get the following equations for scallop dimensions.

Notes regarding these equations:

  • These equations are only applicable for Helical Solutions High Feed End Mills
  • These equations are approximations
  • Scallop height equation is inaccurate after the axial depth of cut is reached
  • RDOC is in terms of diameter percentage (.55 x Diameter, .65 x Diameter, etc…)

Shop Helical Solutions’ Fully Stock Selection of High Feed End Mills

Curvature of the Bottom Edge of High Feed End Mills

The smaller the radius of curvature, the larger the height of the scallop. For example, the large partial radius of the Helical Solutions High Feed End Mill bottom cutting edge will leave a smaller scallop when compared to a ball end mill programmed with the same tool path. Figure 6 shows a side by side comparison of a ball end mill and high feed mill with the same radial and axial depth of cut. The scallop width and height are noticeably greater for the ball end mill because it has a smaller radius of curvature.

feed mill versus ball end mill
Figure 6: Scallop diagram of High Feed Mill and Ball End Mill with the same workpiece engagement

Full Slotting

When slotting, the feed rate should be greatly reduced relative to roughing as a greater portion of the bottom cutting edge is engaged. As shown in Figure 7, the axial step down does not equate to the axial engagement. Once engaged in a full slot, the chip becomes a complex shape. When viewing the chip from the side, you can see that the tool is not cutting the entirety of the axial engagement at one point in time. The chip follows the contour on the slot cut in the form of the bottom edge of the tool. Because of this phenomenon, the chip dips down to the lowest point of the slot and then back up to the highest point of axial engagement along the side. This creates a long thin chip that can clog up the small flute valleys of the tool, leading to premature tool failure. This can be solved by decreasing the feed rate and increasing the amount of coolant used in the operation.

high feed mill chip formation
Figure 7: Formation of a chip when a feed mill is engaged in a full slotting operation.

In summary, the curved profile of the bottom edge of the tool allows for higher feed rates when high feed milling, because of the chipping thinning effect it creates with its low lead angle. This low lead angle also distributes cutting forces axially rather than radially, reducing the amount of chatter that a normal end mill might experience under the same conditions. Machinists must be careful though as the curved bottom edge also allows for the formation of scallops, requires a programmable radius when using some CAM packages, and make slotting not nearly as productive as roughing operations.

Causes & Effects of Built-Up Edge (BUE) in Turning Applications

In turning operations, the tool is stationary while the workpiece is rotating in a clamped chuck or a collet holder. Many operations are performed in a lathe, such as facing, drilling, grooving, threading, and cut-off applications. it is imperative to use the proper tool geometry and cutting parameters for the material type that is being machined. If these parameters are not applied correctly in your turning operations, built-up edge (BUE), or many other failure modes, may occur. These failure modes adversely affect the performance of the cutting tool and may lead to an overall scrapped part.

When inspecting a cutting tool under a microscope or eye loupe, there are several different types of turning tool failure modes that can be apparent. Some of the most common modes are:

  • Normal Flank Wear: The only acceptable form of tool wear, caused by the normal aging of a used cutting tool and found on the cutting edges.
    • This abrasive wear, caused by hard constituents in the workpiece material, is the only preferred method of tool wear, as it’s predictable and will continue to provide stable tool life, allowing for further optimization and increased productivity.
  • Cratering: Deformations found on the cutting face of a tool.
    • This tool mode is a chemical and heat failure, localized on the rake face area of the turning tool, or insert. This failure results from the chemical reaction between the workpiece material and the cutting tool and is amplified by cutting speed. Excessive Crater Wear weakens a turning tool’s cutting edge and may lead to cutting edge failure.
  • Chipping: Breaking of the turning tool along its cutting face, resulting in an inaccurate, rough cutting edge.
    • This is a mechanical failure, common in interrupted cutting or non-rigid machining setups. Many culprits can be to blame for chipping, including machine mishaps and tool holder security.
  • Thermal Mechanical Failure (Thermal Cracking): The cracking of a cutting tool due to significant swings in machining temperature.
    • When turning, heat management is key. Too little or too much heat can create issues, as can significant, fast swings in temperature (repeated heating and cooling on the cutting edge). Thermal Mechanical Failure usually shows in the form of evenly spaced cracks, perpendicular to the cutting edge of the turning tool.
  • Built-Up Edge (BUE): When chips adhere to the cutting tool due to high heat, pressure, and friction.

Effects of Built-Up Edge in Turning Application

A built-up edge is perhaps the easiest mode of tool wear to identify, as it may be visible without the need for a microscope or an eye loupe. The term built-up edge means that the material that you’re machining is being pressure welded to the cutting tool. When inspecting your tool, evidence of a BUE problem is material on the rake face or flank face of the cutting tool.

built up cutting edge on turning tools
Image Source: Carbide inserts Wear Failure modes. | machining4.eu, 2020

This condition can create a lot of problems with your machining operations, such as poor tool life, subpar surface finish, size variations, and many other quality issues. The reason for these issues is that the centerline distance and the tool geometry of the cutting edge are being altered by the material that’s been welded to the rake or flank face of the tool. As the BUE condition worsens, you may experience other types of failures or even catastrophic failure.                     

Causes of Built-Up Edge in Turning Applications

Improper Tooling Choice

Built-Up Edge is oftentimes caused by using a turning tool that does not have the correct geometry for the material being machined. Most notably, when machining a gummy material such as aluminum or titanium, your best bet is to use tooling with extremely sharp cutting edges, free cutting geometry, and a polished flank and rake face. This will not only help you to cut the material swiftly but also to keep it from sticking to the cutting tool.

various turning tools

Using Aged Tooling

Even when using a turning tool with correct geometry, you may still experience BUE. As the tool starts to wear and its edge starts to degrade, the material will start building up on the surface of the tool. For this reason, it is very important to inspect the cutting edge of a tool after you have machined a few parts, and then randomly throughout the set tool life. This will help you identify the root cause of any of the failure modes by identifying them early on.

Insufficient Heat Generation

Built-up edge can be caused from running a tool at incorrect cutting parameters. Usually, when BUE is an issue, it’s due to the speed or feed rates being too low. Heat generation is key during any machining application – while too much heat can impact a part material, too little can cause the tool to be less effective at efficiently removing chips.

4 Simple Ways to Mitigate BUE in Turning Applications

  1. When selecting a tool, opt for free cutting, up sharp geometries with highly polished surfaces. Selecting a tool with chipbreaker geometry will also help to divide chips, which will help to remove it from the part and the cutting surface.
  2. Be confident in your application approach and your running parameters. It’s always important to double-check that your running parameters are appropriate for your turning application.
  3. Make sure the coolant is focused on the cutting edge and increase the coolant concentration amount.
  4. Opt for a coated Insert, as coatings are specifically engineered for a given set of part materials, and are designed to prevent common machining woes.
solid carbide turning tool

Hybrid Machining – Featured Customer

Featured Image Courtesy of Jeff Robinson, Hybrid Machining

Located in Holland, MI, Hybrid Machining uses machining skills combined with 3 different 3D printing technologies to manufacture complex projects. Hybrid Machining is a manufacturing company that can take the customer’s design from start to finish, allowing customers to dictate their path. Rather than focusing on a single product, Hybrid has listened to customer needs and presented solutions that, in many cases, customers didn’t know were possible. Jeff Robinson, the owner, took some time out of his day to answer some questions about Hybrid Machining.

How did you get into manufacturing?  

I started working in an architectural shop during my high school years.  I quickly realized that there was a more advanced part of the industry that I was missing out on. Therefore, I started researching CNC Routing.  I fell in love with the technology and have been studying it ever since. 

What sort of machines and materials do you use in your shop?

We currently run a Datron Neo, Fanuc Robodrill, and a CR Onsrud 5-axis Router. We work primarily with wood, plastic, and non-ferrous materials. We currently use Autodesk Fusion 360, FeatureCAM, Powermill, Vectric Aspire, and AlphaCAM for CAM.  For CAD, we run Fusion 360, Inventor, and Solidworks.

hybrid machining datron neo
Photo Courtesy of: Jeff Robinson, Hybrid Machining

When did you start using 3D printing and how has it benefitted you?

I have been 3D printing for just over a year.  It was the first technology that we initiated here at Hybrid Machining, and it has allowed us to provide the best solution to the customer no matter what the requirements are. By expanding into 3D printing, we can help the customer decide which technology will work the best for their part. Many times, we take the “Hybrid” approach and use both additive and subtractive technologies together.

How have you adapted during the Covid-19 outbreak and how has it changed your business?

We started by stopping normal production to form a non-profit called 3DC19 with other local, small business owners with the sole purpose of 3D printing and assembling plastic face shields.  Hybrid Machining became the distribution center for the efforts.  Collectively, we produced and donated 75K articles of PPE to local hospitals, nursing homes, doctor offices, and first responders.  You can learn more about the efforts at www.3DC19.com. We have also been machining a lot of acrylic face guards for customers so that we can help them to get their office staff back to work safely. 

fanuc robodrill machine
Photo Courtesy of: Jeff Robinson, Hybrid Machining

What sets Hybrid Machining apart from the rest of the manufacturing community? 

We have a serious passion for educating our youth and local businesses on the rapid changes currently happening in the manufacturing industry and preparing them for the impact that Industry 4.0 will have on our lives in the future.  We want to produce knowledgeable people just as much as we produce products, and we do this in our unique Learning Lab.  We team up with local schools, vocational schools, and community colleges to help them spread the word about manufacturing.  We also intend to do ‘Lunch and Learns’ with local businesses to help them understand what other manufacturing methods and advanced materials are available on the market today.

What is the coolest project you have had come through the shop?

Many years ago, at my previous shop, we worked on the presidential handrail that the last three presidents stood behind during the inauguration.

hybrid machining metal business card
Photo Courtesy of: Jeff Robinson, Hybrid Machining

Are you using HEM techniques to improve cycle times? 

Yes, we use a couple of the fastest and most nimble machines on the market: the Datron NEO and the Fanuc Robodrill.  We leverage the machine’s tools’ high accelerations and deceleration rates, along with HEM, to drastically reduce cycle times for our customers.  This allows us to be competitive against over-seas importers.

What do you have to lose other than cycle time? You purchased the entire tool, not just the tip, so use it!  You will be surprised how the different the machine will sound and you can get parts done faster with less tool wear.

Why is high quality tool performance important to you?

The tooling is super important to the success of a project because the tool is what is doing the work.  I like to tell people, “Why would you buy a high-end sports car with all bells and whistles and then put crappy tires on it?  All that power and handling is worthless unless you have good tires.”  The same goes for tooling.  You can have a half-million-dollar machine that is super-fast and accurate and yet still produce a terrible part with cheap tooling. 

When was a time that Harvey Tool, Helical Solutions, or Micro 100 saved the day?

Harvey Tool helped me get through some tough composite projects in the past.  Their technical support team was extremely knowledgeable on the subject matter and helped me pick the right tool and parameters to get the job done. 

machined metal part from hybrid machining
Photo Courtesy of: Jeff Robinson, Hybrid Machining

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

NEVER STOP LEARNING.  Things may be going great at first and you think you have it all figured out, but then a new technology comes and swipes you off your feet.  Spend your spare time studying industry trends, talking to other business leaders, new and old, and preparing for the future.

 Is there anything else you would like to share with the “In The Loupe” community?

We are extremely thankful that Harvey Tool spends a lot of time developing ‘material-specific’ tooling.  We spend 90% of our time in that section of the catalog.  We recently tested out the new wood cutters and are extremely happy. We pushed these tools at speeds and feeds that are unbelievable.  We also use the Harvey Tool plastic cutters on a regular basis. 

Here at Hybrid Machining, we are blending the lines between routing and milling.  For many decades, the line had been fairly clear. There were certain types of jobs you ran on certain types of machines.  We are blurring those lines and are using the best tools for the jobs.  For instance, we use the 24K RPM spindle on the Robodrill to run it more like a router than a mill.  Therefore, we call it the “RoboRouter”.  We can produce wood and plastic parts at unbelievable speeds while achieving surface finishes that are off the charts.  This is not conventional practice, but the team at Hybrid Machining is willing to blaze the path forward for others to follow.

To check out more about Hybrid Machining go to their website or follow them on social media!

Harvey Performance Company Opens New 79,000-Square-Foot Manufacturing Plant in Gorham

GORHAM, ME (October 13, 2020) – Harvey Performance Company, the parent company of the Harvey Tool, Helical Solutions, and Micro 100 industrial cutting tool brands, last month opened the doors to a new, 79,000-square-foot, state-of-the-art manufacturing facility in Gorham, Maine, to support the tremendous growth and product demand its brands continue to experience.

Harvey Performance Company was quickly outgrowing its Sanford Drive facility in Gorham, Maine, where Helical Solutions products have been manufactured for more than 15 years. The new manufacturing facility, which is just 5 minutes away on Raceway Drive, will become home to Helical Solutions product manufacturing and will serve as an innovation hub for all Harvey Performance Company brands.

“We couldn’t be more excited about this new facility,” said Harvey Performance Company Senior Vice President of Sales Jerry Gleisner. “We’re quite literally opening the doors to countless opportunities for us to serve our customers in ways unmatched in the industry.”

“This new facility is an exciting step for our business, as this investment will create opportunities for us to continue to grow,” said Harvey Performance Company Vice President of Operations Steve Vatcher. “In light of the COVID-19 Pandemic, we worked closely with state and local officials to ensure that the completion of our new facility was done in a way that prioritized the health and safety of all involved. I couldn’t be more proud of how everyone came together to make this facility a reality during these unprecedented times.

“When it is safe to do so, we look forward to hosting the Gorham community, our neighbors for more than 15 years, at our new home for a ribbon cutting ceremony to share this exciting milestone with us.”

Harvey Performance Company’s New Manufacturing Plant Will:

  • Expand upon its current research and development capabilities to design, test, and manufacture innovative and high performing cutting tools.
  • Accelerate Harvey Performance Company’s new product growth while maintaining its in-stock status and same-day shipping options for all catalog standard items.
  • Host its distributor partners and customers in a state-of-the-art setting that showcases its capabilities.
  • Meet the needs of the market by scaling the size of Harvey Performance Company’s business in the future, through added machines and personnel.
  • Attract, recruit, and retain high-quality employees, engineers, and operators with a high-class work environment.

Schon DSGN – Featured Customer

Featured Image Courtesy of Ian Schon, Schon DSGN

In 2012, engineer Ian Schon wanted to put his skill for design to the test. He decided to challenge himself by designing a normal, everyday item: a pen. His goal was to take the pen from the design concept to manufacturing it within his own shop. Ian designed his pen how he thought a pen should be: durable, reliable, compact, leak-proof, and easy to use. Most of all, though, he wanted the pen to be of a superior quality, not something easily lost or thrown away.

With the design concept in place, Ian started his work on engineering and manufacturing his new pen. He made many prototypes, and with each discovered new features and additions to better his design. Today, Ian manufacturers his pens through local fabrications in Massachusetts, using local supplies. He makes them from 6061 Aluminum, unique in that it molds to its users’ hand, over time. His pens are designed to outlast its user and be passed on through generations.

Ian was kind enough to take time out of his busy schedule to answer some questions about his manufacturing success.

Schon DSGN silver wrist watch with black band
Photo Courtesy of: Ian Schon, Schon DSGN

What sets Schon DSGN apart from competition?

I think I have a unique approach to designing and manufacturing. I design things that I like, and make them the way that I want to.  I don’t rush things out the door. I’m not thinking about scale, growth, making a big shop, etc. I just want to live a simple life where I make cool objects, sell them, and have enough time in the week to sneak out into the woods and ride my bike. This ethos takes the pressure off a lot, and that makes the workflow freer without as much stress as I had in my past career as a product development engineer.

This workflow isn’t for everyone. it’s not a winning combo for massive business success, per se, and if you audited me you would tell me I’m holding back by not scaling and hiring, but I like it. I see myself as a hybrid between artist and entrepreneur. I love doing things start to finish, blank paper to finished part on the machine. Owning that entire workflow allows for harmony of engineering, machining, tooling, finishing, R+D, marketing, etc. Further, it ensures that I don’t miss critical inflection points in the process that are ripe for process evolution and innovation, resulting in a better product in the end.

I’m sure the way I do things will change over time, but for now I’m still figuring things out and since I work largely alone (I have one amazing helper right now assisting with assembly, finishing, and shipping) I have lots of flexibility to change things and not get stuck in my ways.

Also, by working alone, I control the music. Key!

schon dsgn turning metal on lathe
Photo Courtesy of: Ian Schon, Schon DSGN

Where did your passion for pens come from?

My friend Mike had a cool pen he got from a local shop and I was like “man I like that,” so I made one with some “improvements.” At the time, in my mind, they were improvements, but I have learned now that they were preferences, really. I made a crappy pen on a lathe at the MIT MITERS shop back in 2010, and that summer I bought a Clausing lathe on craigslist for $300 and some tooling and started figuring it all out. I made a bunch of pens, wrote with them, kept evolving them, and eventually people asked me to make pens for them.  I didn’t really intend to start a business or anything, I just wanted to make cool stuff and use it. Bottle openers, knives, bike frames, etc. I made lots of stuff. Pens just stuck with me and I kept pushing on it as a project for my design portfolio. Eventually it became something bigger. Turns out my pen preferences were shared with other people.

Schon dsgn gold and copper metal pens
Photo Courtesy of: Ian Schon, Schon DSGN

What is the most difficult product you have had to make and why?

Making watch cases – wow. What an awful part to try and make on a desktop Taig 3 axis mill and a Hardinge lathe in my apartment! I started working on machining watch cases in 2012, and I finished my first one in my apartment in 2015 (to be fair, I was working on lots of other stuff during that time! But yeah, years…). What a journey. Taught me a lot. Biting off more than you can chew is a great way to learn something. 

What is the most interesting product you’ve made?

When I worked at Essential Design in Boston I worked on the front end of a Mass Spectrometer. The requirements on the device were wild. We had high voltage, chemical resistance, crazy tolerances, mechanism design, machining, injection molding – truly a little bit of everything! It was a fun challenge that I was fortunate to be a part of. Biomolecule nanoscale analysis device. Try saying that ten times fast.

I have something fountain pen related in the works now that I find more interesting, and very, very complex, but it’s under wraps a bit longer. Stay tuned. 

Schon dsgn gold and copper metal pens
Photo Courtesy of: Ian Schon, Schon DSGN

Who is the most famous contact that you have worked on a project with?

I have made watches for some incredible customers, but I unfortunately cannot talk about who they are. Most of my watch work outside of my own parts is also under NDA which is a bummer, but hey it was great work regardless.

Same thing with the pens. I know that some of my pen are in the touring cases of a few musicians, one of which is in the rock and roll hall of fame. But I have to keep it tight!

Before leaving to work for myself, I was part of a design team at IDEO in Cambridge that designed the new Simplisafe Home Security System. As an engineer and designer, I got listed on the patents. That wasn’t machining and was more design and engineering of injection molded plastic assemblies,  but it was still cool, though! Cutting my teeth in the design industry before machining helps me a lot with the creative process in the workshop. Lots of overlap.

What capabilities does your shop have?

I utilize Citizen L series sliding headstock machines to run my company. These are Swiss Machines (though made in Japan) with twin spindles and have live tooling for milling operations. I got into this type of machining after getting advice from friends in the industry and subcontracting my work to shops with these style of machines for 7 years.

Beyond the Swiss Machines, I have a new Precision Matthews Manual Mill, a Southbend Model A, a Hardinge Cataract Lathe, and a bunch of smaller Derbyshire lathes and mills. Most of these are for maintenance related tasks – quick mods and fixtures and my watchmaking/R&D stuff. I also have a Bantam Tools Desktop CNC machine on the way, a nice machine for quick milled fixtures in aluminum and nonferrous materials. I tested this machine during their development phases and was really impressed.

What CAM/CAD software are you using?

I use Fusion 360 for quick milled stuff, but most of my parts are programmed by hand since the lathe programming for Swiss work can be done without much CAM. I’m sure I could be doing things better on the programming side, but hey, every day I learn something new. Who knows what I’ll be doing a year or two from now?

schon dsgn turning wrist watch on lathe
Photo Courtesy of: Ian Schon, Schon DSGN

What is your favorite material to work with and why?

Brass and Copper. The chips aren’t stringy, it’s easy to cut quickly and the parts have this nice hefty feel to them. Since I make pens, the weight is a big piece of the feeling of a pen. The only downside is I’m constantly figuring out ways to not dent the parts as they are coming off the machines! My brass parts are like tiny brass mallets and they LOVE to get dinged up in the ejection cycles. I ended up making custom parts catchers and modifying the chutes on the machines to navigate this. I might have some conveyors in my future….yeah. Too many projects!

schon dsgn disassembled wrist watch
Photo Courtesy of: Ian Schon, Schon DSGN

Why is high quality tool performance important to you?

It’s not just important, it’s SUPER important. As a solo machinist running my own machines, being able to call a tooling company and get answers on how I should run a tool, adjust its RPM, feed, DOC, or cutting strategy to get a better result is invaluable. I find that as much as I’m paying for tool performance, I’m also paying for expertise, wisdom and answers. Knowing everything is cool and all (and I know some of you out there know everything under the sun), but since I don’t know everything, it’s so nice to be able to pick up a phone and have someone in my corner. These tech support people are so crucial. Being humble and letting support guide me through my tooling challenges has helped me grow a lot. It’s like having a staff of experienced machinists working at my company, for free! Can’t beat that. Micro 100 and Helical have helped me tons with their great support.

schon dsgn multicolored fountain pens
Photo Courtesy of: Ian Schon, Schon DSGN

When was a time that Harvey, Helical or Micro product really came through and helped your business?

The Helical team (shout out to Dalton) helped me nail some machining on some very wild faceted pens I was working on this month. When I switched to Helical, my finishes got crazy good. I just listened to recommendations, bought a bunch of stuff, and kept trying what Dalton told me to. Eventually, that led to a good recipe and manageable tool wear. It was great!

I also like how representatives from the Harvey/Helical/Micro family often cross reference each other and help me find the right solution, regardless of which company I’m getting it from. Nice system.

The quiet hero in my shop is my Micro 100 quick change system. It just works great. Fast to swap tools, easy to setup, cannot argue with it! Too good. 

Schon DSGN silver wrist watch with black band
Photo Courtesy of: Ian Schon, Schon DSGN

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Find a mentor who supports you and challenges you. Find a good tooling company, or good tooling companies, and make good relationships with their tech support so you can get answers. Make good relationships with service technicians who can help you fix your machines. Be a good person. Don’t let yourself become a hot head under the pressure of this industry (since it can be hard at times!), cooler heads prevail, always. Be open to seeing things from other viewpoints (in life and in machining), don’t be afraid to flip a part around and start over from square one.

To learn more about Ian and Schon DSGN, follow them @schon_dsgn and @the_schon on Instagram and check out his website. And, to learn more about how Ian got his start in the manufacturing industry, check out this video.