Posts

Get to Know Machining Advisor Pro

Machining Advisor Pro (MAP) is a tool to quickly, seamlessly, and accurately deliver recommended running parameters to machinists using Helical Solutions end mills. This download-free and mobile-friendly application takes into account a user’s machine, tool path, set-up, and material to offer tailored, specific speeds and feed parameters to the tools they are using.

How to Begin with Machining Advisor Pro

This section will provide a detailed breakdown of Machining Advisor Pro, moving along step-by-step throughout the entire process of determining your tailored running parameters.

Register Quickly on Desktop or Mobile

To begin with Machining Advisor Pro, start by accessing its web page on the Harvey Performance Company website, or use the mobile version by downloading the application from the App Store or Google Play.

Whether you are using Machining Advisor Pro from the web or your mobile device, machinists must first create an account. The registration process will only need to be done once before you will be able to log into Machining Advisor Pro on both the mobile and web applications immediately.

machining advisor pro

Simply Activate Your Account

The final step in the registration process is to activate your account. To do this, simply click the activation link in the email that was sent to the email address used when registering. If you do not see the email in your inbox, we recommend checking your spam folders or company email filters. From here, you’re able to begin using MAP.

Using MAP

A user’s experience will be different depending on whether they’re using the web or mobile application. For instance, after logging in, users on the web application will view a single page that contains the Tool, Material, Operation, Machine, Parameter, and Recommendation sections.

 

 

On the mobile application, however, the “Input Specs” section is immediately visible. This is a summary of the Tool, Material, Operation, and Machine sections that allow a user to review and access any section. Return to this screen at any point by clicking on the gear icon in the bottom left of the screen.

machining advisor pro

Identify Your Helical Tool

To get started generating your running parameters, specify the Helical Solutions tool that you are using. This can be done by entering the tool number into the “Tool #” input field (highlighted in red below). As you type the tool number, MAP will filter through Helical’s 4,800-plus tools to begin identifying the specific tool you are looking for.

 

Once the tool is selected, the “Tool Details” section will populate the information that is specific to the chosen tool. This information will include the type of tool chosen, its unit of measure, profile, and other key dimensional attributes.

 

Select the Material You’re Working In

Once your tool information is imported, the material you’re working in will need to be specified. To access this screen on the mobile application, either swipe your screen to the left or click on the “Material” tab seen at the bottom of the screen. You will move from screen to screen across each step in the mobile application by using the same method.

In this section, there are more than 300 specific material grades and conditions available to users. The first dropdown menu will allow you to specify the material you are working in. Then, you can choose the subgroup of that material that is most applicable to your application. In some cases, you will also need to choose a material condition. For example, you can select from “T4” or “T6” condition for 6061 Aluminum.

 

Machining Advisor Pro provides optimized feeds and speeds that are specific to your application, so it is important that the condition of your material is selected.

Pick an Operation

The next section of MAP allows the user to define their specific operation. In this section, you will define the tool path strategy that will be used in this application. This can be done by either selecting the tool path from the dropdown menu or clicking on “Tool Path Info” for a visual breakdown and more information on each available toolpath.

 

Tailor Parameters to Your Machine’s Capabilities

The final section on mobile, and the fourth web section, is the machine section. This is where a user can define the attributes of the machine that you are using. This will include the Max RPM, Max IPM, Spindle, Holder, and work holding security. Running Parameters will adjust based on your responses.

 

Access Machining Advisor Pro Parameters

Once the Tool, Material, Operation, and Machine sections are populated there will be enough information to generate the initial parameters, speed, and feed. To access these on the mobile app, either swipe left when on the machine tab or tap on the “Output” tab on the bottom menu.

 

Please note that these are only initial values. Machining Advisor Pro gives you the ability to alter the stick out, axial depth of cut, and radial depth of cut to match the specific application. These changes can either be made by entering the exact numeric value, the % of cutter diameter, or by altering the slider bars. You are now able to lock RDOC or ADOC while adjusting the other depth of cut, allowing for more customization when developing parameters.

The parameters section also offers a visual representation of the portion of the tool that will be engaged with the materials as well as the Tool Engagement Angle.

MAP’s Recommendations

At this point, you can now review the recommended feeds and speeds that Machining Advisor Pro suggests based on the information you have input. These optimized running parameters can then be further refined by altering the speed and feed percentages.

 

Machining Advisor Pro recommendations can be saved by clicking on the PDF button that is found in the recommendation section on both the web and mobile platforms. This will automatically generate a PDF of the recommendations, allowing you to print, email, or share with others.

Machining Advisor Pro Summarized

The final section, exclusive to the mobile application, is the “Summary” section. To access this section, first tap on the checkmark icon in the bottom menu. This will open a section that is similar to the “Input Specs” section, which will give you a summary of the total parameter outputs. If anything needs to change, you can easily jump to each output item by tapping on the section you need to adjust.

 

 

This is also where you would go to reset the application to clear all of the inputs and start a new setup. On the web version, this button is found in the upper right-hand corner and looks like a “refresh” icon on a web browser.

Contact Us

For the mobile application, we have implemented an in-app messaging service. This was done to give the user a tool to easily communicate any question they have about the application from within the app. It allows the user to not only send messages, but to also include screenshots of what they are seeing! This can be accessed by clicking on the “Contact Us” option in the same hamburger menu that the Logout and Help & Tips are found.

Click this link to sign up today!

B&R Custom Machining- Featured Customer

B&R Custom Machining is a rapidly expanding aerospace machine shop located in Ontario, Canada, focused primarily on aerospace and military/defense manufacturing. Over the past 17 years, B&R has grown from a 5 person shop with a few manual mills and lathes, into one of Canada’s most highly respected manufacturing facilities, with nearly 40 employees and 21 precision CNC machines.

B&R focuses on quality assurance and constant improvement, mastering the intimacies of metal cutting and maintaining the highest levels of quality through their unique shop management philosophies. They seek to consistently execute on clear contracts through accurate delivery, competitive price, and high quality machined components.

We talked with Brad Jantzi, Co-Founder and Technical Manager of B&R Custom Machining, to learn about how he started in the industry, his experience with High Efficiency Milling, what he looks for most in a cutting tool, and more!

B&R Custom machining

Can you tell us a little bit about how B&R Custom Machining started, and a little background about yourself and the company?

My brother (Ryan Jantzi, CEO/Co-Founder) and I started working in manufacturing back in 2001, when we were just 20/21 years old. We had 5 employees (including ourselves), a few manual mills and lathes, and we were wrapping our parts in newspaper for shipping. We took over from a preexisting shop and assumed their sales and machines.

We bought our first CNC machine in 2003, and immediately recognized the power of CNC and the opportunities it could open up for us. Now, we have 21 CNC machines, 38 employees, and more requests for work than we can keep up with, which is a good thing for the business. We are constantly expanding our team to elevate the business and take on even more work, and are currently hiring for multiple positions if anyone in Ontario is looking for some challenging and rewarding work!

What kind of CNC machines are you guys working with?

Right now we have a lot of Okuma and Matsuura machines, many of which have 5 axis capabilities, and all of them with high RPM spindles. In fact, our “slowest” machine runs at 15k RPM, with our fastest running at 46k. One of our high production machines is our Matsuura LX160, which has the 46k RPM spindle. We use a ton of Harvey Tool and Helical product on that machine and really get to utilize the RPMs.

B&R Custom Machining

What sort of material are you cutting?

We work with Aluminum predominantly, but also with a lot of super alloys like Invar, Kovar, Inconel, Custom 455 Stainless, and lots of Titanium. Some of those super alloys are really tricky stuff to machine. Once we learn about them and study them, we keep a recorded database of information to help us dial in parameters. Our head programmer/part planner keeps track of all that information, and our staff will frequently reference old jobs for new parts.

Sounds like a great system you guys have in place. How did B&R Custom Machining get into aerospace manufacturing?

It is a bit of a funny story actually. Just about 12 years ago we were contacted by someone working at Comdev, which is close to our shop, who was looking to have some parts made. We started a business relationship with him, and made him his parts. He was happy with the work, and so we eventually got involved in his company’s switch division and started to make more and more aerospace parts.

aerospace machining

We immediately saw the potential of aerospace manufacturing, and it promoted where we wanted to go with CNC machining, so it was a natural fit. It really was a case of being in the right place at the right time and seizing the moment. If an opportunity comes up and you aren’t ready for it, you miss it. You have to be hungry enough to see an opportunity, and confident enough to grab it, while also being competent enough to handle the request. So, we took advantage of what we were given, and we grew and went from there.

Who are some of the major players who you work with?

We have great relationships with Honeywell, MDA Brampton, and MDA Quebec. We actually worked on parts for a Mars Rover with MDA that was commissioned by the Canadian Space Agency, which was really cool to be a part of.

Working with large companies like that means quality is key. Why is high quality tool performance important to you?

High quality and superior tool performance is huge. Aside from cutting conditions, there are two quick things that cause poor performance on a tool: tool life and consistency of the tool quality. One without the other means nothing. We all can measure tool life pretty readily, and there is a clear advantage that some tools have over others, but inconsistent quality can sneak up on you and cause trouble. If you have a tool manufacturer that is only producing a quality tool even 95% of the time, that might seem ok, but that means that 5% of the time you suffer something wrong on the machine. Many times, you won’t know where that trouble is coming from. This causes you to pause the machine, investigate, source the problem, and then ultimately switch the tool and create a new program. It becomes an ordeal. Sometimes it is not as simple as manually adjusting the feed knob, especially when you need to rely on it as a “proven program” the next time around.

So, say the probability of a shortcoming on a machine is “x” with one brand of tooling, but is half of that with a brand like Harvey Tool. Sure, the Harvey Tool product might be 10-20% higher in upfront cost, but that pales in comparison to buying cheaper tools and losing time and money due to machine downtime caused by tool failure. The shop rate for an average machine is right around $100/hour, so machine downtime is much more expensive than the added cost of a quality tool.

B&R Custom machining

Inconsistent tool quality can be extremely dangerous to play around with, even outside of machine downtime. We create based on a specific tool and a certain level of expected performance. If that tool cannot be consistent, we now jeopardize an expensive part. The machine never went down, but the part is no good because we programmed based on consistency in tool quality. Again, the cost of scrapped parts heavily outweighs the upfront cost of quality tooling. Tooling is a low cost of what we do here, but poor tooling can cost us thousands versus a few dollars more for quality tools. Too many people focus on the upfront cost, and don’t look downstream through the rest of the process to see how poor quality tooling can affect your business in a much bigger way. We get to see the whole picture because I am involved from cradle to grave, gaining feedback and knowledge along the way.

That’s great feedback Brad, and I think it is important for people to understand what you have laid out here. Speaking of tool performance, have you guys been using High Efficiency Milling techniques in the shop?

Absolutely. We feel that we are on the front edge of efficient milling. We are quite capable of all the latest techniques, as our programmers are well-versed and up to date. For our larger production work, we have programs dialed in that allow us to push the tools to their limits and significantly cut down our cycle times.

What advice would you have for others who are interested in High Efficiency Milling?

Make sure you are smart about using HEM. If we have one-off parts, particularly expensive ones, that do not have time restraints, we want to make sure we have a safe toolpath that will get us the result we want (in terms of quality and cutting security), rather than pushing the thresholds and taking extra time to program the HEM toolpaths. HEM makes total sense for large production runs, but make sure you know when to, and when not to use these techniques to get the most out of HEM.

B&R Custom machining

Have you been using Machining Advisor Pro in your shop when you run Helical end mills?

We have been, and it makes for a great point of reference for the Helical end mills. It has become a part of our new employee training, teaching them about speeds and feeds, how hard they can push the Helical tools, and where the safe zones are. Our more experienced guys also frequent it for new situations where they have no data. Machining Advisor Pro helps to verify what we thought we knew, or helps us get the confidence to start planning for a new job.

If you could give one piece of advice to a new machinist, or someone looking to take the #PlungeIntoMachining for the first time, what would it be?

Learn the intimacies of metal cutting. Get ultra-familiar with the results of what is actually happening with your tool, your setup, your part, and your machine. As well, don’t be limited to thinking “it sounds good,” or “it’s going good so far, so that must be acceptable.” In order to push the tools and confirm they are performing well and making money, you need to identify and understand where the threshold of failure is, and back off the right amount. This doesn’t end here though. Cutting conditions change as the tools, holders, machines, and parts change. Learning the nuances of this fluctuating environment and adapting accordingly is essential. Verify your dimensions, mitigate against risk, and control the variables.

Also, get intimate with what causes tools to succeed and fail, and keep a log of it for reference. Develop a passion for cutting; don’t just punch in and punch out each shift. Here at B&R, we are looking for continuous improvement, and employees who can add value. Don’t stand around all day with your arms folded, but keep constant logs of what’s going on and always be learning and thinking of how to understand what is happening, and improve on it. That is what makes a great machinist, and a successful shop.

B&R custom machining

University of Michigan Formula SAE Racing Team – Featured Customer

Formula SAE is a student design competition that began in 1980. The competition was founded by the SAE (Society of Automotive Engineers) branch at the University of Texas. Each year, hundreds of universities across the world spend months designing and manufacturing their best Formula style car before putting them to the test in competitions.

Alex Marshalek is the Team Captain of the University of Michigan’s Formula SAE team, MRacing. The team was originally founded in 1986, and has been very successful over the years. In the 2017 season, they finished 5th at the Formula SAE Michigan event, and took home a 1st place finish at Formula North. They are hoping to continue riding that momentum into another successful season in 2018.

Mracing

Alex reached out to Harvey Tool and Helical earlier this year, and after some conversation, the decision was made to sponsor their team’s efforts by supplying cutting tools and providing technical support. With competitions on the horizon and a new build coming over the summer, Alex was kind enough to find some time to talk with us about his experiences as a student learning the ropes in engineering, manufacturing, and design, the importance of quality tooling and maintaining a superior part finish for competition, and challenges he has faced during this process.

Hi Alex. Thanks for taking the time to talk with us today. When you were looking into college degree programs, what initially interested you in manufacturing and engineering?

I have always had an interest in Aerospace Engineering, but it was nothing more than a personal interest until I started college. My high school unfortunately did not have any machine shop or manufacturing type classes, so a lot of what I knew, I learned from my dad. My dad worked as a Mechanical Engineer at an axle manufacturing company, and he used to always be doing things around the house and showing me the basics of engineering and design.

When it came time to choose a school, I knew that Michigan had an impressive Aerospace Engineering department, and I liked the feel of the campus and community better than other schools I had toured.

How did you first get involved with the Formula SAE team?

I knew going into school that I wanted to get involved in a design team and advance my learning in that way. We have about a dozen different design teams at Michigan, but the Formula SAE team really stood out to me as a really cool project to get involved in.

I started with the team in Fall of 2016, helping out with the design and manufacturing of the vehicle’s suspension. Now, for the upcoming 2018 season, I am taking over the role of Team Captain. There will be a little bit less hands-on design and manufacturing work for me as it is more of an administrative/outreach role.

michigan racing

How does a typical FSAE season run?

So FSAE seasons are constantly running, and nearly overlapping with each other. For example, we are currently finishing up competitions from the 2018 season, but at the same time we are beginning the design of the vehicle for the 2019 season. Typically, the design work is done over the summer, and finalized in October. After that, the major manufacturing begins and lasts until about March, with spare parts and additions being added as we go. Testing begins in March, where we fine tune the vehicle and optimize the design for performance. Then, the rest of the Spring and early Summer is competition time, and the process starts all over again!

What sort of machines do you have in the shop?

Right now, we have three manual Bridgeport mills, two retro-fit CNC Bridgeport mills, 2 manual lathes, 1 retro-fit CNC lathe, and a Haas VF-2SS and Haas SL-20. For the vast majority of what we are machining, we are using the Haas. We do most of our work in Aluminum, with some parts made out of steel or titanium, and the Haas has been great for everything.

We are also using AutoDesk’s Fusion 360 software for our CAD/CAM, and we love it.

What has been the most difficult part of the build?

Time is really the biggest challenge. We are all full-time students, so time is already hard to find, but we also don’t have an overabundance of machinists so the operators can get overburdened. It all works out in the end and our machinists are great, but time management is truly the biggest challenge.

michigan formula sae

The composite materials we work with are also very challenging to machine. We constructed the vehicle’s monocoque (the structural “skin”, often seen in Formula One cars) out of carbon fiber. While we cut a lot of it on the water jet machine, we needed more precise holes than a water jet could offer, so we went to the Haas for that. We were using HSS drills and only getting 10-12 holes at a time before they wore out. However, we had Don Grandt (Harvey Performance Company Application Engineer) stop in the shop and he sent us a few Harvey Tool diamond coated drills, which should make this a much faster and more precise process!

You mentioned Don stopped in to give you guys a visit. What were some of your biggest takeaways?

Don was great. He stopped by and we gave him a tour of the facility and showed off some of the parts we were designing. We talked shop for quite a bit, and he gave us a bunch of great tips and tricks we could use to really optimize our machining. As I mentioned, he also went through the catalogs with us and helped us find exactly what we need for tooling. The Harvey Tool diamond coated drills are going to be a life saver for carbon fiber. I guess the biggest takeaway was just all of the knowledge we received from Don and how helpful that was to have someone direct from the tooling manufacturer sharing everything we knew with us.

Now that you have the Harvey and Helical tools in the shop, how have they helped you complete this project and get a leg up on your competition?

One of the most impressive things for us have been the finishing end mills we received. The Helical finishers for Aluminum are giving us some of the best finishes we have ever seen. For us, that is a point of pride. We not only want to have the fastest and most well-designed vehicle, but we also want to have the best looking parts. Subpar finishes reflect poorly on the entire build, and first impressions mean a lot in these competitions.

We have also been blown away by the Chipbreaker roughers. We absolutely love those tools and push them to the limits with great results. In fact, the first time we ran them, we used Machining Advisor Pro to dial in our speeds and feeds, and the numbers seemed insane to us. We were nervous, but we pushed the button and let it run. It was amazing to see that we could push a tool that fast without tool failure.

How has your experience been using Machining Advisor Pro?

We use Machining Advisor Pro every time we picked up the Helical end mills. MAP was actually one of the main reasons we were looking for Helical to sponsor us. We had heard a lot about MAP and your level of technical support, which was important to us as we are learning more about manufacturing and machining. Machining Advisor Pro has quickly become one of our best learning tools in the shop.

The nice thing about MAP is that is takes a look at all of the parameters. A lot of applications only give you numbers on your speeds and feeds, but MAP takes a look at the depth of cut, chip thinning, engagement angle, and all of the other parameters that are so essential to a successful run. As a result, we have been able to get very aggressive with the end mills. We are not a huge production shop, so cycle times are not as important, but we still want to get the most out of our tools in the least amount of possible time.

So, let’s break down some specs. What are you all working with on this year’s build?

Right now our car features a 4 cylinder Honda 600 CBR engine, with a Turbo and 600cc displacement. We are one of the few teams that run a turbo in competition. As we mentioned, the monocoque is completely carbon fiber, and the car features a full aero package with an undertray. The max speed is around 80 MPH, and the car weighs 420 pounds without the driver.

Once the build is complete, how does a typical competition work?

Most of the Formula SAE competitions are multi-day events, with a few static events, and then dynamic events where the car is running. For static events, we first have a Design portion. We validate and argue for our design in front of judges who are engineers in the industry. Then, we get into a Cost presentation, as one of the goals is to build the cheapest possible car with a high level of performance. That balance of cost vs. performance is a critical part of the build. The last static event is a Business presentation, where we introduce a business/manufacturing plan on how to get this design to a production level of 100 units in a year.

For the dynamic events, we have 4 different tests. First, we have the Accel Run, which is a 75 meter sprint, and the fastest cars win. From there we go to the Skip Pad event, which is centered on turning radius and the stiffness of the chassis as we do tight figure eight turns with the car.

University of Michigan FSAE

Then we have the AutoCross, a one lap race, which determines our placement in the final event; Endurance. For the Endurance event, we drive the cars around a 22km track, and the goal is to finish the race without any mechanical or design failures in the quickest time possible. Only around 50% of participants actually complete this event. If a single part falls off, or breaks, you are disqualified. Many times we see things like the suspension, powertrain, or wings falling off. It is disappointing when it happens, but it allows us to easily identify any flaws and fix them for the next event.

What is next for you after school? Any future plans or goals?

I am currently majoring in Aerospace Engineering, and would like to stay within that industry. I am leaning towards working on aircraft. Designing either aircraft structures or the aerodynamics would be very cool. I really like the size and scale of working on commercial aircraft, but I could see myself doing something more specialty like working in Defense as well.


Alex and his team had a very successful 2018 season. They recently placed 9th overall in a competition at the Michigan International Speedway. In the dynamic events, they placed 4th in Skidpad, and 7th in Autocross. The high placement in the Autocross event allowed them to race head to head against top teams in the world, and they ended up placing 4th in Endurance out of 104 cars!

The MRacing team also competed at Formula North, a competition in Ontario, Canada, where they achieved a top ranking of 2nd place overall. They passed all of the technical inspections on the first try and placed 1st in Acceleration, 2nd in Skidpad and Endurance, 3rd in Autocross, and 4th in Efficiency.

michigan fsae

Harvey Tool: Behind The Scenes

Many of our end users have had great questions about our manufacturing process, how we keep all of our tools in stock, and more. Now for the first time, we decided to open our doors and show you how we manufacture and fulfill the Harvey Tool product. We partnered with John Saunders from NYC CNC to create a “Factory Tour” video, covering topics like our CNC grinding machines and setups, tool manufacturing, and our warehouse organization and fulfillment procedures.

In the video below, we first toured our Rowley, MA warehouse and fulfillment center with Fulfillment Manager Megan Townsley. After that, we head up to Maine to check out how the Harvey Tool product is manufactured and inspected with VP of Operations Brian McKahan.

 

 

7 Facts Revealed in Our Factory Tour (Plus 3 More That Didn’t Make the Cut)

We know you’re busy making amazing parts, and might not have time for the entire video. To save you time, here are some of the highlights and facts you should know about Harvey Tool.

When We Say Miniature, We Mean Miniature

Our miniature end mills are in stock in diameters down to .001″. In fact, our Stub and Standard end mills cover every diameter from .001″ to .120″, meaning we will always have you covered when it comes to micro-machining. Although it is hard to see with the naked eye, you can get an up-close look at the famed .001″ end mill by jumping to the 35 minute mark in the tour video.

Micro-Tools Require Precision Grinding

We utilize advanced CNC grinding technology to manufacture our miniature tools at our plant in Maine. Brian MacKahan, VP of Operations, does an excellent job of breaking down our manufacturing process beginning at the 21 minute mark of the tour video. If you just want to see some miniature CNC grinding in action, jump ahead to the 26 minute mark.

Our Inspection Process is Rigourous

All of our tools are sent through an extensive inspection process, both at our plant in Maine and at our headquarters in Massachusetts. To check out the Massachusetts inspection room, head to the 19 minute mark of the video. If you want to see some more in-depth inspection at our facility in Maine, you can jump to the 35 minute mark.

Yes, We Have It In Stock

If you need it, we have it. All 20,000+ tools from our catalog are kept stocked and ready to ship to you the same day. If you need more proof, jump to 15:30 in the tour video, where you will see John Saunders choose a randomly selected Undercutting End Mill from our catalog and find it in our warehouse, in stock and ready to head out to a shop.

We Maintain a 99.8% Order Accuracy Rate

Our fulfillment team handles all of your orders with precision and accuracy. We maintain a 99.8% order accuracy rate, with fulfillment team members checking every order multiple times to ensure you receive exactly what you need. You can learn more about our order fulfillment process and accuracy rates by moving to the 5 minute mark in the video.

We Sell More Than Miniature

Miniature end mills have always been our bread and butter, but did you know that we have many larger diameter tools in stock as well? At the 9 minute mark in the video, you can see John pull out a 3/4″ Long Reach Ball Nose End Mill from our shelves. If you are interested in larger diameter specialty tooling, jump to 12:15 in the video to check out one of our large diameter Corner Rounding End Mills.

When You Call, You’ll Always Talk to An Experienced Tech Expert

Though we didn’t catch it on tape, John Saunders was blown away by our tech team during his visit. He got a chance to pick their brains about a problem he was having and a few minutes later, he received a recommendation for the right compression cutter to tackle his unique operation. This tool was later showcased in one of his “Widget Wednesday” videos.

When you choose Harvey Tool, you will never get an automated system or countless steps before you are able to talk to a real person about your applications. Our industry-leading technical support team is available over the phones or via email every Monday-Friday from 8 AM EST to 7 PM EST. You can reach them by calling 800-645-5609, or by sending an email to [email protected].

We Value Our Distributor Network

We value our large distributor network, and we ask that all orders are placed with your local dealer. To find the closest distributor to you, use the “Find a Distributor” tool on our website.

We’re Hiring!

We are currently hiring for many different positions, including open CNC Machinists positions for all shifts at our manufacturing plant. If you want to be a part of the Harvey Performance Company team, check out our Opportunities page for more information.

Helical Solutions: Behind the Scenes

We have shown our end users bits and pieces of our manufacturing process on our website and via social media, but for the first time we decided to open our own doors to the public and show you every step behind how we manufacture and fulfill the Helical Solutions product. We partnered with John Saunders from NYC CNC to create a “Factory Tour” video, covering topics like our CNC grinding machines and setups, tool manufacturing, and our warehouse organization and fulfillment procedures.

In the video below, we first toured our Gorham, Maine manufacturing plan with Plant Manager Adam Martin. Then, we ran a few tests with the Helical tools on our Haas machine, before heading back to our warehouse in Massachusetts to talk about fulfillment and new products with Fulfillment Manager Megan Townsley.

 

 

7 Facts Revealed in Our Factory Tour (Plus 3 More That Didn’t Make the Cut)

We know you’re busy making amazing parts, and might not have time for the entire video. To save you time, here are some of the most important facts you should know about Helical.

We Take Quality Control Seriously

Our high performance end mills go through an extensive inspection and quality assurance process before they end up in your machine, with multiple inspection points along the manufacturing journey. At the 17 minute mark of the video, you can learn more about how we monitor the quality of the tools in batches as they are manufactured. If you skip ahead to the 29 minute mark, you can see some of our more advanced inspection machines in action.

We Stand Behind Our Tools with Our Renewal Services

Our Tool Renewal service is a great way to maximize your cost-savings and avoid having to re-purchase new tools without sacrificing any aspects of the original design. At Helical, we do not re-sharpen tools. Rather, we restore your tools to their original geometry. We will review the condition of your used tools and return the cutting edge to its original sharpness and strength, allowing the tool to retain its outstanding performance. The renewed tools go through the same rigorous inspection, edge prep, and coating process that we follow for all our of our new tools. To learn more about our Tool Renewal services, head to the 23:30 mark in the video.

Our Tool Coating Is Done In-House

We have multiple tool coating machines in-house which allow us to take the ground tools right off the line and transfer them to our coating room to have Aplus, Zplus, or Tplus coatings added. These machines also have the capability to create roughly 20 different coatings, which are reserved for specials and custom orders. If you want a close-up look at the coating room and learn how the PVD coating process actually works, head to the 35 minute mark.

Our Standard Catalog Items Are Stocked and Ready for Your Machine

We don’t make our standard catalog tools to order. All of our standard tools are stocked and ready to make some chips in your machine. We also introduce hundreds of new tools to our annual catalog to keep providing our customers with the latest in high performance tooling technology. You can check out our new tools for 2018, including our new High Balance Tools and Metric Tooling, by heading to 52:20, or take quick look at our rows of stocked tools in our warehouse by jumping to 56:55.

Diamond Wheels Grind Carbide Tools

Diamond grinding wheels are the essential tool (outside of the machine) when it comes to grinding carbide. We have a unique management system for our diamond wheels, and a redressing process which can see these wheels last up to a year or more before they need replacement. Adam goes through our “frozen wheel” room with John at the 32:45 mark in the video above.

We Track Every Batch of Tools With Laser Etching

Our tools are all laser etched on-site with our logo, phone number, and tool description, but also with a specific batch number. These batch numbers allow us full track-ability of every tool so we can quickly asses any questions or concerns a customer may have about a tool. With these numbers, we are able to track the tool’s journey all the way back to which machine it was made on, which grinding wheel was used, and who ran the program. We have a couple of these laser etching machines in Maine, which you can see in action at the 42 minute mark.

If You Can Dream It, We Have Probably Made It

We have had some crazy tool drawings come in to our custom tool program over the years, including oddly shaped form tools, tools with a crazy long length of cut, “paper cutters”, and more. You can see some cool examples of custom tools we have manufactured by jumping to the 20 minute mark. If you are more interested in how we actually make them, head to the 27 minute mark to see one of our large custom tools being ground on our Walter machines.

Our Technical Resources Are Second To None

We don’t leave you hanging after your purchase of Helical tools. We have a multitude of technical resources and How-Tos available here on our blog, and we also offer the HEM Guidebook, a complete guide to High Efficiency Milling techniques.

If you are looking for information on speeds and feeds, we suggest you try our Machining Advisor Pro application. This application is designed to increase metal removal rates and shop productivity by generating customizable running parameters optimized for your Helical Solutions end mills. You can click here to get started with Machining Advisor Pro today.

You Will Always Get a Real Person When You Call Helical

If you have technical questions about an upcoming job, a special application, or tooling selection, you can contact Helical by phone at 866-543-5422. Our technical experts are available over the phone Monday-Friday from 8 AM to 5 PM EST, and you will always get a real person to talk to with no automated systems to navigate through. You can also reach our team by email at [email protected].

Questions about where to buy Helical tools? You can give our team a call, or you can find your local distributor by using the “Find a Distributor” tool on our website. Simply choose your state to see a complete list of authorized distributors in your area.

We’re Hiring!

We have a current list of our open opportunities on our website! Open jobs include CNC Machinist, Quality Control Inspector, and Customer Service Representative.

Shining a Light on Diamond End Mills

Diamond tooling and diamond-coated end mills are a great option when machining highly abrasive materials, as the coating properties help to significantly increase tool life relative to uncoated carbide tools. Diamond tools and diamond-like coated tools are only recommended for non-ferrous applications, including highly abrasive materials ranging from graphite to green ceramics, as they have a tendency to break down in the presence of extreme heat.

Understanding the Properties of Diamond Coatings

To ensure proper diamond tooling selection, it’s critical to understand the unique properties and makeup of the coatings, as there are often several diamond coating variations to choose from. Harvey Tool, for example, stocks Amorphous Diamond, CVD Diamond, and PCD Diamond End Mills for customers looking to achieve significantly greater tool life when working in non-ferrous applications.

Diamond, the hardest known material on earth, obtains its strength from the structure of carbon molecules. Graphite, a relatively brittle material, can have the same chemical formula as diamond, but is a completely different material; while Graphite has a sp2 bonded hexagonal structure, diamond has a sp3 bonded cubic structure. The cubic structure is harder than the hexagonal structure as more single bonds can be formed to interweave the carbon into a stronger network of molecules.

diamond tool coatings

Amorphous Diamond Coating

Amorphous Diamond is transferred onto carbide tools through a process called physical vapor deposition (PVD). This process spreads a mono-layer of DLC coating about 0.5 – 2.5 microns thick onto any given tool by evaporating a source material and allowing it to condense onto that tool over the course of a few hours.

amorphous diamond coating

Chemical Vapor Deposition (CVD)

Chemical Vapor Deposition (CVD) is a coating process used to grow multiple layers of polycrystalline diamond onto carbide tooling. This procedure takes much longer than the standard PVD coating method. During the coating process, hydrogen molecules are dissociated from the carbon molecules deposited onto the tool, leaving a diamond matrix under the right temperature and pressure conditions. Under the wrong conditions, the tool may be simply coated in graphite. 6% cobalt carbide blanks allow for the best adhesion of diamond and a substrate. CVD diamond coated end mills have a typical thickness of coating that is between 8 and 10 microns thick.

CVD Diamond Coating

Polycrystalline Diamond (PCD)

Polycrystalline Diamond (PCD) is a synthetic diamond, meaning it is grown in a lab and contains mostly cubic structures. Diamond hardness ranges from about 80 GPa up to about 98 GPa. PCD end mills have the same diamond structure as CVD diamond tools but the binding technique is different. The diamond starts in a powdery form that is sintered onto a carbide plate using cobalt as a solvent metal substrate. This is done at an extreme temperature and pressure as the cobalt infiltrates the powder, causing the grains to grow together. This effectively creates a thick diamond wafer, between 010” and .030” in width, with a carbide base. This carbide base is then brazed onto the head an end mill and sharpened.

PCD Diamond CoatingHow Diamond Coatings Differ

Coating Hardness & Thickness

Polycrystalline tools (CVD or sintered) have a much higher hardness, thickness, and max working temperature than Amorphous Diamond oated tools. As mentioned previously, a PCD tool consists of a diamond wafer brazed to a carbide body while a CVD tool is a carbide end mill with a relatively thick layer of polycrystalline diamond grown into it. This grown layer causes the CVD tools to have a rounded cutting edge compared to PCD and Amorphous Diamond coated tools. PCD tools have the thickest diamond layer that is ground to a sharp edge for maximum performance and tool life. The difference between PCD tools and CVD coated tools lies in the thickness of this coat and the sharpness of the cutting edge. Amorphous Diamond tools maintain a sharper edge than CVD coated tools because of their thin coating.

Flute Styles

Harvey Tool’s line of PCD end mills are all straight fluted, CVD coated tools are all helically fluted, and Amorphous Diamond tools are offered in a variety of options. The contrast between straight fluted and helically fluted can be seen in the images below, PCD (top) and CVD (bottom). Electrical discharge machining, grinding or erosion are used cut the PCD wafer to the specifications. The size of this wafer limits the range of diameters that can be achieved during manufacturing. In most situations a helically fluted tool would be preferred over a straight fluted tool but with true diamond tooling that is not the case. The materials that PCD tools and CVD coated tools are typically used to cut produce a powdery chip that does not require the same evacuation that a metallic or plastic chip necessitates.

PCD Diamond end mill

PCD Ball End Mill

CVD Diamond end mill

CVD Ball End Mill

Proper Uses

CVD tools are ideally suited for abrasive material not requiring a sharp cutting edge – typically materials that produce a powdery chip such as composites and graphite. Amorphous Diamond tools have a broad range of non-ferrous applications spanning from carbon fiber to precious metals but ceramics are typically outside their range as they can be too abrasive and wear away the coating. PCD tools overlap their CVD and DLC coated counterparts as they can be used for any non-ferrous abrasive material.

Cut to the Point

Harvey Tool carries physical vapor deposition diamond-like carbon coated tools, chemical vapor deposition diamond tools and polycrystalline diamond tools. PCD tools are composed of the thickest diamond wafer brazed onto a carbide shank and are ground to a sharp edge. CVD coated tools have the diamond grown into a carbide end mill. Amorphous Diamond coated tools have the DLC coated onto them through the PVD process. For more information on the diamond coating best suited for your operation, contact a Harvey Tool Tech Team Member for immediate help.

Contouring Considerations

What is Contouring?

Contouring a part means creating a fine finish on an irregular or uneven surface. Dissimilar to finishing a flat or even part, contouring involves the finishing of a rounded, curved, or otherwise uniquely shaped part.

Contouring & 5-Axis Machining

5-axis machines are particularly suitable for contouring applications. Because contouring involves the finishing of an intricate or unique part, the multiple axes of movement in play with 5-axis Machining allow for the tool to access tough-to-reach areas, as well as follow intricate tool paths.

 Recent Contouring Advances

Advanced CAM software can now write the G-Code (the step-by-step program needed to create a finished part) for a machinists application, which has drastically simplified contouring applications. Simply, rather than spend several hours writing the code for an application, the software now handles this step. Despite these advances, most young machinists are still required to write their own G-Codes early on in their careers to gain valuable familiarity with the machines and their abilities. CAM software, for many, is a luxury earned with time.

Benefits of Advanced CAM Software

1. Increased Time Savings
Because contouring requires very specific tooling movements and rapidly changing cutting parameters, ridding machinists of the burden of writing their own complex code can save valuable prep time and reduce machining downtime.

2. Reduced Cycle Times
Generated G-Codes can cut several minutes off of a cycle time by removing redundancies within the application. Rather than contouring an area of the part that does not require it, or has been machined already, the CAM Software locates the very specific areas that require machining time and attention to maximize efficiency.

3. Improved Consistency
CAM Programs that are packaged with CAD Software such as SolidWorks are typically the best in terms of consistency and ability to handle complex designs. While the CAD Software helps a machinist generate the part, the CAM Program tells a machine how to make it.

Contouring Tips

Utilize Proper Cut Depths

Prior to running a contouring operation, an initial roughing cut is taken to remove material in steps on the Z-axis so to leave a limited amount of material for the final contouring pass. In this step, it’s pivotal to leave the right amount of material for contouring — too much material for the contouring pass can result in poor surface finish or a damaged part or tool, while too little material can lead to prolonged cycle time, decreased productivity and a sub par end result.

The contouring application should remove from .010″ to 25% of the tool’s cutter diameter. During contouring, it’s possible for the feeds to decrease while speeds increases, leading to a much smoother finish. It is also important to keep in mind that throughout the finishing cut, the amount of engagement between the tool’s cutting edge and the part will vary regularly – even within a single pass.

Use Best Suited Tooling

Ideal tool selection for contouring operations begins by choosing the proper profile of the tool. A large radius or ball profile is very often used for this operation because it does not leave as much evidence of a tool path. Rather, they effectively smooth the material along the face of the part. Undercutting End Mills, also known as lollipop cutters, have spherical ball profiles that make them excellent choices for contouring applications. Harvey Tool’s 300° Reduced Shank Undercutting End Mill, for example, features a high flute count to benefit part finish for light cut depths, while maintaining the ability to reach tough areas of the front or back side of a part.

Fact-Check G-Code

While advanced CAM Software will create the G-Code for an application, saving a machinist valuable time and money, accuracy of this code is still vitally important to the overall outcome of the final product. Machinists must look for issues such as wrong tool call out, rapids that come too close to the material, or even offsets that need correcting. Failure to look G-Code over prior to beginning machining can result in catastrophic machine failure and hundreds of thousands of dollars worth of damage.

Inserting an M01 – or a notation to the machine in the G-Code to stop and await machinist approval before moving on to the next step – can help a machinist to ensure that everything is approved with a next phase of an operation, or if any redundancy is set to occur, prior to continuation.

Contouring Summarized

Contouring is most often used in 5-axis machines as a finishing operation for uniquely shaped or intricate parts. After an initial roughing pass, the contouring operation – done most often with Undercutting End Mills or Ball End Mills, removes anywhere from .010″ to 25% of the cutter diameter in material from the part to ensure proper part specifications are met and a fine finish is achieved. During contouring, cut only at recommended depths, ensure that G-Code is correct, and use tooling best suited for this operation.

TL Technologies – Featured Customer

TL Technologies helps manufacturers reduce time to market and drive down per-piece cost with their unique “Intelligent Design and Planning” processes. Located in Lancaster, Pennsylvania, TL Technologies serves manufacturers throughout the mid-Atlantic from their centrally located, 10,000 sq. ft. facility. Their unique manufacturing processes and services quickly made them stand out in the industry since their inception in 2012.

Jonathon Thompson is the Vice President of Engineering at TL Technologies. Jonathon talked with us about their rigorous manufacturing and inspection processes, the advantage of using high-quality tooling, their unique on-site assembly services, and much more in this Featured Customer interview.

Tell us a bit about your shop, how you got started, and what sort of products you manufacture.

TL Technologies got started in January 2012. Our first customers were firearms and defense based. Since then we have diversified our business through growth within customers and word of mouth. We started with the intent to be precise and accurate in a lights-out or nearly automated fashion.

What sort of machines do you use in your shop?

We use an array of modern equipment. 4 axis Kitamura HX400G Horizontal Mills. Nakamura Tome 9 axis Turn Mill, Star 6 axis, and two 5 axis vertical Hurco Machines. All our machines are optioned out with Renishaw probing and all the bells and whistles required to handle high accuracy runs for 24 hours a day with no process issues. Most of the machines have glass scales and thermal packages.

kitamura cnc machine

Which materials do you most often work with at your shop?

Mostly steels; the usual 4000 and 8000 series steels. Comparatively less 6061 and 7075 aluminum and other common stainless grades. We’ve been fortunate to have many of our materials within a reasonable range of Rockwell so that we may tool accordingly for most of the business.

How has your experience been with multi-axis machining?

Fantastic. Multi axis Machining has been excellent for us. It requires high-level understanding to fully maximize but the benefits are huge.

On your website, you mention that TL Technologies has never delivered a rejected part. What sets your quality apart from the competition?

From day one and job one, we worked with the customer to understand exactly how they were measuring the parts, exactly with what tools, processes, and methods to identically duplicate the process in our shop. After replicating key processes we performed many correlation studies to ensure that our measurements were within single-digit microns of what our customers were seeing on their end during inspection. This methodology was scaled up into our overall quality program and allows us to greater understand and manufacture our goods. Our ISO process coupled with this method truly does prevent bad work from getting out. We have never had a case where a part did not function or perform due to our oversight or bad specs. There have been failures on the customer side of things due to engineering, bad prints, and tolerance stackups, but we have not supplied parts that were flat out incorrect.

TL Technologies

What sort of tolerances do you work in on a daily basis?

Typically single or double-digit microns. .0002” to .003” total is common for a large percentage of specs. It is not unusual for +/-.0002” to run long-term over many fixture stations with no manual adjustment. Our machined products are from 1” to 8” cubed.

What are some of the coolest projects you have had come through the shop?

That’s a good question. TL Technologies sat on the United States Senate committee in 2013 for Small Business and Entrepreneurship. We were featured on the cover of New York Times business section in 2013 as well. Throughout our years we’ve been fortunate to meet many amazing people from high branches in the government, the US Military, top name manufacturers, lenders, and local municipalities. Some of the coolest contacts were folks that formerly operated with US Special Forces. Unfortunately, we cannot comment.

As for projects not covered by an NDA, one of my personal favorites was producing low impact physical therapy products for rehabilitating shoulders after surgery. Though simple in manufacturing, this project provided an array of fun challenges that required high performance tooling, 3D printing, and using our machines with custom cycles. This allowed us to use the equipment very unconventionally. In this way, we were able to provide a cost-effective product utilizing the maximum ability of our equipment with a very short lead-time and low up-front cost.

harvey tool catalog

You also offer assembly services on-site, which is fairly unique in the industry. Can you talk a little bit more about this?

Sure. Both my business partner and I have tremendous experience with assemblies in both hands-on and directorial roles. Whether it was a high precision multi-axis mechanism that ended up being a custom machine, on and off-road vehicles, or even things like child safety seats, we have had our hands in a lot of things over the years. At TL Technologies we’ve provided assistance to machine tool builders, special tooling designers, consumer goods of various types, and most frequently to firearms builders. Mostly we drive out cost, but as we age we’ve been called upon to troubleshoot high-end assemblies where the issues were not immediately apparent. This led to us creating sub-assemblies and even semi-finished OEM products. This includes hand fitting and assembling collectible pistols and precision bolt action rifles. This is usually offered as a temporary solution or process engineering service to larger companies developing new goods or revamping existing ones, and is offered as part of our comprehensive knowledge to attract clients. It has been very successful.

You service a variety of industries, including defense, automotive, agricultural equipment, and consumer products. Do you have a personal favorite?

I’d have to say the products we make that almost every soldier carries and relies on are my favorite. We take great pride in knowing that these parts have not failed due to machining error since we took over the production years ago on the core components.

TL Technologies

Why is American manufacturing important to you?

It’s everything. It’s the heart and soul of all products and by extension facilitates the means with which goods and services exist in our society. By bolstering the skills, knowledge, and experience, we can not only succeed economically but also further the craft and pride of making quality goods. We will always need to be able to make our own goods. The skill and craft to create is more than just economic. We absolutely must embrace and respect the skill and hard work it takes to create. We must pass that knowledge on for posterity so the next generation might find the satisfaction and pride of skilled work.

Why is high-quality tool performance important to you?

It’s everything. The old adage, “Garbage in, garbage out,” is accurate for us. We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.

Have Harvey Tools had an impact on your performance?

Oh man…frequently. Harvey Tools are a mainstay in our company. If I had to think of some key examples it would have to be your variety of Keyseat Cutters, 3 Flute Counterbores, Extended Reach Ball End Mills, and Miniature End Mills under .040”. The 270 degree Lollipop Cutters are excellent for deburring, and we also rely on the 140° spot drills, corner radius forming tools, and more. In short, not only are the tools good, but they provide exactly what we need and the specifications to handle major OEM jobs. We absolutely love metric and you’ve got that too. Your catalogs help us eliminate the need for customs. That is key to cost and lead time.

harvey tool

 

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Embrace the old knowledge and techniques. The manual skills learned with files and hand ground tools translate critically into the concepts you will need to master if CNC becomes your career. Understand how and why materials cut or refuse to cut, what rake angle to use and when, and how to leverage machine physics to help you work smarter instead of harder. Don’t be afraid to jump down the rabbit hole of engineering concepts, materials, physics, elementary chemistry; these all help give you an edge. Machining is done best with comprehensive knowledge of the machines and machining environment. You never stop learning. All that said, keep a fresh perspective. Old knowledge can be great, but operationally each business will likely have its own methods and flow. Try to understand there is more to the overall business picture than you can often see.

Is there anything else you would like to share with the In The Loupe community?

Oh definitely! Buy our stuff!! Ha. We are a supplier of choice for OEM, and small batch bolt actions for rifles, pistol components, and pistol slides. We machine to spec and provide cost-competitive options as well as super-premium options.  We are working now to release our own line of aftermarket products in 2018, so keep an eye out for those!

TL Technologies


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

5 Ways Your Shop is Inefficient

5 Ways Your Shop is Inefficient

In today’s ultracompetitive industry, every machine shop seeks even the slightest edge to gain an advantage on their competition and boost their bottom line. However, what many machinists don’t know is that improving their shop’s efficiency might be easier than they thought. The following five ways your shop is inefficient will provide a clear starting point of where to look for machinists desperate to earn a competitive edge.

1. Premature Tool Decay / Tool Failure

If you’re finding that your tools are failing or breaking at an unacceptable rate, don’t mistake it for commonplace. It doesn’t have to be. Prolonging the life of your tooling starts with finding not just the right tool, but the best one; as well as running it in a way to get its optimal performance. Many machinists mistake premature tool failure with running parameters that were too aggressive. In fact, not pushing the tool to its full potential can actually cause it to decay at an accelerated rate in certain situations.

Tool failure can occur in many different ways: Abrasive Wear, Chipping, Thermal Cracking or Tool Fracture, just to name a few. Understanding each type and its causes can help you to quickly boost your shop’s efficiency by minimizing downtime and saving on replacement tool costs.

tool wear

An example of a tool with excessive wear

For more information on tool wear, view Avoiding 4 Major Types of Tool Wear.

2. Subpar Part Finish

Your shop spends money to employ machinists, run machines, and buy cutting tools. Get your money’s worth, lead the industry, and ensure that you’re providing your customers with the highest quality product. Not only will this help to keep your buyer-seller relationship strong, but it will allow you the flexibility to increase your prices in the future, and will attract prospective customers.

Many factors influence part finish, including the material and its hardness, the speeds and feeds you’re running your tool at, tool deflection, and the tool-to-workpiece orientation.

For more information on ways to improve your part finish, view our Part Finish Reference Guide.

3. Inefficient Coolant Usage

One often forgotten expense of a machine shop is coolant – and it can be pricey. A 55-gallon drum of coolant can run more than $1,500. What’s worse is that coolant is often applied in excess of what’s required for the job. In fact, some machines even feature a Minimum Quantity Lubricant (MQL) functionality, which applies coolant as an extremely fine mist or aerosol, providing just enough coolant to perform a given operation effectively. While drowning a workpiece in coolant, known as a “Flood Coolant,” is sometimes needed, it is oftentimes utilized on jobs that would suffice with much less.

For more information about coolants and which method of application might be best for your job, view What You Need to Know About Coolant for CNC Machining.

4. Not Taking Advantage of Tool Versatility

Did you know that several CNC cutting tools can perform multiple operations? For example, a Chamfer Mill can chamfer, bevel, deburr, and countersink. Some Chamfer Mills can even be used as a Spotting Drill. Of course, the complexity of the job will dictate your ability to reap the benefits of a tool’s versatility. For instance, a Spotting Drill is obviously the best option for spotting a hole. If performing a simple operation, though, don’t go out of your way to buy additional tooling when what’s already in your carousel can handle it.

chamfer mills

To learn more about versatile tools that can perform multiple applications, check out Multi-Functional Tools Every Shop Should Have.

5. High Machine Downtime

What use is a machine that’s not running? Minimizing machine downtime is a key way to ensure that your shop is reaching its efficiency pinnacle. This can be accomplished a variety of ways, including keeping like-parts together. This allows for a simple swap-in, swap-out of material to be machined by the same cutting tool. This saves valuable time swapping out tooling, and lets your machine to do its job for more time per workday. Production planning is a key factor to running an efficient machine shop.

Milling Machines vs. Lathe Machines

Most modern manufacturing centers have both milling machines and lathe machines. Each machine follows the same machining principle, known as subtractive machining, where you begin with a block of material and then shape that material into the desired specifications. How the part is actually shaped is the key difference between the two machines. Understanding the differences in more depth will help in putting the right part in the right machine to maximize their capabilities.

 

cnc lathe

An Example of a Lathe Machine

cnc milling machine

An Example of a Milling Machine

Operation

The major difference between a milling machine and a lathe machine is the relationship of the workpiece and the tool.

Lathe Machines

In a lathe, the workpiece that is being machined spins about it’s axis, while the cutting tool does not. This is referred to as “turning”, and is effective for creating cylindrical parts. Common operations done on a lathe include drilling, boring, threading, ID and OD grooving, and parting. When looking to create quick, repeatable, and symmetrical cylindrical parts, the lathe machine is the best choice.

cnc lathe

Milling Machines

The opposite is true for milling machines. The tool in a milling machine rotates about its axis, while the workpiece does not. This allows the tool to approach the workpiece in many different orientations that more intricate and complex parts demand. If you can program it, you can make it in a milling machine as long as you have the proper clearance and choose the proper tooling.

milling machines

Best Practice

The best reason to use a milling machine for an upcoming project is the versatility. The tooling options for a milling machine are endless, with hundreds of available specialty cutting tools and various styles of end mills which make sure you are covered from start to finish on each job. A mill can also cut more complex pieces than a lathe. For example, it would impossible to efficiently machine something like an intake manifold for an engine on a lathe. For intricate parts like that, a milling machine would be required for successful machining.

While lathe machines are more limited in use than a milling machine, they are superior for cylindrical parts. While a mill can make the same cuts that a lathe does, it may need multiple setups to create the same part. When continuous production of cylindrical parts is necessary, a lathe will outperform the mill and increase both performance and efficiency.