Posts

The Geometries and Purposes of a Slitting Saw

When a machinist needs to cut material significantly deeper than wide, a Slitting Saw is an ideal choice to get the job done. A Slitting Saw is unique due to its composition and rigidity, which allows it to hold up in a variety of both straightforward and tricky to machine materials.

What is a Slitting Saw?

A Slitting Saw is a flat (with or without a dish), circular-shaped saw that has a hole in the middle and teeth on the outer diameter. Used in conjunction with an arbor, a Slitting Saw is intended for machining purposes that require a large amount of material to be removed within a small diameter, such as slotting or cutoff applications.

Other names for Slitting Saws include (but are not limited to) Slitting Cutters, Slotting Cutters, Jewelers Saws, and Slitting Knives. Both Jewelers Saws and Slitting Knives are particular types of Slitting Saws. Jewelers Saws have a high tooth count enabling them to cut tiny, precise features, and Slitting Knives are Slitting Saws with no teeth at all. On Jewelers Saws, the tooth counts are generally much higher than other types of saws in order to make the cuts as accurate as possible.

Key Terminology

Why Use a Slitting Saw?

These saws are designed for cutting into both ferrous and non-ferrous materials, and by utilizing their unique shape and geometries, they can cut thin slot type features on parts more efficiently than any other machining tool.

Common Applications:

  1. Separating Two Pieces of Material
    1. If an application calls for cutting a piece of material, such as a rod, in half, then a slitting saw will work well to cut the pieces apart while increasing efficiency.
  2. Undercutting Applications
    1. Saws can perform undercutting applications if mounted correctly, which can eliminate the need to remount the workpiece completely.
  3. Slotting into Material
    1. Capable of creating thin slots with a significant depth of cut, Slitting Saws can be just the right tool for the job!

When Not to Use a Slitting Saw

While it may look similar to a stainless steel circular saw blade from a hardware store, a Slitting Saw should never be used with construction tools such as a table or circular saw.  Brittle saw blades such as slitting saws will shatter when used on manual machines, and can cause injury when not used on the proper set up.

In Conclusion

Slitting Saws can be beneficial to a wide variety of machining processes, and it is vital to understand their geometries and purpose before attempting to utilize them in the shop. They are a great tool to have in the shop and can assist with getting jobs done as quickly and efficiently as possible.

Machining Precious Metals

Precious metals can be particularly difficult to machine due to their wide range of material properties and high cost if a part has to be scrapped. The following article will introduce these elements and their alloys as well as provide a guide on how to machine them effectively and efficiently.

About the Elements

Sometimes called “noble” metals, precious metals consist of eight elements that lie in the middle of the periodic table (seen below in Figure 1). The eight metals are:

  1. Ruthenium (Ru)
  2. Rhodium (Rh)
  3. Palladium (Pd)
  4. Silver (Ag)
  5. Osmium (Os)
  6. Iridium (Ir)
  7. Platinum (Pt)
  8. Gold (Au)

These elements are some of the rarest materials on earth, and can therefore be enormously expensive. Gold and silver can be found in pure nugget form, making them more easily available. However, the other six elements are typically found mixed in the raw ore of the four metals they sit below on the periodic table: Iron (Fe), Cobalt (Co), Nickel (Ni), and Copper (Cu). These elements are a subset of precious metals and are generally called Platinum Group Metals (PGM). Because they are found together in raw ore, this makes mining and extraction difficult, dramatically increasing their cost. Because of their high price tag, machining these materials right the first time is incredibly important to a shop’s efficiency.

machining metals

Figure 1: Periodic table with the 8 precious metals boxed in blue. Image source: clearscience.tumblr.com

Basic Properties and Compositions of Precious Metals

Precious metals have notable material properties as they are characteristically soft, ductile, and oxidation resistant. They are called “noble” metals because of their resistance to most types of chemical and environmental attack. Table 1 lists a few telling material properties of precious metals in their elemental form. For comparison purposes, they are side-by-side with 6061 Al and 4140 Steel. Generally, only gold and silver are used in their purest form as the platinum group metals are alloys that consist mainly of platinum (with a smaller composition of Ru, Rh, Pa, Os, Ir). Precious metals are notable for being extremely dense and having a high melting point, which make them suitable for a variety of applications.

Table 1: Cold-worked Material Properties of Precious Metals, 4140 Steel and 6061 Aluminum 

precious metals

Common Machining Applications of Precious Metals

Silver and gold have particularly favorable thermal conductivity and electrical resistivity. These values are listed in Table 2, along with CC1000 (annealed copper) and annealed 6061 aluminum, for comparison purposes. Copper is generally used in electrical wiring because of its relatively low electrical resistivity, even though silver would make a better substitute. The obvious reason this isn’t the general convention is the cost of silver vs. copper. That being said, copper is generally plated with gold at electrical contact areas because it tends to oxide after extended use, which lowers its resistivity. As stated before, gold and the other precious metals are known to be resistant to oxidation. This corrosion resistance is the main reason that they are used in cathodic protection systems of the electronics industry.

Table 2: Thermal Conductivity and Electrical Resistivity of Ag, Au, Cu, and Al 

machining metals

Platinum and its respective alloys offer the most amount of applications as it can achieve a number of different mechanical properties while still maintaining the benefits of a precious metal (high melting point, ductility, and oxidation resistance). Table 3 lists platinum and a number of other PGMs each with their own mechanical properties. The variance of these properties depends on the alloying element(s) being added to the platinum, the percentage of alloying metal, and whether or not the material has been cold-worked or annealed. Alloying can significantly increase the tensile strength and hardness of a material while decreasing its ductility at the same time. The ratio of this tensile strength/hardness increase to ductility decrease depends on the metal added as well as how much is added, as seen in Table 3. Generally this depends on the particle size of the element added as well as its natural crystalline structure. Ruthenium and Osmium have a specific crystal structure that has a significant hardening effect when added to platinum. Pt-Os alloys in particular are extremely hard and practically unworkable, which doesn’t yield many real-world applications. However, the addition of the other 4 PGMs to platinum allow for a range of mechanical properties with various usages.

Table 3: PGM material properties (Note: the hardness and tensile strength are cold worked values) 

machining metals

Platinum and its alloys are biocompatible, giving them the ability to be placed in the human body for long periods of time without causing adverse reactions or poisoning. Therefore, medical devices including heart muscle screw fixations, stents, and marker bands for angioplasty devices are made from platinum and its alloys. Gold and palladium are also commonly used in dental applications.

Pt-Ir alloys are noticeably harder and stronger than any of the other alloys and make excellent heads for spark plugs in the automobile industry. Rhodium is sometimes added to Pt-Ir alloys to make the material less springy (as they are used as medical spring wire) while also increasing its workability. Pt and Pt-Rh wire pairs are extremely effective at measuring temperatures and are therefore used in thermocouples.

Machining Precious Metals

The two parameters that have the most effect when machining are hardness and percent elongation. Hardness is well-known by machinists and engineers across the manufacturing industry as it indicates a material’s resistance to deformation or cutting. Percent elongation is a measurement used to quantify material ductility. It indicates to a designer the degree to which a structure will deform plastically (permanently) before fracture. For example, a ductile plastic such as ultrahigh molecular weight polyethylene (UHMWPE) has a percent elongation of 350-525%, while a more brittle material such as oil-quenched and tempered cast iron (grade 120-90-02) has a percent elongation of about 2%. Therefore, the greater the percent elongation, the greater the material’s “gumminess.” Gummy materials are prone to built-up edge and have a tendency to produce long stringy chips.

Tools for Precious Metals

Material ductility makes a sharp cutting tool essential for cutting precious metals. Variable Helix for Aluminum Alloy tools can be used for the softer materials such as pure gold, silver, and platinum.

machining metals

Figure 2: Variable Helix Square End Mill for Aluminum Alloys

Higher hardness materials still require a sharp cutting edge. Therefore, one’s best option is to invest in a PCD Diamond tool. The PCD wafer has the ability to cut extremely hard materials while maintaining a sharp cutting edge for a relatively long period of time, compared to standard HSS and carbide cutting edges.

machining metals

Figure 3: PCD Diamond Square End Mill

Speeds and Feeds charts:

machining metals

Figure 4: Speeds and Feeds for precious metals when using a Square Non-ferrous, 3x LOC

 

machining metals

Figure 5: Speeds and Feeds for precious metals when using a 2-Flute Square PCD end mill

 

Using Tool Libraries in Autodesk HSM & Fusion 360

The days of modeling your tools in CAM are coming to an end. Harvey Performance Company has partnered with Autodesk to provide comprehensive Harvey Tool and Helical Solutions tool libraries to Fusion 360 and Autodesk HSM users. Now, users can access 3D models of every Harvey and Helical tool with a quick download and a few simple clicks. Keep reading to learn how to download these libraries, find the tool you are looking for, how to think about speeds and feeds for these libraries, and more.

Downloading Tool Libraries

On the Autodesk HSM Tools page, you will find Harvey Tool and Helical Solutions tool libraries. Clicking either of the previous links will bring you to that brand’s tool libraries. Right now, all of the two brands more than 27,000 tools are supported in the tool libraries.

Once on the page, there will be a download option for both Fusion and HSM. Select which software you are currently using to be prompted with a download for the correct file format.

From there, you will need to import the tool libraries from your Downloads folder into Fusion 360 or HSM. These tool libraries can be imported into your “Local” or “Cloud” libraries in Fusion 360, depending on where you would like them to appear. For HSM, simply import the HSMLIB file you have downloaded as you would any other tool library.

Curt Chan, Autodesk MFG Marketing Manager, takes a deeper dive into the process behind downloading, importing, and using CAM tool libraries to Fusion in the instructional video below.

For HSM users, jump to the 2:45 mark in this video from Autodesk’s Lars Christensen, who explains how to download and import these libraries into Autodesk HSM.


Selecting a Tool

Once you have downloaded and imported your tool libraries, selecting a specific tool or group of tools can be done in several ways.

Searching by Tool Number

To search by tool number, simply enter the tool number into the search bar at the top of your tool library window. For example, if you are looking for Helical Tool EDP 00015, enter “00015” into the search bar and the results will narrow to show only that tool.

Fusion 360 Tool Libraries

In the default display settings for Fusion 360, the tool number is not displayed in the table of results, where you will find the tool name, flute count, cutter diameter, and other important information. If you would like to add the tool number to this list of available data, you can right click on the top menu bar where it says “Name” and select “Product ID” from the drop down menu. This will add the tool number (ex. 00015) to the list of information readily available to you in the table.

Harvey Tool Tool Libraries

Searching by Keyword

To search by a keyword, simply input the keyword into the search bar at the top of the tool library window. For example, if you are looking for metric tooling, you can search “metric” to filter by tools matching that keyword. This is helpful when searching for Specialty Profile tools which are not supported by the current profile filters, like the Harvey Tool Double Angle Shank Cutters seen in the example below.

Fusion 360 Tool Libraries

Searching by Tool Type

To search by tool type, click the “Type” button in the top menu of your tool library window. From there, you will be able to segment the tools by their profile. For example, if you only wanted to see Harvey Tool ball nose end mills, choose “Ball” and your tool results will filter accordingly.

Tool Libraries

As more specialty profiles are added, these filters will allow you to filter by profiles such as chamfer, dovetail, drill, threadmill, and more. However, some specialty profile tools do not currently have a supported tool type. These tools show as “form tools” and are easier to find by searching by tool number or name. For example, there is not currently a profile filter for “Double Angle Shank Cutters” so you will not be able to sort by that profile. Instead, type “Double Angle Shank Cutter” into the search bar (see “Searching by Keyword”) to filter by that tool type.

Searching by Tool Dimensions

To search by tool dimensions, click the “Dimensions” button in the top menu of your tool library window. From there, you will be able to filter tools by your desired dimensions, including cutter diameter, flute count, overall length, radius, and flute length (also known as length of cut). For example, if you wanted to see Helical 3 flute end mills in a 0.5 inch diameter, you would check off the boxes next to “Diameter” and “Flute Count” and enter the values you are looking for. From there, the tool results will filter based on the selections you have made.

Tool Libraries

Using Specialty Profile Tools

Due to the differences in naming conventions between manufacturers, some Harvey Tool/Helical specialty profile tools will not appear exactly as you think in Fusion 360/HSM. However, each tool does contain a description with the exact name of the tool. For example, Harvey Tool Drill/End Mills display in Fusion 360 as Spot Drills, but the description field will call them out as Drill/End Mill tools, as you can see below.

Below is a chart that will help you match up Harvey Tool/Helical tool names with the current Fusion 360 tool names.

Tool Name Fusion 360 Name
Back Chamfer Cutter Dovetail Mill
Chamfer Cutters Chamfer Mill
Corner Rounding End Mill – Unflared Radius Mill
Dovetail Cutter Dovetail Mill
Drill/End Mill Spot Drill
Engraving Cutter/Marking Cutter – Tip Radius Tapered Mill
Engraving Cutter – Tipped Off & Pointed Chamfer Mill
Keyseat Cutter Slot Mill
Runner Cutter Tapered Mill
Undercutting End Mill Lollipop Mill
All Other Specialty Profiles Form Mill

Speeds and Feeds

To ensure the best possible machining results, we have decided not to pre-populate speeds and feeds information into our tool libraries. Instead, we encourage machinists to access the speeds and feeds resources that we offer to dial accurate running parameters based on their material, application, and machine capabilities.

Harvey Tool Speeds & Feeds

To access speeds and feeds information for your Harvey Tool product, head to http://www.harveytool.com/cms/SpeedsFeeds_228.aspx to find speeds and feeds libraries for every tool.

If you are looking for tool specific speeds and feeds information, you will need to access the tool’s “Tech Info” page. You can reach these pages by clicking any of the hyperlinked tool numbers across all of our product tables. From there, simply click “Speeds & Feeds” to access the speeds and feeds PDF for that specific tool.

If you have further questions about speeds and feeds, please reach out to our Technical Support team. They can be reached Monday-Friday from 8 AM to 7 PM EST at 800-645-5609, or by email at [email protected].

Helical Solutions Speeds & Feeds

To access speeds and feeds information for your Helical Solutions end mills, we recommend using our Machining Advisor Pro application. Machining Advisor Pro (MAP) generates specialized machining parameters by pairing the unique geometries of your Helical Solutions end mill with your exact tool path, material, and machine setup. MAP is available free of charge as a web-based desktop app, or as a downloadable application on the App Store for iOS and Google Play.

machining advisor pro

To learn more about Machining Advisor Pro and get started today, visit www.machiningadvisorpro.com. If you have any questions about MAP, please reach out to us at [email protected].

If you have further questions about speeds and feeds, please reach out to our Technical Support team. They can be reached Monday-Friday from 8 AM to 7 PM EST at 866-543-5422, or by email at [email protected].


For additional questions or help using tool libraries, please send an email to [email protected]. If you would like to request a Harvey Performance Company tool library be added to your CAM package, please fill out the form here and let us know! We will be sure to notify you when your CAM package has available tool libraries.

Workholding Styles & Considerations

Machinists have a number of variables to consider when setting up workholding devices for a machining operation. When it comes to workholding, there are some major differences between holding a loosely toleranced duplicate part with a 10-minute cycle time and holding a tightly toleranced specialized part with a 10-hour cycle time. Determining which method works best for your machining job is essential to maintaining an efficient operation.

Workholding Devices

Ideal workholding devices have easily repeatable setups. For this reason, some machines have standard workholding devices. Vises are generally used with milling machines while chucks or collets are used when running a lathe machine. Sometimes, a part may need a customized workholding setup in order to secure the piece properly during machining. Fixtures and jigs are examples of customized workholding devices.

Fixtures and Jigs

A jig is a work holding device that holds, supports and locates a workpiece and guides the cutting tool into a specific operation (usually through the use of one or more bushings). A fixture is essentially the same type of device, but the main difference is that it does not guide the cutting tool into a specified operation. Fixtures are typically used in milling operations while jigs are generally used in drilling, reaming, tapping and boring. Jigs and fixtures are more precise relative to standard workholding devices, which leads to tighter tolerances. They can also be indexable, allowing them to control the cutting tool movement as well as workpiece movement. Both jigs and fixtures are made up of the same basic components: fixture bodies, locators, supports, and clamps.

The 4 Fixture Bodies

There are 4 basic types of fixture bodies: faceplates, baseplates, angle plates, and tombstones.

Faceplates: Typically used in lathe operations, where components are secured to the faceplate and then mounted onto the spindle.

Baseplates: Common in milling and drilling operations and are mounted to the worktable.

Angle plates: Two plates perpendicular to each other but some are adjustable or customized to change the angle of the workpiece.

Tombstones: Large vertically oriented rectangular fixtures that orients a workpiece perpendicular to the worktable. Tombstones also have two sides to accommodate multiple parts.

workholding

Locators

Locators are characterized by four criteria: assembled, integral, fixed, and adjustable. Assembled locators, can be attached and removed from the fixture, which is contrary to integral locators that are built into the fixture. Fixed locators allow for no moving components, while adjustable locators permit movement through the use of threads and/or springs, and can adjust to a workpiece’s size. These can be combined to provide the appropriate rigidity-assembly convenience ratio. For example, a V-locator fixture is the combination of assembled and fixed locators. It can be secured to a fixture but has no moving components.

workholding

Supports

Supports do exactly what their name suggests, they support the workpiece during the machining process to avoid workpiece deformation. These components can double as locators and also come fixed, adjustable and integral, or assembled. Generally, supports are placed under the workpiece during manufacturing but this also depends on the geometry of the workpiece, the machine being operated and where the cutting tool will make contact. Supports can come in different shapes and sizes. For example, rest buttons are smaller support components used in series either from underneath the workpiece or from the sides. Concurrently, parallel supports are placed on either side of the part to provide general support.

workholding

Clamps

Clamps are devices used for strengthening or holding things together, and come in different shapes, sizes and strengths. Vises and chucks have movable jaws and are considered standard clamps. One atypical example is the toggle clamp, which has a pivot pin that acts as a fulcrum for a lever system. One of the more convenient types is a power clamping system. There are two type of power clamping methods: hydraulic and pneumatic.

workholding

Example of a standard fixture setup.

Hydraulic Systems

Hydraulic Systems create a gripping force by attaining power from compressing a liquid. This type of power clamp is generally used with larger workpieces as it usually takes up less space relative to pneumatic clamps.

Pneumatic clamps

Pneumatic clamps attain their gripping force from the power created by a compressed gas (usually air). These systems are generally bulkier and are used for smaller workpieces that require less room on the worktable. Power clamping offers a few advantages over conventional clamping. First, these systems can be activated and deactivated quickly to save on changeover time. Second, they place uniform pressure on the part, which help prevent errors and deformation. A significant disadvantage they pose is the cost of a system but this can be quickly offset by production time saved.

Key Guidelines to Follow

Lastly, there are a few guidelines to follow when choosing the appropriate fixture or jig setup.

Ensure Proper Tolerancing

The tolerances of the workholding device being used should be 20%-50% tighter than those of the workpiece.

Utilize Acceptable Locating & Supporting Pieces

Locating and supporting pieces should be made of a hardened material to prevent wear and allow for several uses without the workpieces they support falling out of tolerance. Supports and locators should also be standardized so that they can be easily replaced.

Place Clamps in Correct Locations

Clamps should be placed above the locations of supports to allow the force of the clamp to pass into the support without deforming the workpiece. Clamps, locators and supports should also be placed to distribute cutting forces as evenly as possible throughout the part. The setup should allow for easy clamping and not require much change over time

Maximize Machining Flexibility

The design of the fixture or jigs should maximize the amount of operations that can be performed in one orientation. During the machining operation, the setup should be rigid and stable.

Bottom Line

Workholding can be accomplished in a number of different ways and accomplish the same task of successfully gripping a part during a machining operation with the end result being in tolerance. The quality of this workholding may differ greatly as some setups will be more efficient than others. For example, there is no reason to create an elaborate jig for creating a small slot down the center of a rectangular brick of aluminum; a vise grip would work just fine. Maximizing the efficiency and effectiveness of an operators’ workholding setup will boost productivity by saving on changeover, time as well as cost of scrapped, out of tolerance parts.

Experience the Benefits of Staggered Tooth Keyseats

Keyseat Cutters, also known as Woodruff Cutters, Keyway Cutters, and T-Slot Cutters, are commonly used in machine shops. Many machinists opt to use this tool to put a slot on the side of a part in an efficient manner, rather than rotating the workpiece and using a traditional end mill. A Staggered Tooth Keyseat Cutter has alternating right-hand and left hand shear flutes and is right-hand cut, whereas a traditional keyseat cutter has all straight flutes and is right-hand cut. Simply, the unique geometry of a Staggered Tooth Keyseat Cutter gives the tool its own set of advantages including the ability to index within the slot, increase feed rates, and achieve better part finish.

staggered tooth keyseat cutter

Three Key Benefits

Indexing

The alternating right-and-left-hand flutes of a Harvey Tool Staggered Tooth Keyseat Cutters are relieved on both sides of its head, meaning that it allows for both end cutting and back cutting. This adds to the versatility of the staggered tooth keyseat cutter, where one singular tool can be indexed axially within a slot to expand the slot to a specific uncommon dimension. This can save space in a machinist’s magazine and reduce machine time by eliminating the need to swap to a new tool.

Increased Feed Rates

Due to the unique geometry of a Staggered Tooth Keyseat Cutter, chips evacuate efficiently and at a faster rate than that of a Straight Flute Keyseat Cutter. The unique flutes of Staggered Tooth Keyseat Cutters are a combination of right-and-left-hand shear flutes, but both types are right-hand cutting. This results in the tool’s teeth alternating between upcut and downcut. Chip packing and chip recutting is less of a concern with running this tool, and results in increased chip loads compared to that of a standard keyseat with the same number of flutes. Because of this, the tool can account for chiploads of about 10% higher than the norm, resulting in heightened feed rates and shorter cycle times overall.

Better Part Finish

Staggered Tooth Keyseat Cutters have “teeth”, or flutes, that are ground at an angle creating a shear flute geometry. This geometry minimizes chip recutting, chip dragging and reduces the force needed to cut into the material. Chip recutting and dragging are minimized because chips are evacuated out of the top and bottom of the head on the side of the cutter that is not engaged in the material. Shear flutes also reduce vibrations that can lead to chatter and poor finish. By minimizing cutting forces, vibration, and chatter, a machinist can expect a better part finish.

staggered tooth keyseat cutter

Image courtesy of @edc_machining

Staggered Tooth Keyseat Cutter Diverse Product Offering

On top of the higher performance one will experience when using the Stagger Tooth Keyseats, there are also multiple options available with various combinations to suit multiple machining needs. This style is offered in a square and corner radius profile which helps if a fillet or sharp corner is needed. There are also multiple cutter diameters ranging from 1/8” to 5/8”. The increased diameter comes with an increase of radial depth of cut, allowing deeper slots to be achievable. Within the most popular cutter diameters, ¼”, 3/8”, and ½” there are also deep slotting options with even greater radial depth of cuts for increased slot depths. On top of the diameters and radii, there are also multiple cutter widths to choose from to create different slots in one go. Finally, an uncoated and AlTiN coatings are available to further increase tool life and performance depending on the material that is being cut.

Opt for a Smoother Operation

A Staggered Tooth Keyseat Cutter adds versatility to a tool magazine. It can be indexed axially to expand slots to make multiple widths, allowing machinists to progress operations in a more efficient manner where tool changes are not required. Further, this tool will help to reduce harmonics and chatter, as well as minimize recutting. This works to create a smoother operation with less force on the cutter, resulting in a better finish compared to a Standard Keyseat Cutter.

For more information on Harvey Tool Staggered Tooth Keyseat Cutters and its applications, visit Harvey Tool’s Keyseat Cutter page.

Get to Know Machining Advisor Pro

Machining Advisor Pro (MAP) is a tool to quickly, seamlessly, and accurately deliver recommended running parameters to machinists using Helical Solutions end mills. This download-free and mobile-friendly application takes into account a user’s machine, tool path, set-up, and material to offer tailored, specific speeds and feed parameters to the tools they are using.

How to Begin with Machining Advisor Pro

This section will provide a detailed breakdown of Machining Advisor Pro, moving along step-by- step throughout the entire process of determining your tailored running parameters.

Register Quickly on Desktop or Mobile

To begin with Machining Advisor Pro, start by accessing its web page on the Harvey Performance Company website, or use the mobile version by downloading the application from the App Store or Google Play.

Whether you are using Machining Advisor Pro from the web or from your mobile device, machinists must first create an account. The registration process will only need to be done once before you will be able to log into Machining Advisor Pro on both the mobile and web applications immediately.

machining advisor pro

Simply Activate Your Account

The final step in the registration process is to activate your account. To do this, simply click the activation link in the email that was sent to the email address used when registering. If you do not see the email in your inbox, we recommend checking your spam folders or company email filters. From here, you’re able to begin using MAP.

Using MAP

A user’s experience will be different depending on whether they’re using the web or mobile application. For instance, after logging in, users on the web application will view a single page that contains the Tool, Material, Operation, Machine, Parameter, and Recommendation sections.

machining advisor pro

 

On the mobile application, however, the “Input Specs” section is immediately visible. This is a summary of the Tool, Material, Operation, and Machine sections that allows a user to review and access any section. Return to this screen at any point by clicking on the gear icon in the bottom left of the screen.

machining advisor pro

Identify Your Helical Tool

To get started generating your running parameters, specify the Helical Solutions tool that you are using. This can be done by entering the tool number into the “Tool #” input field (highlighted in red below). As you type the tool number, MAP will filter through Helical’s 3,400-plus tools to begin identifying the specific tool you are looking for.

machining advisor pro

Once the tool is selected, the “Tool Details” section will populate the information that is specific to the chosen tool. This information will include the type of tool chosen, its unit of measure, profile, and other key dimensional attributes.

machining advisor pro

Select the Material You’re Working In

Once your tool information is imported, the material you’re working in will need to be specified. To access this screen on the mobile application, either swipe your screen to the left or click on the “Material” tab seen at the bottom of the screen. You will move from screen to screen across each step in the mobile application by using the same method.

In this section, there are more than 300 specific material grades and conditions available to users. The first dropdown menu will allow you to specify the material you are working in. Then, you can choose the subgroup of that material that is most applicable to your application. In some cases, you will also need to choose a material condition. For example, you can select from “T4” or “T6” condition for 6061 Aluminum.

machining advisor pro

Machining Advisor Pro provides optimized feeds and speeds that are specific to your application, so it is important that the condition of your material is selected.

Pick an Operation

The next section of MAP allows the user to define their specific operation. In this section, you will define the tool path strategy that will be used in this application. This can be done by either selecting the tool path from the dropdown menu, or clicking on “Tool Path Info” for a visual breakdown and more information on each available toolpath.

machining advisor pro

Tailor Parameters to Your Machine’s Capabilities

The final section on mobile, and the fourth web section, is the machine section. This is where a user can define the attributes of the machine that you are using. This will include the Max RPM, Max IPM, Spindle, Holder, and work holding security. Running Parameters will adjust based on your responses.

machining advisor pro

Access Machining Advisor Pro Parameters

Once the Tool, Material, Operation, and Machine sections are populated there will be enough information to generate the initial parameters, speed, and feed. To access these on the mobile app, either swipe left when on the machine tab or tap on the “Output” tab on the bottom menu.

machining advisor pro

Please note that these are only initial values. Machining Advisor Pro gives you the ability to alter the stick out, axial depth of cut, and radial depth of cut to match the specific application. These changes can either be made by entering the exact numeric value, the % of cutter diameter, or by altering the slider bars.machining advisor pro

The parameters section also offers a visual representation of the portion of the tool that will be engaged with the materials as well as the Tool Engagement Angle.

MAP’s Recommendations

At this point, you can now review the recommended feeds and speeds that Machining Advisor Pro suggests based on the information you have input. These optimized running parameters can then be further refined by altering the speed and feed dials.

machining advisor pro

Machining Advisor Pro recommendations can be saved by clicking on the PDF button that is found in the recommendation section on both the web and mobile platforms. This will automatically generate a PDF of the recommendations, allowing you to print, email, or share with others.

Machining Advisor Pro Summarized

The final section, exclusive to the mobile application, is the “Summary” section. To access this section, first tap on the checkmark icon in the bottom menu. This will open a section that is similar to the “Input Specs” section, which will give you a summary of the total parameter outputs. If anything needs to change, you can easily jump to each output item by tapping on the section you need to adjust.

machining advisor pro

This is also where you would go to reset the application to clear all of the inputs and start a new setup. On the web version, this button is found in the upper right hand corner and looks like a “refresh” icon on a web browser.

Contact Us

For the mobile application we have implemented an in-app messaging service. This was done to give the user a tool to easily communicate any question they have about the application from within the app. It allows the user to not only send messages, but to also include screen shots of what they are seeing! This can be accessed by clicking on the “Contact Us” option in the same hamburger menu that the Logout and Help & Tips are found.

Have more questions? Check out our MAP FAQs for more information.

B&R Custom Machining- Featured Customer

B&R Custom Machining is a rapidly expanding aerospace machine shop located in Ontario, Canada, focused primarily on aerospace and military/defense manufacturing. Over the past 17 years, B&R has grown from a 5 person shop with a few manual mills and lathes, into one of Canada’s most highly respected manufacturing facilities, with nearly 40 employees and 21 precision CNC machines.

B&R focuses on quality assurance and constant improvement, mastering the intimacies of metal cutting and maintaining the highest levels of quality through their unique shop management philosophies. They seek to consistently execute on clear contracts through accurate delivery, competitive price, and high quality machined components.

We talked with Brad Jantzi, Co-Founder and Technical Manager of B&R Custom Machining, to learn about how he started in the industry, his experience with High Efficiency Milling, what he looks for most in a cutting tool, and more!

B&R Custom machining

Can you tell us a little bit about how B&R Custom Machining started, and a little background about yourself and the company?

My brother (Ryan Jantzi, CEO/Co-Founder) and I started working in manufacturing back in 2001, when we were just 20/21 years old. We had 5 employees (including ourselves), a few manual mills and lathes, and we were wrapping our parts in newspaper for shipping. We took over from a preexisting shop and assumed their sales and machines.

We bought our first CNC machine in 2003, and immediately recognized the power of CNC and the opportunities it could open up for us. Now, we have 21 CNC machines, 38 employees, and more requests for work than we can keep up with, which is a good thing for the business. We are constantly expanding our team to elevate the business and take on even more work, and are currently hiring for multiple positions if anyone in Ontario is looking for some challenging and rewarding work!

What kind of CNC machines are you guys working with?

Right now we have a lot of Okuma and Matsuura machines, many of which have 5 axis capabilities, and all of them with high RPM spindles. In fact, our “slowest” machine runs at 15k RPM, with our fastest running at 46k. One of our high production machines is our Matsuura LX160, which has the 46k RPM spindle. We use a ton of Harvey Tool and Helical product on that machine and really get to utilize the RPMs.

B&R Custom Machining

What sort of material are you cutting?

We work with Aluminum predominantly, but also with a lot of super alloys like Invar, Kovar, Inconel, Custom 455 Stainless, and lots of Titanium. Some of those super alloys are really tricky stuff to machine. Once we learn about them and study them, we keep a recorded database of information to help us dial in parameters. Our head programmer/part planner keeps track of all that information, and our staff will frequently reference old jobs for new parts.

Sounds like a great system you guys have in place. How did B&R Custom Machining get into aerospace manufacturing?

It is a bit of a funny story actually. Just about 12 years ago we were contacted by someone working at Comdev, which is close to our shop, who was looking to have some parts made. We started a business relationship with him, and made him his parts. He was happy with the work, and so we eventually got involved in his company’s switch division and started to make more and more aerospace parts.

aerospace machining

We immediately saw the potential of aerospace manufacturing, and it promoted where we wanted to go with CNC machining, so it was a natural fit. It really was a case of being in the right place at the right time and seizing the moment. If an opportunity comes up and you aren’t ready for it, you miss it. You have to be hungry enough to see an opportunity, and confident enough to grab it, while also being competent enough to handle the request. So, we took advantage of what we were given, and we grew and went from there.

Who are some of the major players who you work with?

We have great relationships with Honeywell, MDA Brampton, and MDA Quebec. We actually worked on parts for a Mars Rover with MDA that was commissioned by the Canadian Space Agency, which was really cool to be a part of.

Working with large companies like that means quality is key. Why is high quality tool performance important to you?

High quality and superior tool performance is huge. Aside from cutting conditions, there are two quick things that cause poor performance on a tool: tool life and consistency of the tool quality. One without the other means nothing. We all can measure tool life pretty readily, and there is a clear advantage that some tools have over others, but inconsistent quality can sneak up on you and cause trouble. If you have a tool manufacturer that is only producing a quality tool even 95% of the time, that might seem ok, but that means that 5% of the time you suffer something wrong on the machine. Many times, you won’t know where that trouble is coming from. This causes you to pause the machine, investigate, source the problem, and then ultimately switch the tool and create a new program. It becomes an ordeal. Sometimes it is not as simple as manually adjusting the feed knob, especially when you need to rely on it as a “proven program” the next time around.

So, say the probability of a shortcoming on a machine is “x” with one brand of tooling, but is half of that with a brand like Harvey Tool. Sure, the Harvey Tool product might be 10-20% higher in upfront cost, but that pales in comparison to buying cheaper tools and losing time and money due to machine downtime caused by tool failure. The shop rate for an average machine is right around $100/hour, so machine downtime is much more expensive than the added cost of a quality tool.

B&R Custom machining

Inconsistent tool quality can be extremely dangerous to play around with, even outside of machine downtime. We create based on a specific tool and a certain level of expected performance. If that tool cannot be consistent, we now jeopardize an expensive part. The machine never went down, but the part is no good because we programmed based on consistency in tool quality. Again, the cost of scrapped parts heavily outweighs the upfront cost of quality tooling. Tooling is a low cost of what we do here, but poor tooling can cost us thousands versus a few dollars more for quality tools. Too many people focus on the upfront cost, and don’t look downstream through the rest of the process to see how poor quality tooling can affect your business in a much bigger way. We get to see the whole picture because I am involved from cradle to grave, gaining feedback and knowledge along the way.

That’s great feedback Brad, and I think it is important for people to understand what you have laid out here. Speaking of tool performance, have you guys been using High Efficiency Milling techniques in the shop?

Absolutely. We feel that we are on the front edge of efficient milling. We are quite capable of all the latest techniques, as our programmers are well-versed and up to date. For our larger production work, we have programs dialed in that allow us to push the tools to their limits and significantly cut down our cycle times.

What advice would you have for others who are interested in High Efficiency Milling?

Make sure you are smart about using HEM. If we have one-off parts, particularly expensive ones, that do not have time restraints, we want to make sure we have a safe toolpath that will get us the result we want (in terms of quality and cutting security), rather than pushing the thresholds and taking extra time to program the HEM toolpaths. HEM makes total sense for large production runs, but make sure you know when to, and when not to use these techniques to get the most out of HEM.

B&R Custom machining

Have you been using Machining Advisor Pro in your shop when you run Helical end mills?

We have been, and it makes for a great point of reference for the Helical end mills. It has become a part of our new employee training, teaching them about speeds and feeds, how hard they can push the Helical tools, and where the safe zones are. Our more experienced guys also frequent it for new situations where they have no data. Machining Advisor Pro helps to verify what we thought we knew, or helps us get the confidence to start planning for a new job.

If you could give one piece of advice to a new machinist, or someone looking to take the #PlungeIntoMachining for the first time, what would it be?

Learn the intimacies of metal cutting. Get ultra-familiar with the results of what is actually happening with your tool, your setup, your part, and your machine. As well, don’t be limited to thinking “it sounds good,” or “it’s going good so far, so that must be acceptable.” In order to push the tools and confirm they are performing well and making money, you need to identify and understand where the threshold of failure is, and back off the right amount. This doesn’t end here though. Cutting conditions change as the tools, holders, machines, and parts change. Learning the nuances of this fluctuating environment and adapting accordingly is essential. Verify your dimensions, mitigate against risk, and control the variables.

Also, get intimate with what causes tools to succeed and fail, and keep a log of it for reference. Develop a passion for cutting; don’t just punch in and punch out each shift. Here at B&R, we are looking for continuous improvement, and employees who can add value. Don’t stand around all day with your arms folded, but keep constant logs of what’s going on and always be learning and thinking of how to understand what is happening, and improve on it. That is what makes a great machinist, and a successful shop.

B&R custom machining

How To Maximize High Balance End Mills

High speed machining is becoming increasingly widespread in machine shops all over the world due to the proven benefits of greater efficiency and productivity through increased spindle speeds and metal removal rates.  However, at such high spindle speeds, otherwise negligible errors and imperfections can cause negative effects such as reduced tool life, poor surface finish, and wear on the machine itself. Many of these negative effects stem from an increase in total centrifugal forces leading to vibration, commonly referred to in the industry as chatter. A key contributor to vibrations and one of the more controllable factors, is tool unbalance.

Why Balance is Critical to Machining

Unbalance is the extent to which the tool’s center of mass diverges from its axis of rotation.  Small levels of unbalance may be indistinguishable at lower RPMs, but as centrifugal force increases, small variations in the tool’s center of mass can cause substantial detrimental effects on its performance. High Balance End Mills are often used to help solve the problem of vibrations at the increased spindle speeds. Balancing is used to make compensation for the intrinsic unsymmetrical distribution of mass, which is typically completed by removing mass of a calculated amount and orientation.

Image Source: Haimer; Fundamentals of Balancing

Helical Solutions offers High Balance End Mills in both 2 and 3 flute options (see Figure 2), square and corner radius, along with coolant-through on the 3 fluted tools. These end mills are balanced at the industry standard of G2.5 at 33,000 RPM: G stands for the potential damage due to unbalance, which can be expressed as “Balancing Quality Grade” or G and 2.5 is the vibration velocity in MM per second. These tools are designed specifically to increase performance in highly balanced machining centers that are capable of elevated RPMs and feed rates. With high balance tooling, improved surface finishes are also achieved due to reduced vibrations during the machining process. Additionally, these end mills have been designed around current high-end tool holding, and come in a variety of neck lengths at specific overall lengths. These dimensional combinations result in maximum rigidity and reduced excess stick out, allowing for optimal performance and the ability to push the tools to the limit.

High Balanced Tooling Cost Benefits

Machinists who choose to use High Balance End Mills will see certain benefits at the spindle, but also in their wallets. Cost benefits of opting to run this type of tool include:

Utilizing Tap Testers

What Tap Testers Do

Vibrations are your applications worst enemy, especially at elevated RPMs and feed rates. Using resources such as a Tap Tester can help decrease vibrations and allow you to get the most out of your High Balance End Mills by generating cutting performance predictions and chatter limits.

How Tap Testing Works

High balance

Image Source: Manufacturing Automation Laboratories Inc.

Tap Testing generates cutting performance predictions and chatter limits. In a tap test, the machine-tool structure is “excited,” or tested, by being hit with an impulse hammer. In milling, the machine-tool structure is usually flexible in all three directions: X, Y, and Z, but in milling applications where High Balance Tooling is used, the flexibility is commonly only considered in two planes – the X and Y directions. By hitting the X and Y directions with the impulse hammer, the impact will excite the structure over a certain frequency range that is dependent on the hammer’s size, the type of tool being used, and the structure itself. The frequencies generated from the initial hit will produce enough information that both the impact force measurement and the displacement/accelerometer measurement are available. Combining these two measurements will result in the Frequency Response Function, which is a plot of the dynamic stiffness of the structure in frequencies.

After the information from the Tap Test is gathered, it will then process the information into useful cutting parameters for all spindles speeds such as cut depths, speed rates, and feed rates. In knowing the optimum running parameters, vibrations can be minimized and the tool can be utilized to its full potential.

High Balanced Tooling Summarized

Keeping vibrations at bay during the machining process is extremely important to machining success. Because one cause of vibration is tool unbalance, utilizing a balanced tool will result in a smoother job, a cleaner final product, and a longer life of both the tool and spindle. Machinists who choose to use High Balance Tooling can utilize a Tap Tester, or a method for generating the perfect running parameters for your tool and machine setup to ensure that machining vibration is as minimal as possible.

Why You Should Stop Deburring By Hand

Deburring is a process in which sharp edges and burrs are removed from a part to create a more aesthetically pleasing final product. After milling, parts are typically taken off the machine and sent off to the Deburring Department. Here, the burrs and sharp points are removed, traditionally by hand. However, an operation that takes an hour by hand can be reduced to mere minutes by deburring parts right in the machine with high precision CNC deburring tools, making hand deburring a thing of the past.

High Precision Tools

Hand deburring tools often have a sharp hook-shaped blade on the end, which is used to scrape/slice off the burrs as it passes along the edge of the part. These tools are fairly simple and easy to use, but much less efficient and precise than CNC deburring tools.

hand deburring

Image Source: https://upload.wikimedia.org/wikipedia/commons/0/03/Deburring_tool.jpg

CNC deburring tools are also held to much tighter tolerances than traditional hand-deburring tools. Traditional cylindrical deburring tools typically have a diameter-tolerance window of +/- .008 versus a CNC deburring end mill which has a diameter tolerance of +/-.0005. The tighter tolerance design eliminates the location issues found in traditional deburring tools with loose tolerances, allowing them to be programmed like a traditional end mill.

While hand deburring tools often have just a single blade, CNC deburring tools feature double cut patterns and a high number of flutes. The double cut pattern contains both right hand and left hand teeth, which results in an improved finish. These tools leave completed parts looking far superior to their hand-deburred counterparts, with more consistent and controlled edge breaks. Additionally, there is a large variety of CNC deburring tools available today which can take full advantage of multi-axis machines and the most complex tool paths. For example, Harvey Tool’s 270° Undercutting End Mill is a great choice for multi-axis and more complex deburring options. Further, Deburring Chamfer Cutters are multi-use tools that can perform both chamfering and deburring accurately with no need for a tool change.

cnc deburring

Reduce Production Costs and Increase Profits

Having an entire department dedicated to deburring can be costly, and many smaller businesses may have pulled employees off other jobs to help with deburring, which hampers production. Taking employees off the deburring station and asking them to run more parts or man another department can help keep labor costs low while still increasing production rates.

cnc deburring

Stop Deburring By Hand and Increase Your Profits

By deburring right in the CNC machine, parts can be completed in one machining operation. The double-cut pattern found on many deburring tools also allows for increased speeds and feeds. This helps to reduce cycle times even further, saving hours of work and increasing production efficiency. Deburring in the machine is a highly repeatable process that reduces overall cycle times and allows for more efficient finishing of a part. In addition, CNC machines are going to be more accurate than manual operations, leading to fewer scrapped parts due to human error and inconsistencies.

Simply put, the precision and accuracy of the CNC machine, along with the cost and time savings associated with keeping the part in the machine from start to finish, makes deburring in the CNC machine one of the easiest way to increase your shop’s efficiency.

5 Ways Your Shop is Inefficient

5 Ways Your Shop is Inefficient

In today’s ultracompetitive industry, every machine shop seeks even the slightest edge to gain an advantage on their competition and boost their bottom line. However, what many machinists don’t know is that improving their shop’s efficiency might be easier than they thought. The following five ways your shop is inefficient will provide a clear starting point of where to look for machinists desperate to earn a competitive edge.

1. Premature Tool Decay / Tool Failure

If you’re finding that your tools are failing or breaking at an unacceptable rate, don’t mistake it for commonplace. It doesn’t have to be. Prolonging the life of your tooling starts with finding not just the right tool, but the best one; as well as running it in a way to get its optimal performance. Many machinists mistake premature tool failure with running parameters that were too aggressive. In fact, not pushing the tool to its full potential can actually cause it to decay at an accelerated rate in certain situations.

Tool failure can occur in many different ways: Abrasive Wear, Chipping, Thermal Cracking or Tool Fracture, just to name a few. Understanding each type and its causes can help you to quickly boost your shop’s efficiency by minimizing downtime and saving on replacement tool costs.

tool wear

An example of a tool with excessive wear

For more information on tool wear, view Avoiding 4 Major Types of Tool Wear.

2. Subpar Part Finish

Your shop spends money to employ machinists, run machines, and buy cutting tools. Get your money’s worth, lead the industry, and ensure that you’re providing your customers with the highest quality product. Not only will this help to keep your buyer-seller relationship strong, but it will allow you the flexibility to increase your prices in the future, and will attract prospective customers.

Many factors influence part finish, including the material and its hardness, the speeds and feeds you’re running your tool at, tool deflection, and the tool-to-workpiece orientation.

For more information on ways to improve your part finish, view our Part Finish Reference Guide.

3. Inefficient Coolant Usage

One often forgotten expense of a machine shop is coolant – and it can be pricey. A 55-gallon drum of coolant can run more than $1,500. What’s worse is that coolant is often applied in excess of what’s required for the job. In fact, some machines even feature a Minimum Quantity Lubricant (MQL) functionality, which applies coolant as an extremely fine mist or aerosol, providing just enough coolant to perform a given operation effectively. While drowning a workpiece in coolant, known as a “Flood Coolant,” is sometimes needed, it is oftentimes utilized on jobs that would suffice with much less.

For more information about coolants and which method of application might be best for your job, view What You Need to Know About Coolant for CNC Machining.

4. Not Taking Advantage of Tool Versatility

Did you know that several CNC cutting tools can perform multiple operations? For example, a Chamfer Mill can chamfer, bevel, deburr, and countersink. Some Chamfer Mills can even be used as a Spotting Drill. Of course, the complexity of the job will dictate your ability to reap the benefits of a tool’s versatility. For instance, a Spotting Drill is obviously the best option for spotting a hole. If performing a simple operation, though, don’t go out of your way to buy additional tooling when what’s already in your carousel can handle it.

chamfer mills

To learn more about versatile tools that can perform multiple applications, check out Multi-Functional Tools Every Shop Should Have.

5. High Machine Downtime

What use is a machine that’s not running? Minimizing machine downtime is a key way to ensure that your shop is reaching its efficiency pinnacle. This can be accomplished a variety of ways, including keeping like-parts together. This allows for a simple swap-in, swap-out of material to be machined by the same cutting tool. This saves valuable time swapping out tooling, and lets your machine to do its job for more time per workday. Production planning is a key factor to running an efficient machine shop.