Posts

Fleet Machine Co. – Featured Customer

Fleet Machine Co. was founded in 2010 to dramatically outperform other contract manufacturers by fusing advanced machine tools, automation and custom software to achieve what they call “Zero Manufacturing”. The team at Fleet Machine take pride in their ability to produce zero defects, zero missed delivery dates, carry zero part and material inventory, and maintain zero process inefficiencies. Every strategic decision and investment that they make is based on this philosophy of eliminating waste and human error from the manufacturing process.

For Manufacturing Day 2018, the team at Fleet Machine hosted several shop tours for Harvey Performance Company employees. Employees across all departments from Customer Service and Marketing to Finance and Accounting were given a in-depth tour of Fleet Machine’s manufacturing process. Josh Pregent, co-owner of Fleet Machine, was kind enough to host the tours at his shop and talk to us for this post. We talked with Josh about manufacturing automation, the challenges of obtaining AS9100/ISO9001 certification for your business, and the advantages of different milling machine types.

Thanks for hosting our team at your shop. It was a great tour! To get started, tell us a little bit about Fleet Machine’s history, and what sort of products you typically manufacture.

Fleet Machine Co. was incorporated in 2010 in Gloucester, MA to manufacture precision components for the Aerospace, Defense, Medical, and Robotics industries. Fleet’s emphasis on quality, customer service, and professionalism quickly distinguished us from other manufacturers and allowed us to outgrow our original location and expand to our current location. Since our inception, we have devoted our company to automating manufacturing and business processes to minimize human interaction and error in the manufacturing process. Our ultimate goal is to completely eliminate all human involvement in production. This may seem like a lofty goal, but you have to have dreams!

Fleet Machine

How did you first get involved in manufacturing?

My business partner and I both worked in a machine shop while we were in college and instantly became interested in manufacturing. Over the years, we advanced through the different facets of manufacturing, learning everything we could. In 2010 we seized an opportunity and decided to branch out on our own to start Fleet Machine.

Do you have any advice for someone who is looking to open their own shop?

Opening your own shop involves more than knowing how to program and machine. You also need to be willing to sacrifice some of your free time by working long hours to build your business from the ground up. Being a great machinist is important, but you also need to understand the basics of business, and you need to be able to sell your service and maintain a certain level of quality to keep your customers coming back.

We saw a good mix of machine types while walking around the shop floor. What sort of machines and software do you have here in the shop?

Fleet currently has three two axis turning centers, four three axis VMCs (Vertical Milling), one mill/turn with sub-spindle, and two HMCs (horizontal milling) with sixteen work stations each. It is a long list, but the specific types of machines we have in our facility are listed below. For software, we use a custom Salesforce CRM module, E2 MRP, and Mastercam 2019 for programming.

CNC MILLING

  • (2) Akari-Seiki 450i HMC 27 x 26 x 25 X, Y, Z Travel, dual 400mm pallets, 15,000 RPM, through spindle coolant, 80 tools
  • (2) Mori-Seiki MV-40E VMC 22 x 16 x 18” X, Y, Z Travel, 20 tools, 8000 RPM
  • (1) Mori-Seiki MV-40B VMC 31 x 16 x 20” X, Y, Z Travel, 20 tools, 8000 RPM
  • (1) Haas VF-2 VMC 30 x 16 x 20” X, Y, Z Travel, 25 tools, 10,000 RPM

CNC TURNING

  • (1) Mori-Seiki SL-15 5000 RPM, 9” maximum turning diameter x 16” maximum length
  • (1) Yama-Seiki GA-2000 6000 RPM, 13” maximum turning diameter x 20” maximum length, programmable tailstock, tool setter
  • (1) Doosan Puma 240MSB 6000 RPM, 11” maximum turning diameter, 18” maximum length, dual spindle, live tooling, C-axis milling, tool setter, part catcher/part conveyor
  • (1) Mori-Seiki CL-200 4000 RPM, 11” Maximum turning diameter, 12” maximum length

lathe with lubrication

How has the mill/turn CNC machine helped you speed up production? Would you recommend it to others?

Our mill/turn machine has helped us increase production by reducing our setup time. There is no longer a need to remove a turned part, get it over to a mill, and set everything up again. Most basic milling operations can be performed on the mill/turn machine, so it is a great time saver.

We would definitely recommend this type of machine to other shops. Ultimately, we highly recommend any machine/software/process/ancillary equipment that eliminates or reduces human labor. Manufacturing is a ruthlessly competitive, tech-driven industry and the failure to invest in technology of this type exposes you to over reliance on expensive, scarce, and potentially unreliable human labor and possible obsolescence.

You also have both horizontal milling centers (HMCs) and vertical milling centers (VMCs). What has been your experience with both, and do you prefer one style over the other?

In my opinion, HMCs are superior to VMCs in every respect due to the additional axis, superior chip evacuation, greater load capacity, and the ability to run unattended with pallet pools. VMCs are still useful for simple jobs and rapid prototyping, but for high production runs we lean on the HMCs to get the job done.

cnc metal parts

What have been some of your keys to success for expanding the business and growing your shop to take on more work?

Fleet Machine provides a superior product in terms of quality and value and uses automation and poke yoke techniques to streamline processes and eliminate the possibility of error.

We noticed the banner hanging in the shop celebrating your AS9100/ISO9001 certification. How important has that been in your manufacturing process?

Having an AS9100/ISO9001-certified quality system will improve every aspect of your organization while eliminating waste, improving product quality, and improving OTD. Imposing the discipline required to attain certification on your company will reveal inefficiencies that you never realized existed.

Do you have any advice for shops looking to try and get their AS9100/ISO9001 certification?

It is easily worth the investment but it requires attention to detail, extensive documentation, focus on constant improvement, and a real commitment from all employees. It needs to govern every aspect of your business, from the quoting process to shipping. If you don’t have someone who is extremely organized and enjoys data collection, measurement, and documentation, or employees who aren’t compliant or don’t understand the value of certification, it probably isn’t for you.

Fleet Machine facility

Who are some of your key customers?

Some of our key customers (the ones we can name) include Hill-Rom, United Technologies Corp, Rockwell, and B/E Aerospace. We do work under NDAs for some projects so we cannot reveal all of our customers, but they are heavily skewed to the Aerospace, Medical, Robotics, and Defense industries.

How do Harvey Tool products help Fleet Machine stay at the top of their game?

Harvey Tool products are an integral part of what we do, from the quoting process through finishing. Fleet relies on the tooling engineers and technical support team at Harvey to help us produce parts that we wouldn’t otherwise be able to make.

cnc

What skills or qualities do you look for when hiring a new machinist?

Fleet Machine has a robust training program for all new employees. We look for important soft skills such as good written and verbal communication, reliability, a positive attitude, the ability to work as part of team, and basic computer skills. We have found that people with this combination of attributes rapidly surpass people with machining skills who lack these qualities.

Being well-rounded is important as an employee in any business, but as manufacturing progresses to become more and more technology-based it will be important to hire machinists with computer skills and technological know-how to stay ahead of your competitors.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

B&R Custom Machining- Featured Customer

B&R Custom Machining is a rapidly expanding aerospace machine shop located in Ontario, Canada, focused primarily on aerospace and military/defense manufacturing. Over the past 17 years, B&R has grown from a 5 person shop with a few manual mills and lathes, into one of Canada’s most highly respected manufacturing facilities, with nearly 40 employees and 21 precision CNC machines.

B&R focuses on quality assurance and constant improvement, mastering the intimacies of metal cutting and maintaining the highest levels of quality through their unique shop management philosophies. They seek to consistently execute on clear contracts through accurate delivery, competitive price, and high quality machined components.

We talked with Brad Jantzi, Co-Founder and Technical Manager of B&R Custom Machining, to learn about how he started in the industry, his experience with High Efficiency Milling, what he looks for most in a cutting tool, and more!

B&R Custom machining

Can you tell us a little bit about how B&R Custom Machining started, and a little background about yourself and the company?

My brother (Ryan Jantzi, CEO/Co-Founder) and I started working in manufacturing back in 2001, when we were just 20/21 years old. We had 5 employees (including ourselves), a few manual mills and lathes, and we were wrapping our parts in newspaper for shipping. We took over from a preexisting shop and assumed their sales and machines.

We bought our first CNC machine in 2003, and immediately recognized the power of CNC and the opportunities it could open up for us. Now, we have 21 CNC machines, 38 employees, and more requests for work than we can keep up with, which is a good thing for the business. We are constantly expanding our team to elevate the business and take on even more work, and are currently hiring for multiple positions if anyone in Ontario is looking for some challenging and rewarding work!

What kind of CNC machines are you guys working with?

Right now we have a lot of Okuma and Matsuura machines, many of which have 5 axis capabilities, and all of them with high RPM spindles. In fact, our “slowest” machine runs at 15k RPM, with our fastest running at 46k. One of our high production machines is our Matsuura LX160, which has the 46k RPM spindle. We use a ton of Harvey Tool and Helical product on that machine and really get to utilize the RPMs.

B&R Custom Machining

What sort of material are you cutting?

We work with Aluminum predominantly, but also with a lot of super alloys like Invar, Kovar, Inconel, Custom 455 Stainless, and lots of Titanium. Some of those super alloys are really tricky stuff to machine. Once we learn about them and study them, we keep a recorded database of information to help us dial in parameters. Our head programmer/part planner keeps track of all that information, and our staff will frequently reference old jobs for new parts.

Sounds like a great system you guys have in place. How did B&R Custom Machining get into aerospace manufacturing?

It is a bit of a funny story actually. Just about 12 years ago we were contacted by someone working at Comdev, which is close to our shop, who was looking to have some parts made. We started a business relationship with him, and made him his parts. He was happy with the work, and so we eventually got involved in his company’s switch division and started to make more and more aerospace parts.

aerospace machining

We immediately saw the potential of aerospace manufacturing, and it promoted where we wanted to go with CNC machining, so it was a natural fit. It really was a case of being in the right place at the right time and seizing the moment. If an opportunity comes up and you aren’t ready for it, you miss it. You have to be hungry enough to see an opportunity, and confident enough to grab it, while also being competent enough to handle the request. So, we took advantage of what we were given, and we grew and went from there.

Who are some of the major players who you work with?

We have great relationships with Honeywell, MDA Brampton, and MDA Quebec. We actually worked on parts for a Mars Rover with MDA that was commissioned by the Canadian Space Agency, which was really cool to be a part of.

Working with large companies like that means quality is key. Why is high quality tool performance important to you?

High quality and superior tool performance is huge. Aside from cutting conditions, there are two quick things that cause poor performance on a tool: tool life and consistency of the tool quality. One without the other means nothing. We all can measure tool life pretty readily, and there is a clear advantage that some tools have over others, but inconsistent quality can sneak up on you and cause trouble. If you have a tool manufacturer that is only producing a quality tool even 95% of the time, that might seem ok, but that means that 5% of the time you suffer something wrong on the machine. Many times, you won’t know where that trouble is coming from. This causes you to pause the machine, investigate, source the problem, and then ultimately switch the tool and create a new program. It becomes an ordeal. Sometimes it is not as simple as manually adjusting the feed knob, especially when you need to rely on it as a “proven program” the next time around.

So, say the probability of a shortcoming on a machine is “x” with one brand of tooling, but is half of that with a brand like Harvey Tool. Sure, the Harvey Tool product might be 10-20% higher in upfront cost, but that pales in comparison to buying cheaper tools and losing time and money due to machine downtime caused by tool failure. The shop rate for an average machine is right around $100/hour, so machine downtime is much more expensive than the added cost of a quality tool.

B&R Custom machining

Inconsistent tool quality can be extremely dangerous to play around with, even outside of machine downtime. We create based on a specific tool and a certain level of expected performance. If that tool cannot be consistent, we now jeopardize an expensive part. The machine never went down, but the part is no good because we programmed based on consistency in tool quality. Again, the cost of scrapped parts heavily outweighs the upfront cost of quality tooling. Tooling is a low cost of what we do here, but poor tooling can cost us thousands versus a few dollars more for quality tools. Too many people focus on the upfront cost, and don’t look downstream through the rest of the process to see how poor quality tooling can affect your business in a much bigger way. We get to see the whole picture because I am involved from cradle to grave, gaining feedback and knowledge along the way.

That’s great feedback Brad, and I think it is important for people to understand what you have laid out here. Speaking of tool performance, have you guys been using High Efficiency Milling techniques in the shop?

Absolutely. We feel that we are on the front edge of efficient milling. We are quite capable of all the latest techniques, as our programmers are well-versed and up to date. For our larger production work, we have programs dialed in that allow us to push the tools to their limits and significantly cut down our cycle times.

What advice would you have for others who are interested in High Efficiency Milling?

Make sure you are smart about using HEM. If we have one-off parts, particularly expensive ones, that do not have time restraints, we want to make sure we have a safe toolpath that will get us the result we want (in terms of quality and cutting security), rather than pushing the thresholds and taking extra time to program the HEM toolpaths. HEM makes total sense for large production runs, but make sure you know when to, and when not to use these techniques to get the most out of HEM.

B&R Custom machining

Have you been using Machining Advisor Pro in your shop when you run Helical end mills?

We have been, and it makes for a great point of reference for the Helical end mills. It has become a part of our new employee training, teaching them about speeds and feeds, how hard they can push the Helical tools, and where the safe zones are. Our more experienced guys also frequent it for new situations where they have no data. Machining Advisor Pro helps to verify what we thought we knew, or helps us get the confidence to start planning for a new job.

If you could give one piece of advice to a new machinist, or someone looking to take the #PlungeIntoMachining for the first time, what would it be?

Learn the intimacies of metal cutting. Get ultra-familiar with the results of what is actually happening with your tool, your setup, your part, and your machine. As well, don’t be limited to thinking “it sounds good,” or “it’s going good so far, so that must be acceptable.” In order to push the tools and confirm they are performing well and making money, you need to identify and understand where the threshold of failure is, and back off the right amount. This doesn’t end here though. Cutting conditions change as the tools, holders, machines, and parts change. Learning the nuances of this fluctuating environment and adapting accordingly is essential. Verify your dimensions, mitigate against risk, and control the variables.

Also, get intimate with what causes tools to succeed and fail, and keep a log of it for reference. Develop a passion for cutting; don’t just punch in and punch out each shift. Here at B&R, we are looking for continuous improvement, and employees who can add value. Don’t stand around all day with your arms folded, but keep constant logs of what’s going on and always be learning and thinking of how to understand what is happening, and improve on it. That is what makes a great machinist, and a successful shop.

B&R custom machining

Multi-Functional Tools Every Shop Should Have

If there is one thing that all machinists and shop managers can agree on, it’s that time is money. CNC tooling and material costs, employee wages, and keeping the lights on all add up, but most would agree that saving time is one of the best ways to make a shop more efficient.

Tool changes mid-job quickly add up when it comes to cycle times (not to mention tool costs), so using a tool capable of multiple operations whenever possible is an excellent first step. The following multi-functional tools are designed to save time and money at the spindle.

Drill/End Mills

drill mills

One look at Drill/End Mills or “Drill Mills” and it’s obvious that these multi-functional tools are capable of more than a standard end mill. Two of the intended operations are right in the name (drilling and milling). Besides the obvious, though, drill mills are intended for grooving, spotting, and chamfering, bringing the total to five separate operations.

drill mill operations

Considering the amount of tools normally required to perform all of these common operations, keeping a few drill mills in your tool crib ensures you’re always ready to tackle them, not to mention the potential extra spots in your tool magazine.

Undercutting End Mills

undercutting end mills

Undercutting End Mills, also known as lollipop cutters or spherical ball end mills are surprisingly “well-rounded” tools. Besides milling an undercut feature on a part, which is typically very difficult with a standard end mill, these tools are capable of a few other operations.

undercutting end mill operations

Using an undercutting end mill to deburr in your machine is an excellent way to save time and effort. Some slotting and contouring operations, especially when 5-axis milling, are made far easier with an undercutting end mill, and in some situations, clearance challenges make them necessary.

Double Angle Shank Cutters

double angle shank cutters

Often referred to the “Swiss Army Knife of Machining” due to their versatility, Double Angle Shank Cutters are 6-in1 multi-functional tools worth keeping on hand in any machine shop. Since these tools cut on all sides of their head, they are useful in a variety of situations.

multi-functional tools

With the ability to thread mill and countersink, Double Angle Shank cutters are perfect for holemaking operations. On top of that, their clearance advantage over standard end mills makes them extremely well suited to a variety of finishing operations in difficult to reach places.

Flat Bottom Tools

flat bottom tools

Flat Bottom Drills and Flat Bottom Counterbores are better suited to holemaking, but they are capable of a large variety of operations. They belong in a category together since their flat bottom geometry is what sets them apart from other cnc tooling in the same category. Flat bottom geometry keeps the tool from walking on irregular or angle surfaces and help to correct, straighten, or flatten features created by non-flat bottom tools.

Flat bottom drills are designed for the following operations:

multi-functional tools

While similar in some aspects, flat bottom counterbores are particularly well-suited for these uses:

flat bottom tools

Adjustable Chamfer Cutters

adjustable chamfer cutters

As discussed in a previous post, chamfer mills are capable of more than just chamfering – they are also well-suited for beveling, deburring, spotting, and countersinking. However, these adjustable chamfer cutters aren’t limited to a single angle per side – with a quick adjustment to the carbide insert you can mill any angle from 10° to 80°.

chamfer cutter inserts

When you account for the replaceable insert and the range of angles, this tool has a very high potential for time and tool cost savings.

Tools that are capable of a variety of operations are useful to just about any machine shop. Keeping your cnc tooling crib stocked with some or all of these multi-functional tools greatly increases your shop’s flexibility and decreases the chances of being unprepared for a job.