Posts

Heavy Duty Racing – Featured Customer

Heavy Duty Racing is a manufacturing company based in Stafford, VA, that specializes in motocross, off-road motorcycle suspension, and 2-stroke engine modification. Its owner, Peter Payne, grew up racing motorcycles. Later in life, he even taught classes on how to race. Simply, Motocross and motorcycles became Peter’s passion.

Peter always looked for ways to enhance his motorcycle’s engine, but quickly realized that no shops in his area could design what he was looking for. To get access to the parts he would need, he would have to rely upon companies from far away, and would oftentimes be forced to wait more than three weeks for them to arrive. Because of this, Peter decided he would need to take part manufacturing into his own hands. He purchased a manual lathe, allowing him to make modifications to his two-stroke engines exactly how he wanted them. Quickly thereafter, Heavy Duty Racing was born.

Peter discussed with us his love of racing, how he first got into machining, the parts his shop has designed, and tips and tricks for new machinists.

How did you get started in machining?

Since I was a kid I have been riding motorcycles and racing motocross. I went to a tech school in the ’80s and learned diesel technologies. When I realized nobody in this area could help design the engines I wanted to make, I decided I needed to learn how to do it myself. I have a friend, George, who is a retired mold and die maker that also worked on motorcycle engines, I asked him for some advice on how to get started. George ended up teaching me all about machining and working on engines. I really learned from failures, by trying new things, and doing it every day. I started Heavy Duty Racing in 1997 and we have been modifying and designing the highest performing engines since then.

What machines and softwares are you using in your shop?

We currently have a Thormach PCNC 1100 and a Daluth Puma CNC Lathe (we call it The Beast, it’s angry and grumpy but it gets the job done). We also have a Bridgeport Mill, Manual Lathe, and a Tiggwell. When we were choosing software to use, they had to be easy and quick to learn. We weighed our options and decided to use Autodesk Fusion 360 about 5 years ago. We mostly machine cast iron and steel since most engines are made from those materials.

What sets Heavy Duty Racing apart from the competitors?

We have a small hands-on approach and treat every part with care. We don’t have a cookie-cutter process so we are very flexible when it comes to customer needs. Since each part is different, we don’t have set prices and have custom quoting on each part. We value our customers and tailor every build to the rider, based on the weight, fuel, and skill level of the rider. We make unique components for each rider so they can have the best experience when they hop on their bike. We are just focused on letting people do what they love.

What is the coolest project you have worked on?

In 2016, MX Tech Suspension in Illinois gave us the opportunity to build an engine for them to display at their event. We got to go to California to watch them demo the engine in front of thousands of people. It was very nerve-racking to watch it live but the experience was amazing. The engine was later featured on the cover of Motocross Action magazine. It was very cool to see something we dedicated so much hard time toward get that much recognition.

Why is high qualtiy tooling important to you?

We are making really difficult machine parts so we need tools that can last. Micro 100 tooling lasts and does the job. The thread mills we use are 3-4 mm and 14 mm and they last longer than any competition out there. The thread mills do not chip like the competition and the carbide is super strong. Breaking a tool is not cheap, so to keep one tool in the machine for how long we have has really saved me in the long run. We found Micro 100 one day looking through our distributor’s catalog and decided to try some of their boring bars. After about 5 holes, we realized that these tools are the best we have ever used! Micro has had everything I’ve been looking for in stock and ready to ship, so we have yet to need to try out their custom tools.

Most engine tolerances are no more than .005” taper. You need the tooling to hold tight tolerances, especially in engines. Just like with tooling, minimizing vibration is key to getting the engine to last longer. We need tight tolerances to maintain high quality and keep engines alive.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

The same advice I’ve given to my son: Don’t be ashamed to start from the bottom and learn from the ground, up. Everybody wants to make cool projects, but you need to learn what is going on around you to master the craft. Learn the processes and follow the steps. It’s very easy to break a tool, ruin a part, or even hurt yourself. Don’t be scared of quality tools! Buying the cheap stuff will help you with one job, but the quality tools last and will save you in multiple situations.

Follow Heavy Duty Racing on Instagram, and go check out their website to see more about them!

Hybrid Machining – Featured Customer

Located in Holland, MI, Hybrid Machining uses machining skills combined with 3 different 3D printing technologies to manufacture complex projects. Hybrid Machining is a manufacturing company that can take the customer’s design from start to finish, allowing customers to dictate their path. Rather than focusing on a single product, Hybrid has listened to customer needs and presented solutions that, in many cases, customers didn’t know were possible. Jeff Robinson, the owner, took some time out of his day to answer some questions about Hybrid Machining.

How did you get into manufacturing?  

I started working in an architectural shop during my high school years.  I quickly realized that there was a more advanced part of the industry that I was missing out on. Therefore, I started researching CNC Routing.  I fell in love with the technology and have been studying it ever since. 

What sort of machines and materials do you use in your shop?

We currently run a Datron Neo, Fanuc Robodrill, and a CR Onsrud 5-axis Router. We work primarily with wood, plastic, and non-ferrous materials. We currently use Autodesk Fusion 360, FeatureCAM, Powermill, Vectric Aspire, and AlphaCAM for CAM.  For CAD, we run Fusion 360, Inventor, and Solidworks.

When did you start using 3D printing and how has it benefitted you?

I have been 3D printing for just over a year.  It was the first technology that we initiated here at Hybrid Machining, and it has allowed us to provide the best solution to the customer no matter what the requirements are. By expanding into 3D printing, we can help the customer decide which technology will work the best for their part. Many times, we take the “Hybrid” approach and use both additive and subtractive technologies together.

How have you adapted during the Covid-19 outbreak and how has it changed your business?

We started by stopping normal production to form a non-profit called 3DC19 with other local, small business owners with the sole purpose of 3D printing and assembling plastic face shields.  Hybrid Machining became the distribution center for the efforts.  Collectively, we produced and donated 75K articles of PPE to local hospitals, nursing homes, doctor offices, and first responders.  You can learn more about the efforts at www.3DC19.com. We have also been machining a lot of acrylic face guards for customers so that we can help them to get their office staff back to work safely. 

What sets Hybrid Machining apart from the rest of the manufacturing community? 

We have a serious passion for educating our youth and local businesses on the rapid changes currently happening in the manufacturing industry and preparing them for the impact that Industry 4.0 will have on our lives in the future.  We want to produce knowledgeable people just as much as we produce products, and we do this in our unique Learning Lab.  We team up with local schools, vocational schools, and community colleges to help them spread the word about manufacturing.  We also intend to do ‘Lunch and Learns’ with local businesses to help them understand what other manufacturing methods and advanced materials are available on the market today.

What is the coolest project you have had come through the shop?

Many years ago, at my previous shop, we worked on the presidential handrail that the last three presidents stood behind during the inauguration.

Are you using HEM techniques to improve cycle times? 

Yes, we use a couple of the fastest and most nimble machines on the market: the Datron NEO and the Fanuc Robodrill.  We leverage the machine’s tools’ high accelerations and deceleration rates, along with HEM, to drastically reduce cycle times for our customers.  This allows us to be competitive against over-seas importers.

What do you have to lose other than cycle time? You purchased the entire tool, not just the tip, so use it!  You will be surprised how the different the machine will sound and you can get parts done faster with less tool wear.

Why is high quality tool performance important to you?

The tooling is super important to the success of a project because the tool is what is doing the work.  I like to tell people, “Why would you buy a high-end sports car with all bells and whistles and then put crappy tires on it?  All that power and handling is worthless unless you have good tires.”  The same goes for tooling.  You can have a half-million-dollar machine that is super-fast and accurate and yet still produce a terrible part with cheap tooling. 

When was a time that Harvey Tool, Helical Solutions, or Micro 100 saved the day?

Harvey Tool helped me get through some tough composite projects in the past.  Their technical support team was extremely knowledgeable on the subject matter and helped me pick the right tool and parameters to get the job done. 

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

NEVER STOP LEARNING.  Things may be going great at first and you think you have it all figured out, but then a new technology comes and swipes you off your feet.  Spend your spare time studying industry trends, talking to other business leaders, new and old, and preparing for the future.

 Is there anything else you would like to share with the In The Loupe community?

We are extremely thankful that Harvey Tool spends a lot of time developing ‘material-specific’ tooling.  We spend 90% of our time in that section of the catalog.  We recently tested out the new wood cutters and are extremely happy. We pushed these tools at speeds and feeds that are unbelievable.  We also use the Harvey Tool plastic cutters on a regular basis. 

Here at Hybrid Machining, we are blending the lines between routing and milling.  For many decades, the line had been fairly clear. There were certain types of jobs you ran on certain types of machines.  We are blurring those lines and are using the best tools for the jobs.  For instance, we use the 24K RPM spindle on the Robodrill to run it more like a router than a mill.  Therefore, we call it the “RoboRouter”.  We can produce wood and plastic parts at unbelievable speeds while achieving surface finishes that are off the charts.  This is not conventional practice, but the team at Hybrid Machining is willing to blaze the path forward for others to follow.

To check out more about Hybrid Machining go to their website or follow them on social media!

How to Optimize Results While Machining with Miniature End Mills

 The machining industry generally considers miniature end mills to be any end mill with a diameter under 1/8 of an inch. This is also often the point where tolerances must be held to a tighter window. Because the diameter of a tool is directly related to the strength of a tool, miniature end mills are considerably weaker than their larger counterparts, and therefore, lack of strength must be accounted for when machining with them. If you are using these tools in a repetitive application, then optimization of this process is key.

Key Cutting Differences between Conventional and Miniature End Mills

Runout

Runout during an operation has a much greater effect on miniature tools, as even a very small amount can have a large impact on the tool engagement and cutting forces. Runout causes the cutting forces to increase due to the uneven engagement of the flutes, prompting some flutes to wear faster than others in conventional tools, and breakage in miniature tools. Tool vibration also impacts the tool life, as the intermittent impacts can cause the tool to chip or, in the case of miniature tools, break. It is extremely important to check the runout of a setup before starting an operation. The example below demonstrates how much of a difference .001” of runout is between a .500” diameter tool and a .031” diameter tool.

The runout of an operation should not exceed 2% of the tool diameter. Excess runout will lead to a poor surface finish.

Chip Thickness

The ratio between the chip thickness and the edge radius (the edge prep) is much smaller for miniature tools. This phenomena is sometimes called “the size effect” and often leads to an error in the prediction of cutting forces. When the chip thickness-to-edge radius ratio is smaller, the cutter will be more or less ploughing the material rather than shearing it. This ploughing effect is essentially due to the negative rake angle created by the edge radius when cutting a chip with a small thickness.

If this thickness is less than a certain value (this value depends of the tool being used), the material will squeeze underneath the tool. Once the tool passes and there is no chip formation, part of the plowed material recovers elastically. This elastic recovery causes there to be higher cutting forces and friction due to the increased contact area between the tool and the workpiece. These two factors ultimately lead to a greater amount of tool wear and surface roughness.

Figure 1: (A) Miniature tool operation where the edge radius is greater than the chip thickness (B) Conventional operation where the edge radius is small than the chip thickness

Tool Deflection

Tool deflection has a much greater impact on the formation of chips and accuracy of the operation in miniature operations, when compared to conventional operations. Cutting forces concentrated on the side of the tool cause it to bend in the direction opposite the feed. The magnitude of this deflection depends upon the rigidity of the tool and its distance extended from the spindle. Small diameter tools are inherently less stiff compared to larger diameter tools because they have much less material holding them in place during the operation. In theory, doubling the length sticking out of the holder will result in 8 times more deflection. Doubling the diameter of an end mill it will result in 16 times less deflection. If a miniature cutting tool breaks on the first pass, it is most likely due to the deflection force overcoming the strength of the carbide. Here are some ways you can minimize tool deflection.

Workpiece Homogeny

Workpiece homogeny becomes a questionable factor with decreasing tool diameter. This means that a material may not have uniform properties at an exceptionally small scale due to a number of factors, such as container surfaces, insoluble impurities, grain boundaries, and dislocations. This assumption is generally saved for tools that have a cutter diameter below .020”, as the cutting system needs to be extremely small in order for the homogeny of the microstructure of the material to be called into question.

Surface Finish

Micromachining may result in an increased amount of burrs and surface roughness when compared to conventional machining. In milling, burring increases as feed increases, and decreases as speed increases. During a machining operation, chips are created by the compression and shearing of the workpiece material along the primary shear zone. This shear zone can be seen in Figure 2 below. As stated before, the chip thickness-to-edge radius ratio is much higher in miniature applications. Therefore, plastic and elastic deformation zones are created during cutting and are located adjacent to the primary shear zone (Figure 2a). Consequently, when the cutting edge is close to the border of the workpiece, the elastic zone also reaches this border (Figure 2b). Plastic deformation spreads into this area as the cutting edge advances, and more plastic deformation forms at the border due to the connecting elastic deformation zones (Figure 2c). A permanent burr begins to form when the plastic deformation zones connect (Figure 2d) and are expanded once a chip cracks along the slip line (Figure 2e). When the chips finally break off from the edge of the workpiece, a burr is left behind (Figure 2f).

Tool Path Best Practices for Miniature End Mills

Because of the fragility of miniature tools, the tool path must be programmed in such a way as to avoid a sudden amount of cutting force, as well as permit the distribution of cutting forces along multiple axes. For these reasons, the following practices should be considered when writing a program for a miniature tool path:

Ramping Into a Part

Circular ramping is the best practice for moving down axially into a part, as it evenly distributes cutting forces along the x, y, and z planes. If you have to move into a part radially at a certain depth of cut, consider an arching tool path as this gradually loads cutting forces onto the tool instead of all at once.

Machining in Circular Paths

You should not use the same speeds and feed for a circular path as you would for a linear path. This is because of an effect called compounded angular velocity. Each tooth on a cutting tool has its own angular velocity when it is active in the spindle. When a circular tool path is used, another angular velocity component is added to the system and, therefore, the teeth on the outer portion of tool path are traveling at a substantially different speed than expected. The feed of the tool must be adjusted depending on whether it is an internal or external circular operation. To find out how to adjust your feed, check out this article on running in circles.

Slotting with a Miniature Tool

Do not approach a miniature slot the same way as you would a larger slot. With a miniature slot, you want as many flutes on the tool as possible, as this increases the rigidity of the tool through a larger core. This decreases the possibility of the tool breaking due to deflection. Because there is less room for chips to evacuate with a higher number of flutes, the axial engagement must be decreased. With larger diameter tools you may be stepping down 50% – 100% of the tool diameter. But when using miniatures with a higher flute count, only step down between 5% – 15%, depending on the size of the diameter and risk of deflection. The feed rate should be increased to compensate for the decreased axial engagement. The feed can be increased even high when using a ball nose end mill as chip thinning occurs at these light depths of cut and begins to act like a high feed mill.

Slowing Down Your Feed Around Corners

Corners of a part create an additional amount of cutting forces as more of the tool becomes engaged with the part. For this reason it is beneficial to slow down your feed when machining around corners to gradually introduce the tool to these forces.

Climb Milling vs. Conventional Milling

This is somewhat of a tricky question to answer when it comes to micromachining. Climb milling should be utilized whenever a quality surface finish is called for on the part print. This type of tool path ultimately leads to more predictable/lower cutting forces and therefore higher quality surface finish. In climb milling, the cutter engages the maximum chip thickness at the beginning of the cut, giving it a tendency to push away from the workpiece. This can potentially cause chatter issues if the setup does not have enough rigidity.  In conventional milling, as the cutter rotates back into the cut it pulls itself into the material and increases cutting forces. Conventional milling should be utilized for parts with long thin walls as well as delicate operations.

Combined Roughing and Finishing Operations

These operations should be considered when micromachining tall thin walled parts as in some cases there is not sufficient support for the part for a finishing pass.

Helpful Tips for Achieving Successful Micromachining Operations

Try to minimize runout and deflection as much as possible.This can be achieved by using a shrink-fit or press-fit tool holder. Maximize the amount of shank contact with the collet while minimizing the amount of stick-out during an operation. Double check your print and make sure that you have the largest possible end mill because bigger tools mean less deflection.

  • Choose an appropriate depth of cut so that the chip thickness to edge radius ratio is not too small as this will cause a ploughing effect.
  • If possible, test the hardness of the workpiece before machining to confirm the mechanical properties of the material advertised by the vender. This gives the operator an idea of the quality of the material.
  • Use a coated tool if possible when working in ferrous materials due to the excess amount of heat that is generated when machining these types of metals. Tool coatings can increase tool life between 30%-200% and allows for higher speeds, which is key in micro-machining.
  • Consider using a support material to control the advent of burrs during a micro milling application. The support material is deposited on the workpiece surface to provide auxiliary support force as well as increase the stiffness of the original edge of the workpiece. During the operation, the support material burrs and is plastically deformed rather than the workpiece.
  • Use flood coolant to lower cutting forces and a greater surface finish.
  • Scrutinize the tool path that is to be applied as a few adjustments can go a long way in extending the life of a miniature tool.
  • Double-check tool geometry to make sure it is appropriate for the material you are machining. When available, use variable pitch and variable helix tools as this will reduce harmonics at the exceptionally high RPMs that miniature tools are typically run at.
Figure 3: Variable pitch tool (yellow) vs. a non-variable pitch tool (black)

Show Us What You #MadeWithMicro100

Are you proud of the parts you #MadeWithMicro100? Show us with a video of the parts you are making, the Micro 100 Tool used, and the story behind how that part came to be, for a chance to win a $1,000 Amazon gift card grand prize!

With the recent addition of the Micro 100 brand to the Harvey Performance Company family, we want to know how you have been utilizing its expansive tooling offering. Has Micro 100’s Micro-Quik™ system helped you save time and money? Do you have a favorite tool that gets the job done for you every time? Has Micro 100 tooling saved you from a jam? We want to know! Send us a video on Instagram and show us what you #MadeWithMicro100!

How to Participate

Using #MadeWithMicro100 and @micro_100, tag your video of the Micro 100 tools machining your parts on Instagram or Facebook. Remember, don’t share anything that could get you in trouble! Proprietary parts and trade secrets should not be on display.

Official Contest Rules

Contest Dates:

  • The contest will run between December 5, 2019 to January 17, 2020. Submit as many entries as you’d like! Entries that are submitted before or after the contest period will not be considered for the top prizes (But we’d still like to see them!)

The Important Stuff:

  1. Take a video of your Micro 100 tool in action, clear and visible.
  2. Share your video on social media using #MadeWithMicro100 and tagging @Micro_100.
  3. Detail the story behind the project (tool number(s), operation, running parameters, etc.)

Prizes

All submissions will be considered for the $1,000 Amazon gift card grand prize. Of these entries, the most impressive (10) will be put up to popular vote. All entries put up to vote will be featured on our new customer testimonial page on our website with their name, social media account, and video displayed for everybody to see.

We’ll pick our favorites, but the final say is up to you. Public voting will begin on January 21, 2020, and a winner will be announced on January 28, 2020.

The top five entries will be sent Micro 100’s Micro-Quik™ tool change system with a few of our quick change tools. The top three entries will be offered a spot as a “Featured Customer” on our “In The Loupe” blog!

The Fine Print:

  • Please ensure that you have permission from both your employer and customer to post a video.
  • All entries must be the original work of the person identified in the entry.
  • No purchase necessary to enter or win. A purchase will not increase your chances of winning.
  • On January 28, 2020, the top 5 winners will be announced to the public. The Top 5 selected winners will receive a prize. The odds of being selected depend on the number of entries received. If a potential winner cannot be contacted within five (5) days after the date of first attempt, an alternative winner may be selected.
  • The potential winners will be notified via social media. Each potential winner must complete a release form granting Micro 100 full permission to publish the winner’s submitted video. If a potential winner cannot be contacted, or fails to submit the release form, the potential winner forfeits prize. Potential winners must continue to comply with all terms and conditions of these official contest rules, and winning is contingent upon fulfilling all requirements.
  • Participation in the contest constitutes entrants’ full and unconditional agreement to and acceptance of these official rules and decisions. Winning a prize is contingent upon being compliant with these official rules and fulfilling all other requirements.
  • The Micro 100 Video Contest is open to residents in US and Canada who are at least 18 years old at the time of entry.

How to Advance Your Machining Career: 8 Tips from Machining Pros

Since we began shining a light on Harvey Performance Company brand customers via “In the Loupe’s,” Featured Customer posts, more than 20 machinists have been asked to share insight relevant to how they’ve achieved success. Each Featured Customer post includes interesting and useful information on a variety of machining-related subjects, including prototyping ideas, expanding a business, getting into machining, advantages and disadvantages of utilizing different milling machine types, and more. This post compiles 8 useful tips from our Featured Customers on ways to advance your machining career.

Tip 1: Be Persistent – Getting Your Foot in the Door is Half the Battle

With machining technology advancing at the amazing rate that it is, there is no better time to become a machinist. It is a trade that is constantly improving, and offers so many opportunities for young people. Eddie Casanueva of Nueva Precision first got into machining when he was in college, taking a job at an on-campus research center for manufacturing systems to support himself.

“The research center had all the workings of a machine shop,” Eddie said. “There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions… John – an expert machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could.”

One of the best things about becoming a machinist is that there is a fairly low entry barrier. Many machinists start working right out of high school, with 12-18 months of on-the-job training or a one to two year apprenticeship. Nearly 70% of the machinist workforce is over the age of 45. The Bureau of Labor Statistics is predicting a 10% increase in the machinist workforce with opportunities for 29,000 additional skilled machinists by 2024, so it is certainly a great time to get your foot in the door.

Tip 2: Keep an Open Mind – If You Can Think of It, You Can Machine It

Being open-minded is crucial to becoming the best machinist you can be. By keeping an open mind, Oklahoma City-based company Okluma’s owner Jeff Sapp has quickly earned a reputation for his product as one of the best built and most reliable flashlights on the market today. Jeff’s idea for Okluma came to him while riding his motorcycle across the country.

“I had purchased what I thought was a nice flashlight for $50 to carry with me on the trip. However, two days in to the trip the flashlight broke. Of course, it was dark and I was in the middle of nowhere trying to work on my bike. I’m happy to pay for good tools, but that wasn’t what happened. Not only was there no warranty for replacement, there was no way to fix it. It was just made to be thrown away. That whole attitude makes me angry. When I got home, I decided I was going to put my new skills to work and design and build my own flashlight, with the goal of never running into an issue like I had on my trip ever again. I started by making one for myself, then four, then twenty. That was four years ago. Now I have my own business with one employee and two dogs, and we stay very busy.”

An awesome side benefit to working as a machinist is that you have all the resources to create anything you can dream of, like Jeff did with Okluma.

Image courtesy of Okluma.

Tip 3: Be Patient – Take Time to Ensure Your Job is Setup Correctly before Beginning

The setup process is a huge part of machining, but is often overlooked. Alex Madsen, co- owner of M5 Micro in Minnesota, has been working in manufacturing for more than 11 years. Alex is also a part owner of World Fabrication, and owns his own job shop called Madsen Machine and Design. Alex has spent countless hours perfecting his setup to improve his part times.

“It is certainly challenging to use little tools, but the key is to not get discouraged. You should plan on lots of trial and error; breaking tools is just a part of the game. You may buy ten end mills and break six, but once you dial one in it will last the rest of the job.

You should also make sure to put extra time and effort into understanding your machine when working on micromachining jobs. You need to know where there is any backlash or issues with the machine because with a tiny tool, even an extra .0003” cut can mean the end of your tool. When a difference of one tenth can make or break your job, you need to take your time and be extra careful with your machine, tool inspection, and programming before you hit run.”

Tip 4: Effort Pays Off – Long Hours Result in Shop Growth

Success isn’t earned overnight. That is especially true in the machining world. Becoming a good machinist takes a great deal of sacrifice, says Josh from Fleet Machine Co. in Gloucester, MA.

“Opening your own shop involves more than learning how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.”

Working hard is a common theme we hear from our featured customers. Brothers Geordan and Nace Roberts of Master Machine Manufacturing have similar advice.

“We often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until two or three a.m. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back into the shop.” Starting and growing a business takes time. Every machinist starts from the beginning and through hard work and determination, grows their business.

Image courtesy of Liberty Machine Inc.

Tip 5: Utilize Tooling from Quality Manufacturers – All Tooling Isn’t Created Equal

 

When it comes down to it, tooling is singlehandedly the biggest choice you will make as a machinist. Grant Hughson, manufacturing engineer at Weiss Watch Company who works as a manufacturing instructor in his spare time, reflected on the importance of tooling.

“Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.”

While opting for cheaper tooling can appear to be beneficial when just starting out, before long, machinists are losing time and money because of unpredictability. Jonathan from TL Technologies echoed this point, saying:

“We feel that if we invested so much in these high-end machining centers, it would be criminal to put insufficient tooling and holders into them. We found that by selecting the proper tool with the appropriate sciences behind it we have been able to create products with a cost per cut that is not only competitive, but required to stay current. By keeping the quality as high as possible on the part making side of things, we’ve insured as much ease and reliability into our downstream process as we could. Quality tooling also provides predictability and added safety into the workflow. High-quality carbide tooling is the lifeblood of the business.”

Additional Thoughts Regarding Boosting Your Machining Career With Tooling:

Don’t Cheap Out

  • “The additional cost is always worth the payoff in the end knowing that you have a tool that will produce quality parts and shave valuable minutes off your cycle times. The slightly higher cost of the Harvey/Helical product is small change compared to the long term cost savings associated with their performance” – Seth, Liberty Machine

Consistency is Key

  • “We know the performance we are going to get from the tools is consistent, and we can always rely on getting immaculate finishes. While using the Harvey Tool and Helical product, we can confidently walk away from the machine and come back to a quality finished part every time.” – Bennett, RIT Baja SAE

Superior Specialty Tools

  • “One of the greatest things that I’ve experienced over the past year and a half is flexibility. We’ve asked for some specific tools to be made typically, the lead times that we found were beyond what we needed. We went through the Helical specials division and had them built within a couple of weeks. That was a game changer for us.” – Tom, John Force Racing

“Having high quality tooling like Helical is essential. Helical tools help us maintain a much higher machining efficiency because of the outstanding tool life, while also achieving more aggressive run times. In addition, we are able to consistently keep high tolerances, resulting in a better final product.” – Cameron, Koenig Knives

Tip 6: Get With the Times – Join the Social Media Community

Social media is a valuable tool for machinists. With ever-increasing popularity in networks such as Facebook, LinkedIn, Twitter, and Instagram, there will always be an audience to showcase new and unique products to. We asked a few of our featured customers how they incorporated social media into their machining and the benefits that come along with it.

“A lot of our sales come through Instagram or Facebook, so I would recommend those platforms to anyone who is trying to start a business,” Jeff from Okluma said. “We have also had a lot of success collaborating with others in the community. Typically it is something we couldn’t do ourselves, or they couldn’t do themselves, so we share the labor and collaborate on some really cool items.”

Tip 7: Value Your Customers – Always Put Them First

“In the Loupe’s” featured customers repeatedly emphasized the importance of putting customers first. It’s a simple concept to master, and pays off immensely. Repeat customers tell you that you are doing something right, said Brian Ross, owner of Form Factory.

“We have kept our customers happy and consistently deliver parts on time, so we get a lot of repeat business. Word definitely gets around on how you treat people so we try to treat everyone with respect and honesty which is key to running a good business.” Jeff from Okluma takes great pride in his customer service, saying “we only sell direct to consumers through our website so we can control our lifetime warranty. It has worked really well for us so far, so we have no plans to change that right now. I care more about our customers than any retailer is able to.”

Image courtesy of MedTorque.

Tip 8: Never Stop Learning – Ask Questions Whenever You Can

Hopefully some of these tips from our featured customers stuck with you. To leave you with a quote from of Seth Madore, owner of Liberty Machine, “Don’t stop learning. Keep your ears open and your mouth shut,” “That old guy in the shop has likely forgotten more than you will ever learn. The amount of tools in your Kennedy box doesn’t mean you’re a good machinist. Some of the best toolmakers I knew had small boxes with only the common tools. Learn how to excel with limited resources. Ask questions, and own up to your mistakes.”

Selecting the Right Harvey Tool Miniature Drill

Among Harvey Tool’s expansive holemaking solutions product offering are several different types of miniature tooling options and their complements. Options range from Miniature Spotting Drills to Miniature High Performance Drills – Deep Hole – Coolant Through. But which tools are appropriate for the hole you aim to leave in your part? Which tool might your current carousel be missing, leaving efficiency and performance behind? Understanding how to properly fill your tool repertoire for your desired holemaking result is the first step toward achieving success.

Pre-Drilling Considerations

Miniature Spotting Drills

Depending on the depth of your desired machined hole and its tolerance mandates, as well as the surface of the machine you will be drilling, opting first for a Miniature Spotting Drill might be beneficial. This tool pinpoints the exact location of a hole to prevent common deep-hole drilling mishaps such as walking, or straying from a desired path. It can also help to promote accuracy in instances where there is an uneven part surface for first contact. Some machinists even use Spotting Drills to leave a chamfer on the top of a pre-drilled hole. For extremely irregular surfaces, however, such as the side of a cylinder or an inclined plane, a Flat Bottom Drill or Flat Bottom Counterbore may be needed to lessen these irregularities prior to the drilling process.

spotting drill

Tech Tip: When spotting a hole, the spot angle should be equal to or wider than the angle of your chosen miniature drill. Simply, the miniature drill tip should contact the part before its flute face does.

spotting drill correct angle

Selecting the Right Miniature Drill

Harvey Tool stocks several different types of miniature drills, but which option is right for you, and how does each drill differ in geometry?

Miniature Drills

Harvey Tool Miniature Drills are popular for machinists seeking flexibility and versatility with their holemaking operation. Because this line of tooling is offered uncoated in sizes as small as .002” in diameter, machinists no longer need to compromise on precision to reach very micro sizes. Also, this line of tooling is designed for use in several different materials where specificity is not required.

miniature drill

Miniature High Performance Drills – Deep Hole – Coolant Through

For situations in which chip evacuation may be difficult due to the drill depth, Harvey Tool’s Deep Hole – Coolant Through Miniature Drills might be your best option. The coolant delivery from the drill tip will help to flush chips from within a hole, and prevent heeling on the hole’s sides, even at depths up to 20 multiples of the drill diameter.

miniature drill coolant through

Miniature High Performance Drills – Flat Bottom

Choose Miniature High Performance Flat Bottom Drills when drilling on inclined and rounded surfaces, or when aiming to leave a flat bottom on your hole. Also, when drilling intersecting holes, half holes, shoulders, or thin plates, its flat bottom tool geometry helps to promote accuracy and a clean finish.

flat bottom drill

Miniature High Performance Drills – Aluminum Alloys

The line of High Performance Drills for Aluminum Alloys feature TiB2 coating, which has an extremely low affinity to Aluminum and thus will fend off built-up edge. Its special 3 flute design allows for maximum chip flow, hole accuracy, finish, and elevated speeds and feeds parameters in this easy-to-machine material.

drill for aluminum

 

Miniature High Performance Drills – Hardened Steels

Miniature High Performance Drills – Hardened Steels features a specialized flute shape for improved chip evacuation and maximum rigidity. Additionally, each drill is coated in AlTiN Nano coating for hardness, and heat resistance in materials 48 Rc to 68 Rc.

drill for hardened steel

Miniature High Performance Drills – Prehardened Steels

As temperatures rise during machining, the AlTiN coating featured on Harvey Tool’s Miniature High Performance Drills – Prehardened Steels creates an aluminum oxide layer which helps to reduce thermal conductivity of the tool and helps to promote heat transfer to the chip, as well as improve lubricity and heat resistance in ferrous materials.

drill for prehardened steel

Post-Drilling Considerations

Miniature Reamers

For many operations, drilling the actual hole is only the beginning of the job. Some parts may require an ultra-tight tolerance, for which a Miniature Reamer (tolerances of +.0000″/-.0002″ for uncoated and +.0002″/-.0000″ for AlTiN Coated) can be used to bring a hole to size. miniature reamer

Tech Tip: In order to maintain appropriate stock removal amounts based on the reamer size, a hole should be pre-drilled at a diameter that is 90-94 percent of the finished reamed hole diameter.

Flat Bottom Counterbores

Other operations may require a hole with a flat bottom to allow for a superior connection with another part. Flat Bottom Counterbores leave a flat profile and straighten misaligned holes. For more information on why to use a Flat Bottom Counterbore, read 10 Reasons to Use Flat Bottom Tools.

flat bottom counterbores

Key Next Steps

Now that you’re familiar with miniature drills and complementary holemaking tooling, you must now learn key ways to go about the job. Understanding the importance of pecking cycles, and using the correct approach, is vital for both the life of your tool and the end result on your part. Read this post’s complement “Choosing the Right Pecking Cycle Approach,” for more information on the approach that’s best for your application.

What You Need to Know About Coolant for CNC Machining

Coolant in purpose is widely understood – it’s used to temper high temperatures common during machining, and aid in chip evacuation. However, there are several types and styles, each with its own benefits and drawbacks. Knowing which coolant – or if any – is appropriate for your job can help to boost your shop’s profitability, capability, and overall machining performance.

Coolant or Lubricant Purpose

Coolant and lubricant are terms used interchangeably, though not all coolants are lubricants. Compressed air, for example, has no lubricating purpose but works only as a cooling option. Direct coolants – those which make physical contact with a part – can be compressed air, water, oil, synthetics, or semi-synthetics. When directed to the cutting action of a tool, these can help to fend off high temperatures that could lead to melting, warping, discoloration, or tool failure. Additionally, coolant can help evacuate chips from a part, preventing chip recutting and aiding in part finish.

Coolant can be expensive, however, and wasteful if not necessary. Understanding the amount of coolant needed for your job can help your shop’s efficiency.

Types of Coolant Delivery

Coolant is delivered in several different forms – both in properties and pressure. The most common forms include air, mist, flood coolant, high pressure, and Minimum Quantity Lubricant (MQL). Choosing the wrong pressure can lead to part or tool damage, whereas choosing the wrong amount can lead to exhausted shop resources.

Air: Cools and clears chips, but has no lubricity purpose. Air coolant does not cool as efficiently as water or oil-based coolants. For more sensitive materials, air coolant is often preferred over types that come in direct contact with the part. This is true with many plastics, where thermal shock – or rapid expansion and contraction of a part – can occur if direct coolant is applied.

Mist: This type of low pressure coolant is sufficient for instances where chip evacuation and heat are not major concerns. Because the pressure applied is not great in a mist, the part and tool do not undergo additional stresses.

Flood: This low pressure method creates lubricity and flushes chips from a part to avoid chip recutting, a common and tool damaging occurrence.

High Pressure: Similar to flood coolant, but delivered in greater than 1,000 psi. This is a great option for chip removal and evacuation, as it blasts the chips away from the part. While this method will effectively cool a part immediately, the pressure can be high enough to break miniature diameter tooling. This method is used often in deep pocket or drilling operations, and can be delivered via coolant through tooling, or coolant grooves built into the tool itself. Harvey Tool offers Coolant Through Drills and Coolant Through Threadmills.

Minimum Quantity Lubricant (MQL): Every machine shop focuses on how to gain a competitive advantage – to spend less, make more, and boost shop efficiency. That’s why many shops are opting for MQL, along with its obvious environmental benefits. Using only the necessary amount of coolant will dramatically reduce costs and wasted material. This type of lubricant is applied as an aerosol, or an extremely fine mist, to provide just enough coolant to perform a given operation effectively.

To see all of these coolant styles in action, check out the video below from our partners at CimQuest.

In Conclusion

Coolant is all-too-often overlooked as a major component of a machining operation. The type of coolant or lubricant, and the pressure at which it’s applied, is vital to both machining success and optimum shop efficiency. Coolant can be applied as compressed air, mist, in a flooding property, or as high pressure. Certain machines also are MQL able, meaning they can effectively restrict the amount of coolant being applied to the very amount necessary to avoid being wasteful.

Optimize Roughing With Chipbreaker Tooling

Chipbreaker End Mills feature unique notch profiles, creating a serrated cutting edge. These dividers break otherwise long, stringy chips into small, easily-managed swarf that can be cleanly evacuated from the part. But why is a chipbreaker necessary for some jobs, and not others? How does the geometry of this unique tool impact its proper running parameters? In this post, we’ll answer these questions and others to discover the very real benefits of this unique cutting geometry.

How Chipbreaker Tooling Works

As a tool rotates and its cutting edge impacts a workpiece, material is sheared off from a part, creating chips. When that cutting process is interrupted, as is the case with breaks in the cutting portion of the tool, chips become smaller in length and are thus easier to evacuate. Because the chipbreakers are offset flute-to-flute, a proper, flat surface finish is achieved as each flute cleans up any excess material left behind from previously passed flutes.

Benefits of Chipbreaker Tooling

Machining Efficiency

When chips are removed from the part, they begin to pile in the machine. For extensive operations, where a great deal of material is hogged out, chip accumulation can very rapidly get in the way of the spindle or part. With larger chips, accumulation occurs much faster, leaving machinists to stop their machine regularly to remove the waste. As any machinist knows, a stopped machine equates to lost money.

Prolonged Tool Life

Inefficient chip evacuation can lead to chip recutting, or when the the tool impacts and cuts chips left behind during the machining process. This adds stresses on the tool and accelerates rate of wear on the cutting edge. Chipbreaker tooling creates small chips that are easily evacuated from a part, thus minimizing the risk of recutting.

Accelerated Running Parameters

A Harvey Performance Company Application Engineer recently observed the power of a chipbreaker tool firsthand while visiting a customer’s shop in Minnesota. The customer was roughing a great amount of 4340 Steel. Running at the parameters below, the tool was able to run uninterrupted for two hours!

Helical Part No. 33737
Material 4340 Steel
ADOC 2.545″
RDOC .125″
Speed 2,800 RPM
Feed 78 IPM
Material Removal Rate 24.8 Cubic In/Min

Chipbreaker Product Offering

Chipbreaker geometry is well suited for materials that leave a long chip. Materials that produce a powdery chip, such as graphite, should not be machined with a chipbreaker tool, as chip evacuation would not be a concern. Helical Solutions’ line of chipbreaker tooling includes a 3-flute option for aluminum and non-ferrous materials, and its reduced neck counterpart. Additionally, Helical offers a 4-flute rougher with chipbreaker geometry for high-temp alloys and titanium. Harvey Tool’s expansive product offering includes a composite cutting end mill with chipbreaker geometry.

In Summary

Chipbreaker geometry, or grooves within the cutting face of the tool, break down chips into small, manageable pieces during the machining process. This geometry can boost shop efficiency by minimizing machine downtime to clear large chips from the machining center, improve tool life by minimizing cutting forces exerted on the tool during machining, and allow for more accelerated running parameters.

Weiss Watches – Featured Customer

Weiss Watch Company is restoring prestige to American watchmaking. They design and build timepieces with mechanical movements by hand in Los Angeles, California. Each timepiece is individually assembled in America. Their practices merge historical techniques and modern technological advances, with every process perfected by a Swiss-trained and certified American watchmaker. Weiss Watch Company strives to increase the percentage of domestic sourcing with each edition, and is the only company resurrecting industry practices that have not been active in the United States for decades.

Grant Hughson is a Manufacturing Engineer at Weiss Watch Company. Grant “lives and breathes” manufacturing, currently working in his spare time as a Manufacturing Instructor at Saddleback College. We spoke to Grant for this latest featured customer blog about the watch-making process, his experiences in the industry, and his thoughts on the state of American manufacturing.

weiss watches

What made you get into machining?

I grew up with a love for finely machined products, like watches, guns, and fishing gear. I also loved car racing, and a lot of the modifications on the cars are machined from various materials. So, from a young age, I was obsessed with the work that went into these products, and knew I wanted to be a part of the manufacturing industry.

What is your favorite part of this profession?

I love the entire manufacturing process. It always starts with a dream, or an idea. Then you take that idea and turn it into a drawing, and soon after, you’ll be modeling it. The best part is when you go to actually machine the part, and watch your original idea turn into a tangible part or product.

watchmaking

What is the most challenging part of the watch-making process?

There are a few challenging parts of the watch-making process, starting with the super-tight tolerances. Surface finish is also extremely important, and can be difficult to nail. Many surface finishes in watchmaking are visual, so roughness can be deceiving. We also were forced to design all of our workholding from scratch, as nothing currently existed in the market that would work for our machining process.

You mentioned your tight tolerances. What tolerances do you typically work in?

My tolerances are in the tenths. The holes that hold the jewels (watch bearings) are +0.0002, -0.

weiss watches

What sort of machines do you have in your shop?

We have a 3 axis vertical milling machine and a 9 axis Swiss style lathe in the shop.

What type of materials do you work in?

We work in steel, stainless steel, aluminum, brass, and titanium every day. It is a wide variety, but it keeps things interesting!

How have Harvey Tool products impacted your overall shop performance?

Harvey Tools have been great tools for me. I do a lot of prototype work, and constantly need odd sized tools or specialty profiles to finish a job. Thankfully, the Harvey Tool selection is HUGE. Somehow you guys always have what I need!

Tell us about your favorite project that Harvey Tools helped to create.

I love what I do everyday, so my favorite project is an ongoing one; making watches!

watchmaking tools

Why is high quality tool performance important to you?

It’s a must! Tool to tool accuracy and performance is vital in this business, especially with our extremely tight tolerances. High quality tools make sure that we get the same performance time after time without needing to scrap parts. This saves us valuable time and money.

What is your favorite process to work on as a machinist?

I really enjoy fixture design. Holding small parts for fixture design is an art! If it’s too tight, they’re smashed. If it’s too loose, see you later; your part is gone!

As a manufacturing engineer, I also enjoy the programming aspect of CNC machining. Being able to program the toolpaths and turn my programming skills into tangible parts is why I got into this business.

weiss watches

If you were stranded on a desert island with only one Harvey Tool or Helical tool, which would it be, and why?

It would have to be the Harvey 1/4″  30° engraving tool. I could mount it to the end of a stick. It would make for a hell of a spear!

Why is manufacturing products in America important to you?

Manufacturing products in America is a crucial part of the success and security of our business. When someone else makes your parts, its not hard for them to make a competing product. Making everything on-site keeps our proprietary information safe.

If you could give one piece of advice to a new machinist ready to take the #PlungeIntoMachining, what would it be?

Ask a lot of questions and never stop learning. It’s not easy but it’s worth it. If you consider yourself a maker or inventor, it’s the only place to be! Manufacturing is awesome, and anyone who tells you different is on the way out. Keep up the good work, and keep manufacturing your products in America!

weiss watches

Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Photos courtesy of Weiss Watch Company.

Undercutting End Mills: Well-Rounded Tools That Offer Maximum Versatility

Undercutting end mills, also known as lollipop cutters or spherical ball end mills, are a common choice for machining undercuts. An undercut is a common part feature characterized by one part of a workpiece “hanging” over another. Undercuts are typically difficult, or even impossible, to machine with a standard end mill, especially on 3-axis machines. In many cases, a specialty tool is needed to tackle this feature. Although they are frequently associated with a singular use, undercutting end mills are actually very versatile tools that are worth keeping on hand for a variety of operations.

Undercutting

undercutting machining

Unsurprisingly, undercutting end mills are very well suited to undercutting operations. Creating an undercut on a part can be tricky and time consuming, especially when forced to rotate the workpiece. Fortunately, this can be greatly simplified with an undercutting end mill.

Exactly what tool to use depends on the geometry of the feature and the part. Undercutting end mills are available with a range of wrap angles like 220°, 270°, and 300°. Greater wrap angles are the result of a thinner neck and create a more spherical cutting end. This style offers more clearance at the cost of rigidity. Likewise, undercutting end mills with lower wrap angles sacrifice clearance for greater rigidity.

Deburring & Edgebreaking

deburring

Since undercuts have a wrap angle that is greater than 180°, they are very well-suited to deburring or edgebreaking anywhere on your workpiece, including the underside. Deburring your parts by hand can be inefficient for your shop – using an undercutting end mill instead will save you time and money. Edgebreaking operations are often a critical final step to create a part that looks and feels like a finished product and that is safe to handle.

All undercutting end mills can be used to deburr and edgebreak, which makes them a useful tool to have on hand in any shop. Some manufacturers also offer specialized deburring undercutting end mills that are designed with a right and left hand flute orientation, giving them “teeth” that make them particularly useful for deburring complex shapes. Using a deburring undercutting end mill in a 5-axis machine often makes it possible to deburr or edgebreak an entire workpiece in one shot.

Slotting

slotting

Most machinists might not think of undercutting end mills for slotting, but they are fully capable of this operation. An equivalent slot can be machined with a regular ball end mill, but doing so might not be feasible due to clearance issues – an undercutting end mill has a reduced neck, unlike a standard ball end mill. Additionally, using an undercutter to slot can save time switching to an equivalent ball end mill.

Since only 180° of the cutting end can be used to slot, undercutting end mills with lower wrap angles and thicker necks are best suited to slotting. However, high helix undercutting end mills may be ideal if improved finish and increased chip removal are important to the operation.

Contouring & Profiling

contouring

With their wrap angle and increased clearance, undercutting end mills are very useful for both simple and complicated contouring and profiling operations. Their versatility means that it is sometimes possible to accomplish the entire operation with a single tool, rather than several, especially when 5-axis milling.

Reduced shank undercutting end mills offer the most versatility in complex contouring and profiling operations. The ability to chuck these tools at any depth means that they are capable of maximum clearance.

Choosing An Undercutting End Mill

While most undercutting end mills are conceptually similar, there are a few key differences that must be considered when picking the right tool for your job. Harvey Tool offers the following undercutting end mill styles as stock standard tools.

undercutting end mills