Tag Archive for: MRR

Titan USA 1K Follower Giveaway

*GIVEAWAY CLOSED – WINNER NOTIFIED*

As a thank you for reaching 1,000 followers on Instagram, we at Titan USA want to show our appreciation by giving all of our followers a chance to win a $150 Amazon gift card. With the addition of the Titan USA brand to the Harvey Performance Company family, we want to give our customers a chance to win.

How to Participate

All you need to do is follow the @titan.usa Instagram page, like the Giveaway post, and fill out the form below to gain an entry into the contest.

Entry Form

Official Contest Rules

Contest Dates:

  • The contest will run from September 12, 2022 to Semptember 19, 2022. Submit as many entries as you’d like! Entries that are submitted before or after the contest period will not be considered for the giveaway.

The Important Stuff:

  1. Follow Titan USA on Instagram
  2. Like the 1K Follower Giveaway post.
  3. Fill out the following form to make your initial entry.
  4. Additional entries will be given for:
    1. Creating an account on the Titan USA website.
    2. Leaving one comment tagging a friend on the Instagram post.
    3. Tagging @titan.usa in an Instagram post of your Titan USA tools.
    4. Leaving a review on a Titan USA product.

Prizes

All submissions and additional entries will be considered for the $150 Amazon gift card prize.

Winner of the giveaway will be chosen at random on September 22, 2022, notified on social media and be emailed the prize upon acceptance.

Full Details:

9/12/22

NO PURCHASE IS NECESSARY TO ENTER OR WIN. MAKING A PURCHASE WILL NOT INCREASE YOUR CHANCES OF WINNING. APPLICABLE ONLY IN THE UNITED STATES and CANADA. ENTRY INTO THIS SWEEPSTAKES CONSTITUTES ACCEPTANCE OF THESE OFFICIAL RULES. VOID WHERE PROHIBITED BY LAW.

By participating in the Harvey Performance Sweepstakes (the “Sweepstakes”), you agree to these official rules (the “Rules”), which are a contract, so read them carefully before participating. Without limitation, this contract includes indemnities to the Released Parties (defined below) from you and a limitation of your rights and remedies. You must follow these Rules to enter and be eligible to receive a prize in connection with the Sweepstakes.

DURATION:  Sweepstakes begins on September 12th, 2022 at 11 AM Eastern Daylight Time and ends September 19th, 2022 at 5 PM Eastern Daylight Time (“Sweepstakes Period”).  The computer clock of Harvey Performance Company, LLC (“Sponsor”) is the official time-keeping device for the Sweepstakes.

ELIGIBILITY: The Sweepstakes is open only to legal permanent residents of the United States (excluding Puerto Rico, and the U.S. Territories and Possessions) who are 21 years of age or older as of the date of entry. Employees, officers and directors of Sponsor along with its affiliates, subsidiaries, advertising, contest, fulfillment and marketing agencies, (collectively, “Promotion Parties”) their immediate families (parent, child, sibling & spouse and their respective spouses, regardless of where they reside) and persons living in the same households as such individuals (whether related or not) are not eligible to participate in the Sweepstakes. By participating, you agree to these Rules and to the decisions of the Sponsor, which are final and binding in all respects.  In addition, to be eligible to win, you must also execute and return Sponsor’s forms for you to: (i) consent to the use of your rights of publicity, (ii) assume all tax liabilities, (iii) waive all claims against Sponsor and Promotion Parties, and (iv) confirm your eligibility (collectively “Affidavits and Waivers”). This Sweepstakes is void in any jurisdiction not listed above and where prohibited by law, rule or regulation.

HOW TO ENTER: Follow the directions and complete the entry and submission form available at https://go.harveyperformance.com/l/186562/2022-07-12/2v8ly98 (the “Entry Form”), and following the Sponsor’s Instagram account.  Up to 5 additional entries can be made by providing e-mail addresses of friends that also fill out an entry form and follow Sponsor’s Instagram account.

ALTERNATIVE MEANS OF ENTRY: On a plain 3” x 5” card, legibly handprint or type your name, age, complete address, city, state, zip code, home phone number (including area code), and email address (if any). Then, mail your 3” x 5” card in a postage-affixed sealed envelope to:

428 Newburyport Turnpike, Rowley, MA 01969

If you do not provide an email address, we will call you if your name is selected. Otherwise, you will not be contacted regarding the outcome.

Mail-in entries must be postmarked by September 19th, 2022 and received by September 19th, 2022. No mechanically or programmatically reproduced entries are permitted. Each postcard is considered one (1) entry.  The information provided on such submitted 3” x 5” cards shall also be deemed part of the Entry Form.

PRIVACY POLICY:  Information collected in connection with this Sweepstakes will be used in accordance with Sponsor’s Official Privacy Policy (available at https://www.harveyperformance.com/privacy-policy/ and these Rules. In the event of any discrepancy between Sponsor’s Privacy Policy and these Rules, Sponsor’s Privacy Policy shall control and govern.

LIMITATIONS: Regardless of the method used to enter the Sweepstakes, either via the survey completion or mail-in or a combination of the two, the maximum number of entries allowed during the Sweepstakes is 6 per person.

Sponsor is not responsible for any entry that is lost, late, misdirected or undeliverable, whether due to system errors, omissions, interruption, deletions, defects, delay in operations or transmissions, theft or destruction or failures, faulty transmissions or other telecommunications malfunctions, entries not received resulting from any hardware or software failures of any kind, lost or unavailable network connections, failed, incomplete or garbled computer or telephone transmissions, typographical or system errors and failures, faulty trans-missions, technical malfunctions, or otherwise.

In the event of a dispute regarding the identity of the person submitting an entry, the entry will be deemed submitted by the authorized account holder at the time of entry. The authorized account holder is the natural person who is assigned to the account by Sponsor, the organization that is responsible for assigning accounts to customers. Potential winners may be required to show proof of being the authorized account holder.

Any attempt by an entrant to obtain more than the stated number of entries by using multiple/different email addresses, identities, registrations, logins, and/ or any other methods, including, but not limited to, automated entry, will void that entrant’s entries and that entrant may be disqualified from the Sweepstakes. Multiple participants are not permitted to share the same email address or Instagram account.

Sponsor will not verify receipt of entries for entrants. All entries submitted become the sole property of Sponsor. Sponsor reserves the right to disqualify those entries deemed to be inappropriate or in violation of this Sweepstakes (as defined solely by Sponsor).

Entries are void if they are incomplete, irregular or submitted improperly. Personal information (if any) collected through the Entry Form will be used only for purposes of (i) selecting and contacting the winners, and (ii) as identified in the Privacy Policy.

ODDS OF WINNING: The actual odds of winning will depend upon the actual number of total entries received for this Sweepstakes, regardless of the means of entry.

LIABILITY LIMITATION:  The Sponsor assumes no responsibility or liability for (a) lost, late, stolen, undelivered, inaccurate, incomplete, delayed, misdirected, damaged or garbled registrations, entries, URLs, or emails; (b) any incorrect or inaccurate entry information, or for any faulty or failed electronic data transmissions; (c) any unauthorized access to, or theft, destruction or alteration of entries or registrations at any point in the operation of this Sweepstakes; (d) any technical malfunction, failure, error, omission, interruption, deletion, defect, delay in operation or communications line failure, regardless of cause, with regard to any equipment, systems, networks, lines, cable, satellites, servers, computers or providers utilized in any aspect of the operation of the Sweepstakes; (e) inaccessibility or unavailability of the Internet or the Sponsor’s web site or any combination thereof or for computer hardware or software malfunctions, failures or difficulties, or other errors or difficulties of any kind whether human, mechanical, electronic, computer, network, typographical, printing or otherwise relating to or in connection with the Sweepstakes, including, without limitation, errors or difficulties which may occur in connection with the administration of the Sweepstakes, the processing of Entries, social networking posts, or registrations, the announcement of the prizes, or in any other Sweepstakes-related materials; or (f) any injury or damage to participants or to any other person’s computer which may be related to or resulting from any attempt to participate in the Sweepstakes. If, for any reason, the Sweepstakes (or any part thereof) is not capable of running as planned for reasons which may include, without limitation, infection by computer virus, tampering, unauthorized intervention, fraud, technical failures, or any other causes which may corrupt or affect the administration, security, fairness, integrity or proper conduct of this Sweepstakes, then the Sponsor reserve the right at their sole discretion to cancel, terminate, modify or suspend the Sweepstakes in whole or in part. If terminated, the Sponsor will award the prizes from among all non-suspect, eligible Entries received for the Sweepstakes up to the time of such action.

RELEASES: All participants, as a condition of participation in this Sweepstakes, agree to release, hold harmless and indemnify the Sponsor, its offers, directors, accountants, attorneys and agents (“Released Parties”) from and against any and all liability, claims, damages, or actions of any kind whatsoever for injuries, damages, or losses to persons or property which may be sustained, in whole or in part, directly or indirectly, in connection with (i) participation in any aspect of the Sweepstakes, (ii) the receipt, ownership or use of the prize awarded, including any travel associated with any prize, (iii) participant’s registration material on any related website, or (iv) any typographical or other error in these these Rules.

NO WARRANTIES: NEITHER SPONSOR NOR ANY OF THE RELEASED PARTIES HAVE MADE OR MAKE OR ARE RESPONSIBLE OR LIABLE FOR ANY WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, RELATIVE TO THIS SWEEPSTAKES OR A PRIZE, INCLUDING BUT NOT LIMITED TO, ITS QUALITY OR FITNESS OR MERCHANTABILITY, AND ALL PRIZES ARE TENDERED TO ENTRANTS ON AN “AS IS” BASIS.  THERE ARE NO WARRANTIES REGARDING ANY PRIZE OR THE USE OF THE GIFT CARD WITH AMAZON.

RANDOM DRAWING: One (1) prize winner(s) will be randomly selected for the Sweepstakes to receive a $150 electronic Amazon gift card. All decisions on all matters pertaining to the Sweepstakes are final. Sponsor reserves the right to substitute a prize of equal or greater value.

WINNER NOTIFICATION: Random selection of the potential prize winner will occur during the first week that immediately follows the Sweepstakes Period from among all eligible entries received. Prize drawing will be conducted at Sponsor’s headquarters. The prize winner will be notified by e-mail or regular mail, in Sponsor’s discretion, within 30 days from the date of the winner selection.

The designated prize winner will have 14 days from notification to claim the prize and return all release and eligibility forms. Sponsor and its affiliates, subsidiaries, employees, agents, officers and directors, advertising and promotion agencies, and their respective officers, directors, employees and their respective agents, will not be liable for unsuccessful efforts to notify a winner.

The prize will be delivered via e-mail. No prize transfer, assignment or substitution by winner permitted. All federal, state and local taxes, fees and surcharges on prizes are the sole responsibility of the prize winner. If the prize winner declines the prize, fails to claim the prize, is unavailable for prize fulfillment, fails to abide by the these Rules, or is ineligible, Sponsor may select an alternate winner from all remaining eligible entries.

By entering this Sweepstakes, each entrant gives his/her express permission to be contacted by the Sponsor by telephone, e-mail and/or postal mail for Sweepstakes purposes.

The winner, by acceptance of Prize, grants to Sponsor, and each of its respective designees, the right to publicize the winner’s name, address (city and state of residence), photograph, voice, statements and/or other likeness and prize information for advertising, promotional, trade and/or any other purpose in any media or format now known or hereafter devised, throughout the world, in perpetuity, without limitation and without further compensation, consideration, permission or notification, unless prohibited by law.

Before being declared a winner, each selected entrant will be required to sign an confirmation and acceptance confirming compliance with the these Rules and acceptance of the prize as offered. The confirmation and acceptance must be returned within 7 business days of the notification date indicated on the documents, unless otherwise stated, or the selected entrant will be disqualified and the prize forfeited.

THIRD PARTY & SOCIAL MEDIA:  This Sweepstakes is in no way sponsored by, endorsed by, associated with, or administered by Facebook, Instagram, Twitter, Whatsapp, Tumblr, Google, YouTube, WeChat, or WhatsApp (collectively “Social Media Sites”).  By entering this event, you agree to hold all Social Media Sites harmless for and from any potential claims you may have related to or arising out of this Sweepstakes.

MISCELLANEOUS CONDITIONS: Sponsor reserves the right at its sole discretion to cancel, terminate, modify or suspend the Sweepstakes.

Sponsor assumes no responsibility for any error, omission, interruption, deletion, defect, or delay in operation or transmission; communications line failure; theft or destruction of or unauthorized access to Sweepstakes entries or entry forms; or alteration of entries or entry forms. Sponsor reserves the right to correct clerical or typographical errors in promotional materials or any materials related to the Sweepstakes.

WINNER NAME: To obtain the name of the winner, send a request to [email protected]

CHOICE OF LAW AND JURISDICTION: This Sweepstakes is governed by the internal substantive laws of Nevada, without regard to its conflicts of law provisions.

Benefits & Drawbacks of High and Low Helix Angles

While many factors impact the outcome of a machining operation, one often overlooked factor is the cutting tool’s helix angle. The Helix angle of a tool is measured by the angle formed between the centerline of the tool and a straight line tangent along the cutting edge.

A higher helix angle, usually 40° or more, will wrap around the tool “faster,” while a “slower” helix angle is usually less than 40°.

When choosing a tool for a machining operation, machinists often consider the material, the tooling dimensions and the flute count. The helix angle must also be considered to contribute to efficient chip evacuation, better part finish, prolonged tool life, and reduced cycle times.

Helix Angles Rule of Thumb

One general rule of thumb is that as the helix angle increases, the length of engagement along the cutting edge will decrease. That said,
there are many benefits and drawbacks to slow and high helix angles that can impact any machining operation.

Slow Helix Tool <40°

Benefits

  • Enhanced Strength – A larger core creates a strong tool that can resist deflection, or the force that will bend a tool under pressure.
  • Reduced Lifting – A slow helix will decrease a part from lifting off of the worktable in settings that are less secure.
  • Larger Chip Evacuation – The slow helix allows the tool to create a large chip, great for hogging out material.

Drawbacks

  • Rough Finish – A slow helix end mill takes a large chip, but can sometimes struggle to evacuate the chip. This inefficiency can result in a sub-par part finish.
  • Slower Feed Rate – The increased radial force of a slow helix end mill requires running the end mill at a slower feed rate.

High Helix Tool >40°

Benefits

  • Lower Radial Force – The tool will run quieter and smoother due to better shearing action, and allow for less deflection and more stability in thin wall applications.
  • Efficient Chip Evacuation – As the helix angle increases, the length of cutting edge engagement will decrease, and the axial force will increase. This lifts chips out and away, resulting in efficient chip evacuation.
  • Improved Part Finish – With lower radial forces, high helix tools are able to cut through material much more easily with a better shearing action, leaving an improved surface finish.

Drawbacks

  • Weaker Cutting Teeth – With a higher helix, the teeth of a tool will be thinner, and therefore thinner.
  • Deflection Risk – The smaller teeth of the high helix tool will increase the risk of deflection, or the force that will bend a tool under pressure. This limits how fast you can push high helix tools.
  • Increased Risk of Tool Failure – If deflection isn’t properly managed, this can result in a poor finish quality and tool failure.

Helix Angle: An Important Decision

In summary, a machinist must consider many factors when choosing tools for each application. Among the material, the finish requirements, and acceptable run times, a machinist must also consider the helix angle of each tool being used. A slow helix end mill will allow for larger chip formation, increased tool strength and reduce lifting forces. However, it may not leave an excellent finish. A high helix end mill will allow for efficient chip evacuation and excellent part finish, but may be subject to increased deflection, which can lead to tool breakage if not properly managed.

Axis CNC Inc. – Featured Customer

Featured Image Courtesy of Axis CNC Inc

Axis CNC Inc was founded in 2012 in Ware, Massachusetts, when Dan and Glenn Larzus, a father and son duo, decided to venture into the manufacturing industry. Axis CNC Inc has provided customers with the highest quality manufacturing, machining, and programming services since they’ve opened. They specialize in manufacturing medical equipment and have a passion for making snowmobile parts.

We sat down with Axis CNC Inc to discuss how they got started and what they have learned over there years in the manufacturing world. Watch our video below to see our full interview.

Show Us What You #MadeWithMicro100

Are you proud of the parts you #MadeWithMicro100? Show us with a video of the parts you are making, the Micro 100 Tool used, and the story behind how that part came to be, for a chance to win a $1,000 Amazon gift card grand prize!

With the recent addition of the Micro 100 brand to the Harvey Performance Company family, we want to know how you have been utilizing its expansive tooling offering. Has Micro 100’s Micro-Quik system helped you save time and money? Do you have a favorite tool that gets the job done for you every time? Has Micro 100 tooling saved you from a jam? We want to know! Send us a video on Instagram and show us what you #MadeWithMicro100!

How to Participate

Using #MadeWithMicro100 and @micro_100, tag your video of the Micro 100 tools machining your parts on Instagram or Facebook. Remember, don’t share anything that could get you in trouble! Proprietary parts and trade secrets should not be on display.

Official Contest Rules

Contest Dates:

  • The contest will run between December 5, 2019 to January 17, 2020. Submit as many entries as you’d like! Entries that are submitted before or after the contest period will not be considered for the top prizes (But we’d still like to see them!)

The Important Stuff:

  1. Take a video of your Micro 100 tool in action, clear and visible.
  2. Share your video on social media using #MadeWithMicro100 and tagging @Micro_100.
  3. Detail the story behind the project (tool number(s), operation, running parameters, etc.)

Prizes

All submissions will be considered for the $1,000 Amazon gift card grand prize. Of these entries, the most impressive (10) will be put up to popular vote. All entries put up to vote will be featured on our new customer testimonial page on our website with their name, social media account, and video displayed for everybody to see.

We’ll pick our favorites, but the final say is up to you. Public voting will begin on January 21, 2020, and a winner will be announced on January 28, 2020.

The top five entries will be sent Micro 100’s Micro-Quik tool change system with a few of our quick change tools. The top three entries will be offered a spot as a “Featured Customer” on our “In The Loupe” blog!

The Fine Print:

  • Please ensure that you have permission from both your employer and customer to post a video.
  • All entries must be the original work of the person identified in the entry.
  • No purchase necessary to enter or win. A purchase will not increase your chances of winning.
  • On January 28, 2020, the top 5 winners will be announced to the public. The Top 5 selected winners will receive a prize. The odds of being selected depend on the number of entries received. If a potential winner cannot be contacted within five (5) days after the date of first attempt, an alternative winner may be selected.
  • The potential winners will be notified via social media. Each potential winner must complete a release form granting Micro 100 full permission to publish the winner’s submitted video. If a potential winner cannot be contacted, or fails to submit the release form, the potential winner forfeits prize. Potential winners must continue to comply with all terms and conditions of these official contest rules, and winning is contingent upon fulfilling all requirements.
  • Participation in the contest constitutes entrants’ full and unconditional agreement to and acceptance of these official rules and decisions. Winning a prize is contingent upon being compliant with these official rules and fulfilling all other requirements.
  • The Micro 100 Video Contest is open to residents in US and Canada who are at least 18 years old at the time of entry.

How to Select a Spindle

When trying to develop efficient processes, many machinists and programmers turn to tool selection first. It is true that tooling can often make a big difference in machining time, and speeds and feeds, but did you know that your machine’s spindle can have an equally impactful effect? The legs of any CNC machine, spindles are comprised of a motor, a taper for holding tools, and a shaft that will hold all of the components together. Often powered by electricity, spindles rotate on an axis which receives its input from the machine’s CNC controller.

Why is Choosing the Right Spindle Important?

Choosing the right spindle to machine your workpiece with is of very high importance to a successful production run. As tooling options continue to grow, it is important to know what tooling your spindle can utilize. Large diameter tools such as large end mills or face mills typically require slower spindle speeds and take deeper cuts to remove vast amounts of material. These applications require supreme machine rigidity and require a spindle with high torque.

Contrastingly, smaller diameter tools will need a higher-speed spindle. Faster speeds and feeds deliver better surface finishes and are used in a variety of applications. A good rule of thumb is that an end mill that is a half inch or smaller will run well with lower torque.

Types of CNC Spindles

After finding out what you should look for in a spindle, it is time to learn about your different options. Spindles typically vary by the type, style of the taper, or its size. The taper is the conical portion of the tool holder that fits inside of the opening of the spindle. Every spindle is designed to mate with a certain taper style and size.

properly selecting a spindle

CAT and BT Holders

This is the most widely utilized holder for milling in the United States. Referred to as “V-flange holders,” both of these styles need a retention knob or pull stud to be secured within the machine spindle. The BT (metric style) is popular overseas.

HSK Holders

This type of holder is a German standard known as “hollow shank taper.” The tapered portion of the holder is much shorter than its counterparts. It also engages the spindle in a different way and does not require a pull stud or retention knob. The HSK holder is utilized to create repeatability and longer tool life – particularly in High Efficiency Milling (HEM) applications.

All of these holders have benefits and limitations including price, accuracy, and availability. The proper selection will depend largely on your application requirements.

Torque vs. Horsepower

Torque is defined as force perpendicular to the axis of rotation across a distance. It is important to have high torque capabilities when using an end mill larger than ½ inch, or when machining a difficult material such as Inconel. Torque will help put power behind the cutting action of the tool.

Horsepower refers to the amount of work being done. Horsepower is important for smaller diameter end mills and easy-to-machine materials like aluminum.

You can think of torque as a tractor: It can’t go very fast, but there is a lot of power behind it. Think of horsepower as a racecar: It can go very fast but cannot pull or push.

Torque-Horsepower Chart

Every machine and spindle should come with a torque horsepower chart. These charts will help you understand how to maximize your spindle for torque or horsepower, depending on what you need:

Haas spindle horsepower and torque chart
Image Source: HAAS Machine Manual

Proper Spindle Size

The size of the spindle and shank taper corresponds to the weight and length of the tools being used, as well as the material you are planning to machine. CAT40 is the most commonly used spindle in the United States. These spindles are great for utilizing tools that have a ½ inch diameter end mill or smaller in any material. If you are considering using a 1 inch end mill in a material like Inconel or Titanium, a CAT50 would be a more appropriate choice. The higher the taper angle is, the more torque the spindle is capable of.

While choosing the correct tool for your application is important, choosing a tool your spindle can utilize is paramount to machining success. Knowing the amount of torque required will help machinists save a lot of headaches.

Ideal Tooling for Machining Composites

Composite Materials

A material is classified as a composite if it is made up of at least two unique constituents that when combined yield beneficial physical and mechanical properties for a number of different applications. A binding agent that is the matrix material is filled with either particles or fibers of a second material that act as reinforcements. The combination of strength, weight, and rigidity make composites extremely useful for the automotive, aerospace, and power generation industry. Often the matrix material of particulate-reinforced composites is some form of plastic, and the reinforcement material is either glass or carbon particles. These are sometimes called “filled plastics,” and are typically very abrasive materials. Many composites are layered with varying fiber orientations, which increase the strength of the material and are called fiber-reinforced composites.

Common Problems When Machining Composites

  1. Delamination of composite layers
  2. Uncut Fibers
  3. Fiber tear-out
  4. Uneven tool wear
  5. Poor surface finish due to “competing” materials

These problems are all caused by unique conditions created by composite materials, and can be very tricky to correct.  The simple fact of cutting a combination of multiple materials at the same time introduces many factors that make it difficult to strike the right balance of the proper tool for the job and appropriate running parameters.  The following tool styles provide solutions for a wide array of composite concerns.  Composite Drilling Applications can face the same issues, and proper drill choice can help as well.

Straight Flute End Mill

Straight Flute Composite Cutters are designed to prevent delamination of layered materials by applying all cutting forces radially, eliminating axial forces from a typical helical cutting edge. Cutting action is improved with a high positive rake angle for shearing fibers and eccentric relief for improved edge life. Shallow ramping operations can be performed with this tool, but the largest benefits are seen in peripheral milling applications.

straight flute end mill

Compression Cutters

The Compression Cutter consists of an up cut and down cut helix. The top portion of the length of cut has right-hand cutting teeth with a left-hand spiral. The lower portion of the length of cut has right-hand cutting teeth with a right-hand spiral. This creates opposing cutting forces to stabilize the material removal process when cutting layered composites to prevent delamination, fiber pullout, and burs along the surface. Compression of the top and bottom of the workpiece keeps the layered bonded together.

compression cutter end mill

Chipbreaker Cutter

The Chipbreaker Cutter is ideally suited for roughing and profiling composites with a high percentage of fiber fill. The notch-like chipbreakers shear fibers and shorten chips for improved material evacuation. This specialized geometry is great for keeping chips small and avoiding “nesting” of stringy fibrous chips around the cutter.

chipbreaker for composite materials

Diamond Cut End Mill

Diamond Cut Composite Cutters come in two different geometries: End Mill Style and Drill Mill Style. Although the end mill style tool is center cutting, the drill mill style has a 140° point angle, making it more suitable for plunge cutting. This is great for clearing out pockets in the middle of composite sheets.

diamond cut end mill for composites

End Mills for Composites – Diamond Cut – End Mill Style

diamond cut drill mill for composites

End Mills for Composites – Diamond Cut – Drill Mill Style

Both the end mill and drill mill style share the same downcut geometry on the outside diameter. This diamond cut tool receives its name from the combination of left-hand and right-hand teeth. The tool is predominantly a downcut style – a geometry that allows for these tools to effectively rough and profile high fiber reinforced or filled composites, breaking up chips and shearing through fibers.

Diamond Cut vs. Chipbreaker Style

The diamond cut tools have a higher flute count, which some may intuitively think would lead to a better finish, but this is not the case as this line of tools contains right-hand and left-hand teeth. There is a trade-off between an increased ability to shear fibers and leaving a poorer finish. The chipbreaker style tool, although not as effective as shearing fibers, is ultimately designed for the same purpose but leaves a better finish as all of the flutes are facing the same direction.

Composite Finisher

The Composite Finisher has optimized geometry for finishing in composite. A slow helix and high flute count for more contact points ultimately renders a smooth finish by minimizing fraying of fiber-reinforced and layered materials.

finishing end mill for composites

Coating or No Coating?

Composite materials, especially those with glass or carbon fiber, can be particularly abrasive and have a tendency to wear down the cutting edge of carbide tools. If one is looking to achieve the best tool life and maintain a sharp cutting edge, then choosing an Amorphous Diamond coated tool is the best option. This thin coating improves lubricity and wear resistance over its uncoated counterpart. Using a tool with CVD diamond coating can be very beneficial in extreme cases, when fiber fill percentage is very large. This is a true diamond coating, and offers the best abrasion resistance, but a slightly less sharp cutting edge as it is a thicker coating. PCD diamond tooling offers the best tool life. If it a solid diamond wafer brazed to a carbide shank, and can maintain the sharpest edge of any diamond tooling. However, PCD is limited to straight flutes, and can come at a higher price.

Composite materials are being increasingly utilized in today’s manufacturing world for their impressive strength to weight ratio. This growth has stimulated innovative techniques of cutting composites seen in the tool choices above. Harvey Tool’s variety of geometries helps any machine shop tackle composite cutting applications and will continue to offer groundbreaking solutions to these types of manufacturing problems.

Shining a Light on Diamond End Mills

Diamond tooling and diamond-coated end mills are a great option when machining highly abrasive materials, as the coating properties help to significantly increase tool life relative to uncoated carbide tools. Diamond tools and diamond-like coated tools are only recommended for non-ferrous applications, including highly abrasive materials ranging from graphite to green ceramics, as they have a tendency to break down in the presence of extreme heat.

Understanding the Properties of Diamond Coatings

To ensure proper diamond tooling selection, it’s critical to understand the unique properties and makeup of the coatings, as there are often several diamond coating variations to choose from. Harvey Tool, for example, stocks Amorphous Diamond, CVD Diamond, and PCD Diamond End Mills for customers looking to achieve significantly greater tool life when working in non-ferrous applications.

Diamond, the hardest known material on earth, obtains its strength from the structure of carbon molecules. Graphite, a relatively brittle material, can have the same chemical formula as diamond, but is a completely different material; while Graphite has a sp2 bonded hexagonal structure, diamond has a sp3 bonded cubic structure. The cubic structure is harder than the hexagonal structure as more single bonds can be formed to interweave the carbon into a stronger network of molecules.

diamond tool coatings

Amorphous Diamond Coating

Amorphous Diamond is transferred onto carbide tools through a process called physical vapor deposition (PVD). This process spreads a mono-layer of DLC coating about 0.5 – 2.5 microns thick onto any given tool by evaporating a source material and allowing it to condense onto that tool over the course of a few hours.

amorphous diamond coating

Chemical Vapor Deposition (CVD)

Chemical Vapor Deposition (CVD) is a coating process used to grow multiple layers of polycrystalline diamond onto carbide tooling. This procedure takes much longer than the standard PVD coating method. During the coating process, hydrogen molecules are dissociated from the carbon molecules deposited onto the tool, leaving a diamond matrix under the right temperature and pressure conditions. Under the wrong conditions, the tool may be simply coated in graphite. 6% cobalt carbide blanks allow for the best adhesion of diamond and a substrate. CVD diamond coated end mills have a typical thickness of coating that is between 8 and 10 microns thick.

CVD Diamond Coating

Polycrystalline Diamond (PCD)

Polycrystalline Diamond (PCD) is a synthetic diamond, meaning it is grown in a lab and contains mostly cubic structures. Diamond hardness ranges from about 80 GPa up to about 98 GPa. PCD end mills have the same diamond structure as CVD diamond tools but the binding technique is different. The diamond starts in a powdery form that is sintered onto a carbide plate using cobalt as a solvent metal substrate. This is done at an extreme temperature and pressure as the cobalt infiltrates the powder, causing the grains to grow together. This effectively creates a thick diamond wafer, between 010” and .030” in width, with a carbide base. This carbide base is then brazed onto the head an end mill and sharpened.

PCD Diamond CoatingHow Diamond Coatings Differ

Coating Hardness & Thickness

Polycrystalline tools (CVD or sintered) have a much higher hardness, thickness, and max working temperature than Amorphous Diamond oated tools. As mentioned previously, a PCD tool consists of a diamond wafer brazed to a carbide body while a CVD tool is a carbide end mill with a relatively thick layer of polycrystalline diamond grown into it. This grown layer causes the CVD tools to have a rounded cutting edge compared to PCD and Amorphous Diamond coated tools. PCD tools have the thickest diamond layer that is ground to a sharp edge for maximum performance and tool life. The difference between PCD tools and CVD coated tools lies in the thickness of this coat and the sharpness of the cutting edge. Amorphous Diamond tools maintain a sharper edge than CVD coated tools because of their thin coating.

Flute Styles

Harvey Tool’s line of PCD end mills are all straight fluted, CVD coated tools are all helically fluted, and Amorphous Diamond tools are offered in a variety of options. The contrast between straight fluted and helically fluted can be seen in the images below, PCD (top) and CVD (bottom). Electrical discharge machining, grinding or erosion are used cut the PCD wafer to the specifications. The size of this wafer limits the range of diameters that can be achieved during manufacturing. In most situations a helically fluted tool would be preferred over a straight fluted tool but with true diamond tooling that is not the case. The materials that PCD tools and CVD coated tools are typically used to cut produce a powdery chip that does not require the same evacuation that a metallic or plastic chip necessitates.

PCD Diamond end mill

PCD Ball End Mill

CVD Diamond end mill

CVD Ball End Mill

Proper Uses

CVD tools are ideally suited for abrasive material not requiring a sharp cutting edge – typically materials that produce a powdery chip such as composites and graphite. Amorphous Diamond tools have a broad range of non-ferrous applications spanning from carbon fiber to precious metals but ceramics are typically outside their range as they can be too abrasive and wear away the coating. PCD tools overlap their CVD and DLC coated counterparts as they can be used for any non-ferrous abrasive material.

Cut to the Point

Harvey Tool carries physical vapor deposition diamond-like carbon coated tools, chemical vapor deposition diamond tools and polycrystalline diamond tools. PCD tools are composed of the thickest diamond wafer brazed onto a carbide shank and are ground to a sharp edge. CVD coated tools have the diamond grown into a carbide end mill. Amorphous Diamond coated tools have the DLC coated onto them through the PVD process. For more information on the diamond coating best suited for your operation, contact a Harvey Tool Tech Team Member for immediate help.

Contouring Considerations

What is Contouring?

Contouring a part means creating a fine finish on an irregular or uneven surface. Dissimilar to finishing a flat or even part, cnc contouring involves the finishing of a rounded, curved, or otherwise uniquely shaped part.

CNC Contouring & 5-Axis Machining

5-axis machines are particularly suitable for contouring applications. Because contouring involves the finishing of an intricate or unique part, the multiple axes of movement in play with 5-axis Machining allow for the tool to access tough-to-reach areas, as well as follow intricate tool paths.

Recent  Advances

Advanced CAM software can now write the G-Code (the step-by-step program needed to create a finished part) for a machinists application, which has drastically simplified contouring applications. Simply, rather than spend several hours writing the code for an application, the software now handles this step. Despite these advances, most young machinists are still required to write their own G-Codes early on in their careers to gain valuable familiarity with the machines and their abilities. CAM software, for many, is a luxury earned with time.

Benefits of Advanced CAM Software

Increased Time Savings
Because contouring requires very specific tooling movements and rapidly changing cutting parameters, ridding machinists of the burden of writing their own complex code can save valuable prep time and reduce machining downtime.

Reduced Cycle Times
Generated G-Codes can cut several minutes off of a cycle time by removing redundancies within the application. Rather than contouring an area of the part that does not require it, or has been machined already, the CAM Software locates the very specific areas that require machining time and attention to maximize efficiency.

Improved Consistency
CAM Programs that are packaged with CAD Software such as SolidWorks are typically the best in terms of consistency and ability to handle complex designs. While the CAD Software helps a machinist generate the part, the CAM Program tells a machine how to make it.

Proper Tips

Utilize Proper Cut Depths

Prior to running a contouring operation, an initial roughing cut is taken to remove material in steps on the Z-axis so to leave a limited amount of material for the final contouring pass. In this step, it’s pivotal to leave the right amount of material for contouring — too much material for the contouring pass can result in poor surface finish or a damaged part or tool, while too little material can lead to prolonged cycle time, decreased productivity and a sub par end result.

CNC Contouring planes

The contouring application should remove from .010″ to 25% of the tool’s cutter diameter. During contouring, it’s possible for the feeds to decrease while speeds increases, leading to a much smoother finish. It is also important to keep in mind that throughout the finishing cut, the amount of engagement between the tool’s cutting edge and the part will vary regularly – even within a single pass.

Use Best Suited Tooling

Ideal tool selection for contouring operations begins by choosing the proper profile of the tool. A large radius or ball profile is very often used for this operation because it does not leave as much evidence of a tool path. Rather, they effectively smooth the material along the face of the part. Undercutting End Mills, also known as lollipop cutters, have spherical ball profiles that make them excellent choices for contouring applications. Harvey Tool’s 300° Reduced Shank Undercutting End Mill, for example, features a high flute count to benefit part finish for light cut depths, while maintaining the ability to reach tough areas of the front or back side of a part.

CNC Contouring ball end mill

Fact-Check G-Code

While advanced CAM Software will create the G-Code for an application, saving a machinist valuable time and money, accuracy of this code is still vitally important to the overall outcome of the final product. Machinists must look for issues such as wrong tool call out, rapids that come too close to the material, or even offsets that need correcting. Failure to look G-Code over prior to beginning machining can result in catastrophic machine failure and hundreds of thousands of dollars worth of damage.

Inserting an M01 – or a notation to the machine in the G-Code to stop and await machinist approval before moving on to the next step – can help a machinist to ensure that everything is approved with a next phase of an operation, or if any redundancy is set to occur, prior to continuation.

Contouring Summarized

CNC contouring is most often used in 5-axis machines as a finishing operation for uniquely shaped or intricate parts. After an initial roughing pass, the contouring operation – done most often with Undercutting End Mills or Ball End Mills, removes anywhere from .010″ to 25% of the cutter diameter in material from the part to ensure proper part specifications are met and a fine finish is achieved. During contouring, cut only at recommended depths, ensure that G-Code is correct, and use tooling best suited for this operation.

The Advances of Multiaxis Machining

CNC Machine Growth

As the manufacturing industry has developed, so too have the capabilities of machining centers. CNC Machines are constantly being improved and optimized to better handle the requirements of new applications. Perhaps the most important way these machines have improved over time is in the multiple axes of direction they can move, as well as orientation. For instance, a traditional 3-axis machine allows for movement and cutting in three directions, while a 2.5-axis machine can move in three directions but only cut in two. The possible number of axes for a multiaxis machine varies from 4 to 9, depending on the situation. This is assuming that no additional sub-systems are installed to the setup that would provide additional movement. The configuration of a multiaxis machine is dependent on the customer’s operation and the machine manufacturer.

Multiaxis Machining

With this continuous innovation has come the popularity of multiaxis machines – or CNC machines that can perform more than three axes of movement (greater than just the three linear axes X, Y, and Z). Additional axes usually include three rotary axes, as well as movement abilities of the table holding the part or spindle in place. Machines today can move up to 9 axes of direction.

https://www.instagram.com/p/BdssKBsg0Sa/

Multiaxis machines provide several major improvements over CNC machines that only support 3 axes of movement. These benefits include:

  • Increasing part accuracy/consistency by decreasing the number of manual adjustments that need to be made.
  • Reducing the amount of human labor needed as there are fewer manual operations to perform.
  • Improving surface finish as the tool can be moved tangentially across the part surface.
  • Allowing for highly complex parts to be made in a single setup, saving time and cost.

9-Axis Machine Centers

The basic 9-axis naming convention consists of three sets of three axes.

multiaxis machining

Set One

The first set is the X, Y, and Z linear axes, where the Z axis is in line with the machine’s spindle, and the X and Y axes are parallel to the surface of the table. This is based on a vertical machining center. For a horizontal machining center, the Z axis would be aligned with the spindle.

Set Two

The second set of axes is the A, B, and C rotary axes, which rotate around the X, Y, and Z axes, respectively. These axes allow for the spindle to be oriented at different angles and in different positions, which enables tools to create more features, thereby decreasing the number of tool changes and maximizing efficiency.

Set Three

The third set of axes is the U, V, and W axes, which are secondary linear axes that are parallel to the X, Y, and Z axes, respectively. While these axes are parallel to the X, Y, and Z axes, they are managed by separate commands. The U axis is common in a lathe machine. This axis allows the cutting tool to move perpendicular to the machine’s spindle, enabling the machined diameter to be adjusted during the machining process.

The Growing Industry of Multiaxis Machining

In summary, as the manufacturing industry has grown, so too have the abilities of CNC Machines. Today, tooling can move across nine different axes, allowing for the machining of more intricate, precise, and delicate parts. Additionally, this development has worked to improve shop efficiency by minimizing manual labor and creating a more perfect final product.

Optimizing Material Removal Rates

 What is the Material Removal Rate?

Material Removal Rate (MRR), otherwise known as Metal Removal Rate, is the measurement for how much material is removed from a part in a given period of time. Every shop aims to create more parts in a shorter period of time, or to maximize money made while also minimizing money spent. One of the first places these machinists turn is to MRR, which encompasses Radial Depth of Cut (RDOC), Axial Depth of Cut (ADOC), and Inches Per Minute (IPM). If you’re aiming to boost your shop’s efficiency, increasing your MRR even minimally can result in big gains.

Click Here to Download the High Efficiency Milling (HEM) Guidebook

Calculating MRR

The calculation for Material Removal Rate is RDOC x ADOC x Feed Rate. As an example, if your RDOC is .500″, your ADOC is .100″ and your Feed Rate is 41.5 inches per minute, you’d calculate MRR the following way:

MRR = .500″ x .100″ x 41.5 in/min = 2.08 cubic inches per minute.

Optimizing Efficiency

A machinists’ depth of cut strategy is directly related to the Material Removal Rate. Using the proper RDOC and ADOC combination can boost MRR rates, shaving minutes off of cycle times and opening the door for greater production. Utilizing the right approach for your tool can also result in prolonged tool life, minimizing the rate of normal tool wear. Combining the ideal feed rate with your ADOC and RDOC to run at your tool’s “sweet spot” can pay immediate and long term dividends for machine shops.

The following chart illustrates how a 1/2″, 5-flute tool will perform in Steel when varying ADOC and RDOC parameters are used. You can see that by varying the ADOC and RDOC, a higher feed rate is achievable, and thus, a higher MRR. In this case, pairing a high ADOC, low RDOC approach with an increased feed rate was most beneficial. This method has become known as High Efficiency Milling.

Axial Depth of CutRadial Depth of CutFeed RateMaterial Removal Rate
 .125″ .200″19.5 IPM .488 in.³/min.
.250″.150″26.2 IPM.983 in.³/min.
.500″.100″41.5 IPM2.08 in.³/min.
.750″.050″89.2 IPM3.35 in.³/min.
1.00″.025″193 IPM4.83 in.³/min.

High Efficiency Milling

High Efficiency Milling (HEM) is a milling technique for roughing that utilizes a lower RDOC and a higher ADOC strategy. This spreads wear evenly across the cutting edge, dissipates heat, and reduces the chance of tool failure. This results in a greater ability to increase your MRR, while maintaining and even prolonging tool life versus traditional machining methods.

High Efficiency Milling Material Removal Rate

Obviously, with higher MRR’s, chip evacuation becomes vitally important as more chips are evacuated in a shorter period of time. Utilizing a tool best suited for the operation – in terms of quality and flute count – will help to alleviate the additional workload. Additionally, a tool coating optimized for your workpiece material can significantly help with chip packing. Further, compressed air or coolant can help to properly remove chips from the tool and workpiece.

In conclusion, optimizing workplace efficiency is vital to sustained success and continued growth in every business. This is especially true in machine shops, as even a very minor adjustment in operating processes can result in a massive boost in company revenue. Proper machining methods will boost MRR, minimize cycle times, prolong tool life, and maximize shop output.