Posts

Understanding Key Qualities in Micro 100’s Offering of Micro-Quik™ Quick Change Tool Holders

Did you know that, along with supplying the machining industry with premier turning tools, Micro 100 also fully stocks tool holders for its proprietary Micro-Quik™ Quick Change Tool Holder System? In fact, Micro 100’s Spring 2021 Product Catalog introduced new “headless” style tool holders, which are revolutionizing the machine setup process for turning operations.

This “In the Loupe” guide is designed to provide you with insight for navigating Micro 100’s offering, and to help you select the optimal holder style for your operation.

Understanding Micro 100’s Micro-Quik™

Micro 100’s Micro-Quik™ is unlike any other tool change system you may have seen from other tool manufacturers because of its incredible axial and radial repeatability and its ease of use. This foolproof system delivers impressive repeatability, tip-to-tip consistency, and part-to-part accuracy, all the while resulting in tool changes that are 90 % faster than conventional methods.

In all, a tool change that would regularly take more than 5 minutes is accomplished in fewer than 30 seconds.

Try Micro 100’s “Headless” Tool Holders for Incredible Flexibility

Micro 100 Quick Change Tool Holder Selection

Straight Style, Headless Tool Holders

When using a straight style tool holder, you will enjoy significantly enhanced versatility during the machine set up process. These holders are engineered specifically for use in any Swiss, standard lathe, or multi-function lathe, and allow for adjustable holder depth in a tooling block. Radial coolant access ports provide easier access to coolant and the ability to utilize coolant through functionality in tooling blocks that share a static and live tool function, and cannot be plumbed through the back of the holder. Further, their headless design allows for installation through the backside of the tooling block in machines where the work envelope is limited, allowing for a simplified installation process.

Created by Harvey Performance Company Application Engineers, the following videos outline the simple process for inserting each style of Micro 100 Straight Tool Holder into a tooling block.

Micro 100 Straight Holder, Plumbed Style (QTS / QTSL)

In the video, you’ll notice that the first step is to place your Micro-Quik™ tool in this quick change holder, and align it with the locating pin. Then, tighten the locating and locking screw into the whistle notch. This forces the tool against the locking pin, and allows for repeatable accuracy, every time. From there, the quick change tool holder can be installed as a unit into a tooling block. When desired tool position is achieved, set screws can be tightened to lock the holder in place.

Micro 100 Straight Holder, Plumbed & Ported Style (QTSP / QTSPL)

This unique Micro 100 quick change tool holder style is plumbed and ported, allowing for enhanced versatility and coolant delivery efficiency. The setup process using this style of holder is also simple. First, place your Micro 100 quick change tool into the holder, and align it with the locating pin. From there, tighten the locating and locking screw into the whistle notch, forcing the tool against the locating pin and allowing for repeatable accuracy, every time. When plumbed coolant is being used, remove the plumbed plug in the back of the holder, and connect the appropriate coolant adapter and line. Then, the holder can be installed as a unit into the tooling block and locked into place with set screws.

When using ported coolant, make sure that the coolant plug in the back of the holder is tightly installed. Then, be sure to only use one of the radial ports. Simply plug the two that aren’t in use. Install the provided porting adapter to allow for coolant access. Porting options allow for coolant capabilities in machine areas where coolant is not easily accessible.

Headed Tool Holders

headed quick change tool holder

Micro 100’s original quick change tool holder for its Micro-Quik™ system, this style of tool holder for lathe applications features a unique “3 point” locking and locating system to ensure repeatability. When conducting a tool change with this tool holder style, you must follow a simple, 3-step process:

  1. Loosen the tool holder’s set screw
  2. Remove the used tool from the holder
  3. Insert the new tool and retighten the set screw

These headed holders are plumbed through the back of the holder for NPT coolant connection and are available in standard length and long length styles.

Double-Ended Modular Tool Holder System

double ended quick change tool holder

For twin spindle and Y-axis tooling block locations, Micro 100 fully stocks a double-ended modular system. Similar to its single-ended counterparts, this modular is headless, meaning it enhances machine access during the tool block installation process, and the holder depth can be adjusted while in the block. Because this system is double-ended, however, there is obviously no plumbed coolant option through the end of the tool. Instead, coolant is delivered via an external coolant port, the adapter for which is included in the purchase of the modular system. Right hand and left hand tool holders are designed so the set screws are facing the operator for easy access. Both right and left hand styles are designed for right hand turning.

Enjoy Quick Change Tool Holding Confidence & Ease of Use

When opting for a quick change system, machinists long for simplicity, versatility, and consistency. Though many manufacturers have a system of their own, Micro 100’s Micro-Quik™ sets itself apart with axial and radial repeatability, and tip-to-tip consistency. Further, Micro 100 fully stocks several quick change tool holder options, allowing a machinist to select the style that best fits their application.

Micro100 also manufactures and stocks a wide variety of boring tools for the Micro-Quik™. Click here to learn more.

For more information on selecting the appropriate quick change tool holder for your job, view our selection chart or call an experienced Micro 100 technical engineer at 800-421-8065.

quick change tool holder selection chart for Micro100

The 3 Critical Factors of Turning Speeds and Feeds

Many factors come into play when determining a proper turning speeds and feeds and depth of cut strategy for turning operations. While three of these factors – the ones we deemed to be among the most critical – are listed below, please note that there are many other considerations that are not listed, but that are also important. For instance, safety should always be the main focus of any machining operation, as improper cutting tool parameters can test a machine’s limits, resulting in an accident that can potentially cause significant bodily harm.

Machine condition, type, capabilities, and set-up are all significantly important to an overall successful turning operation, as is turning tool and holder selection.

Turning Speeds and Feeds Factor 1: Machine Condition

The condition of your machine should always be considered prior to beginning a machining operation on a lathe. Older machines that have been used for production operations where hard or abrasive materials are machined tend to have a large amount of backlash, or wear, on the machine’s mechanical parts. This can cause it to produce less than optimal result and may require that a tooling manufacturer’s recommended speeds and feeds parameters need to be dialed back a bit, as to not run the machine more aggressively than it can handle.

turning speeds and feeds

Factor 2: Machine Type and Capabilities

Before dialing in turning speeds and feeds, one must understand their machine type and its capabilities. Machines are programmed differently, depending on the type of turning center being used: CNC Lathe or Manual Lathe.

CNC Lathe Turning Centers

With this type of machine, the part and tool have the ability to be set in motion.

CNC lathe turning centers can be programmed as a G96 (constant surface footage) or G97 (constant RPM). With this type of machine, the maximum allowable RPM can be programmed using a G50 with an S command. For example, inputting a G50 S3000 into your CNC program would limit the maximum RPM to 3,000. Further, with CNC Lathe Turning Centers, the feed rate is programmable and can be changed at different positions or locations within a part program.

Manual Lathe Turning Centers

With this type of machine, only the part is in motion, while the tool remains immobile.

For manual lathe turning centers, parameters are programmed a bit differently. Here, the spindle speed is set at a constant RPM, and normally remains unchanged throughout the machining operation. Obviously, this puts more onus on a machinist to get speed correct, as an operation can quickly be derailed if RPM parameters are not optimal for a job. Like with CNC lathe turning centers, though, understanding your machine’s horsepower and maximum feed rate is critical.

Factor 3: Machine Set-Up

turning speeds and feeds proper tool setup
Excessive Tool Stickout. Digital Image, Hass Automation. https://www.haascnc.com/service/troubleshooting-and-how-to/troubleshooting/lathe-chatter—troubleshooting.html

Machining Conditions

When factoring in your machine set-up, machining conditions must be considered. Below are some ideal conditions to strive for, as well as some suboptimal machining conditions to avoid for dialing in proper turning speeds and feeds.

Ideal Machining Conditions for Turning Applications

  • The workpiece clamping or fixture is in optimal condition, and the workpiece overhang is minimized to improve rigidity.
  • Coolant delivery systems are in place to aid in the evacuation of chips from a part and help control heat generation.

Suboptimal Machining Conditions for Turning Applications

  • Utilizing turning tools that are extended for reach purposes, when not necessary, causing an increased amount of tool deflection and sacrificing the rigidity of the machining operations.
  • The workpiece clamping or fixturing is aged, ineffective, and in poor condition.
  • Coolant delivery systems are missing, or are ineffective
  • Machine does not feature any guarding or enclosures, resulting in safety concerns.

Cutting Tool & Tool Holder Selection

As is always the case, cutting tool and tool holder selection are pivotal. Not all turning tool manufacturers are the same, either. The best machinists develop longstanding relationships with tooling manufacturers, and are able to depend on their input and recommendations. Micro 100, for example, has manufactured the industry’s highest quality turning tools for more than 50 years. Further, its tool holder offering includes multiple unique styles, allowing machinists to determine the product that’s best for them.

lathe tool holder
Pro Tip: Be sure to take into consideration the machine’s horsepower and maximum feed rate when determining running parameters.

Bonus: Common Turning Speeds and Feeds Application Terminology

Vc= Cutting Speed

n= Spindle Speed

Ap=Depth of Cut

Q= Metal Removal Rate

G94 Feedrate IPM (Inches Per Minute)

G95 Feedrate IPR (Inches Per Revolution)

G96 CSS (Constant Surface Speed)

G97 Constant RPM (Revolutions Per Minute)

Causes & Effects of Built-Up Edge (BUE) in Turning Applications

In turning operations, the tool is stationary while the workpiece is rotating in a clamped chuck or a collet holder. Many operations are performed in a lathe, such as facing, drilling, grooving, threading, and cut-off applications. it is imperative to use the proper tool geometry and cutting parameters for the material type that is being machined. If these parameters are not applied correctly in your turning operations, built-up edge (BUE), or many other failure modes, may occur. These failure modes adversely affect the performance of the cutting tool and may lead to an overall scrapped part.

When inspecting a cutting tool under a microscope or eye loupe, there are several different types of turning tool failure modes that can be apparent. Some of the most common modes are:

  • Normal Flank Wear: The only acceptable form of tool wear, caused by the normal aging of a used cutting tool and found on the cutting edges.
    • This abrasive wear, caused by hard constituents in the workpiece material, is the only preferred method of tool wear, as it’s predictable and will continue to provide stable tool life, allowing for further optimization and increased productivity.
  • Cratering: Deformations found on the cutting face of a tool.
    • This tool mode is a chemical and heat failure, localized on the rake face area of the turning tool, or insert. This failure results from the chemical reaction between the workpiece material and the cutting tool and is amplified by cutting speed. Excessive Crater Wear weakens a turning tool’s cutting edge and may lead to cutting edge failure.
  • Chipping: Breaking of the turning tool along its cutting face, resulting in an inaccurate, rough cutting edge.
    • This is a mechanical failure, common in interrupted cutting or non-rigid machining setups. Many culprits can be to blame for chipping, including machine mishaps and tool holder security.
  • Thermal Mechanical Failure (Thermal Cracking): The cracking of a cutting tool due to significant swings in machining temperature.
    • When turning, heat management is key. Too little or too much heat can create issues, as can significant, fast swings in temperature (repeated heating and cooling on the cutting edge). Thermal Mechanical Failure usually shows in the form of evenly spaced cracks, perpendicular to the cutting edge of the turning tool.
  • Built-Up Edge (BUE): When chips adhere to the cutting tool due to high heat, pressure, and friction.

Effects of Built-Up Edge in Turning Application

A built-up edge is perhaps the easiest mode of tool wear to identify, as it may be visible without the need for a microscope or an eye loupe. The term built-up edge means that the material that you’re machining is being pressure welded to the cutting tool. When inspecting your tool, evidence of a BUE problem is material on the rake face or flank face of the cutting tool.

built up cutting edge on turning tools
Image Source: Carbide inserts Wear Failure modes. | machining4.eu, 2020

This condition can create a lot of problems with your machining operations, such as poor tool life, subpar surface finish, size variations, and many other quality issues. The reason for these issues is that the centerline distance and the tool geometry of the cutting edge are being altered by the material that’s been welded to the rake or flank face of the tool. As the BUE condition worsens, you may experience other types of failures or even catastrophic failure.                     

Causes of Built-Up Edge in Turning Applications

Improper Tooling Choice

Built-Up Edge is oftentimes caused by using a turning tool that does not have the correct geometry for the material being machined. Most notably, when machining a gummy material such as aluminum or titanium, your best bet is to use tooling with extremely sharp cutting edges, free cutting geometry, and a polished flank and rake face. This will not only help you to cut the material swiftly but also to keep it from sticking to the cutting tool.

various turning tools

Using Aged Tooling

Even when using a turning tool with correct geometry, you may still experience BUE. As the tool starts to wear and its edge starts to degrade, the material will start building up on the surface of the tool. For this reason, it is very important to inspect the cutting edge of a tool after you have machined a few parts, and then randomly throughout the set tool life. This will help you identify the root cause of any of the failure modes by identifying them early on.

Insufficient Heat Generation

Built-up edge can be caused from running a tool at incorrect cutting parameters. Usually, when BUE is an issue, it’s due to the speed or feed rates being too low. Heat generation is key during any machining application – while too much heat can impact a part material, too little can cause the tool to be less effective at efficiently removing chips.

4 Simple Ways to Mitigate BUE in Turning Applications

  1. When selecting a tool, opt for free cutting, up sharp geometries with highly polished surfaces. Selecting a tool with chipbreaker geometry will also help to divide chips, which will help to remove it from the part and the cutting surface.
  2. Be confident in your application approach and your running parameters. It’s always important to double-check that your running parameters are appropriate for your turning application.
  3. Make sure the coolant is focused on the cutting edge and increase the coolant concentration amount.
  4. Opt for a coated Insert, as coatings are specifically engineered for a given set of part materials, and are designed to prevent common machining woes.
solid carbide turning tool