Posts

Nueva Precision – Featured Customer

When it comes to CNC manufacturing services and product development solutions in the Denver, Colorado area, Eddie Casanueva has quickly made a name for himself with his company, Nueva Precision. Eddie has more than 22 years of manufacturing experience and 19 years of business experience, which he uses to help small businesses and entrepreneurs who are looking for product support and development.

Eddie was able to take time out of his busy schedule to talk with us for this Featured Customer post. We covered topics like Eddie’s incredible training and introduction to manufacturing, his experiences using reduced neck end mills, and his suggestions for must-have equipment in any CNC machine shop.

Thanks for taking the time to talk to us for this Featured Customer post. To get started, tell us a little bit about the history behind Nueva Precision and what sort of products you typically manufacture.

Nueva Precision was first incorporated at the end of 2016. Within three months, I was making chips on my own, largely doing prototype work.

I had recently sold my share in another company I co-founded and used that money to move into a larger home in the Denver area that could accommodate a machine shop business. We were lucky enough to find a home with some acreage and an existing oversized garage which was perfect for a shop. Now that I had the building, I had to do things like get the electrical and HVAC up to spec. It required having the city run a stronger electrical line to the building I would use as my shop, but once that was all figured out, we were ready to make some chips.

Nueva Precision

I started by buying a used Haas mill and a used Haas lathe. People initially reached out to me for work because of my quick delivery times. I was able to turn around parts in just a week or two since the business was new. However, within a month of operating those machines, I was already at max capacity with my current equipment. Unfortunately, my lead times had increased to a more standard 4-6 weeks due to the sheer amount of work I was getting. For the rest of 2017, I stuck with my original equipment and just did the best I could to keep up.

nueva precision

Do you have any future plans to expand your shop and capabilities further?

I do! In early 2018 I brought in a brand new VM3 Haas Mill to keep up with demand, but I was curious about how much more revenue that would create. I expected to see a 20-30% increase in revenue, but having another machine ended up doubling my revenue. Luckily my strong relationships with my customers helped me grow the business even as my lead times increased. With that in mind, I just ordered another Haas VM2 at the end of 2018 and am excited to take full advantage of that.

How has your family reacted to you running a business out of your home?

My family has been extremely supportive throughout the whole process. My wife Leandra in particular helps out a lot. She was a teacher for 19 years, but resigned from that profession to work on Nueva Precision. She has started to help out on the business side of things and has also started to help run machines and make parts. My oldest son Jaden (16) is interested in manufacturing and he has started working and making simple parts for us when he is available. All in all, we have a pretty good thing going here.

Eddie and Leandra Nueva Precision

Eddie and Leandra

Jaden nueva precision

Jaden working on parts

How did you first get involved in CNC machining and advanced manufacturing?

I am essentially self-taught in CNC machining. I got started in engineering and manufacturing as a student at the New Jersey Institute of Technology (NJIT) in the Mechanical Engineering program. It was a state school, so tuition costs weren’t bad but I still needed to support myself. I was going to school during the day and pumping gas at night to pay the bills. In my second year in school I came across an opportunity to work at an on-campus research center for manufacturing systems. It was funded by the state of New Jersey to help promote New Jersey industry. The job didn’t have much to do with my curriculum, but they supported some campus research and worked closely with the college on various projects.

The research center had all the workings of a machine shop. There were CNC mills, lathes, injection molding machines, and more. It just looked awesome. I managed to get hired for a job at minimum wage sweeping the shop floor and helping out where I could.

As a curious student, I would ask a million questions of all the machinists and try to do more and more than the usual student employee. John – a talented toolmaker and experienced machinist – took me under his wing and taught me lots of stuff about machining. I started buying tools and building out my toolbox with him for a while, absorbing everything that I could. Next thing I know, they’re handing me prints and I am making parts. A few months down the road the machinists started teaching me programming on a Mazak controller. This went on for a year or so and I just soaked it all in.

nueva precision

Sounds like great experience! Where did you land your first full-time position in manufacturing?

I actually landed my first full-time job at the same manufacturing research center. The center had a CNC machinist programmer resign at the facility, so there was a job opening posted. I went to the director of the center and said I was interested in the position. I knew I had to work a lot to pay my tuition, and if I worked for the university I could get my tuition paid for while also making some real money. The director recommended me for the position, so I interviewed and landed the job. All of a sudden, I had benefits, vacation, real responsibilities, and full-time pay. I flipped my schedule around so I could go to school during nights and work during the day.

I learned so much about machining in my first job because of the unique situation I was in. Companies like Blaser Swisslube, Kennametal, and GibbsCAM were supplying us with product and support to work on process improvements for large New Jersey corporations like BF Goodrich Aerospace, US Can, etc. It progressed to the point where GibbsCAM was actually sending me to seminars to train me on different industry topics to further my education and improve the reports we were outputting.

nueva precision

I was in an amazing position to get all this training and I learned so much in the next 4-5 years. We had equipment like a Fadal 5-Axis CNC Machine and other high tech machines at my disposal, which were very hard to find at the time (mid-1990s). Nobody outside of the most elite machine shops were working in 5-axis, so I had a head start because of this unique job experience.

I actually never finished my degree and instead dove head first into manufacturing. I started my own business on the side and kept working at the research center until 2001 when I left to focus full-time on my new business, Spidertrax Offroad.

Can you tell us more about your experience with Spidertrax Offroad?

Spidertrax Offroad is a manufacturer of drivetrain parts for off-roading vehicles. I started Spidertrax with a partner whom I met in college. The company actually started making our first parts at the research center I was employed at. I asked my boss if I could start making parts off the clock on my own time, and he agreed to let me use the shop. This would have been around 1998, and by 2001 I was ready to take off on my own. My partner and I built that company up to 20 employees, and we were (and they still are) a well-respected brand in the off-roading community.

The hardest part about operating my own business and watching it grow was losing the ability to get out in the shop and actually do what I love, which is making parts. As the business grew, I had to take on more responsibility as a “business man,” and let go of many of the things I enjoyed doing as a machinist. I was very proud of what we had built, but I really wanted to get back to basics. So, in early 2017 I sold my half of Spidertrax Offroad to my partner and took that money to buy the new house and open Nueva Precision, Inc.

What sort of machines and CAM software do you have in your new shop?

Right now for CNC machines I have a 2018 Haas VM3, a 2018 Hass VM2, a 2012 Haas VF2, and a 2012 Haas TL2. I also have an engine lathe, a Bridgeport knee mill, Kaeser screw compressor, which I absolutely love, and a couple of Jet saws.

For software, I still use GibbsCAM. I have been using GibbsCAM since 1996 and have had countless hours of training and experience using it, so I think I’m a lifer.

haas vf2

Outside of tooling, what are some key components of your machining setup that you would recommend to others?

I started Nueva Precision without any sort of probing system in place, and using an umbrella style tool changer. I found out quickly that my time, especially being alone, is worth a lot. I highly recommend getting a solid probing system as well as a side mount tool changer. I added all of that to my VM3 and the effect was immediately noticeable. It is so much more efficient and faster.

Keeping software up-to-date is also key. It can be expensive, but it speaks for itself in just a few months. Any time I invest in technology, it seems to pay off pretty quick.

5th axis workholding

I also feel strongly about having solid workholding. I have a couple of the 5th Axis self-centering vises which are great, and a handful of Kurt vises, as well. I am also a big fan of the MMM-USA guys and their vise jaws and handles. For my shop, flexibility is key because I never know what can come through the door. I don’t do a lot of production work and spend much more time on prototype work, so flexibility is key. Having good quality workholding that I don’t need to worry about lets me swap parts in and out with ease.

As for tool holding, I ran into an issue last year where I was starting to see a lot of tool pullout and was scrapping too many parts as a result of aggressive roughing. I had to find a better solution, and I came across the REGO-FIX PowRgrip system. It might seem expensive compared to other simpler tool holder, but I think the upfront investment isn’t too bad considering the other options in that space. Again, I invested in technology, and immediately saw better results. I currently use the PowRgrip for finishing passes where I need good runout and heavy roughing where there is the highest risk of tool pullout.

REGO powRgrip

You use a lot of Helical’s Reduced Neck end mills. What are some tips or tricks you have learned by using these tools that you could share with others?

My experience with these tools is really new, but I find myself using more and more of them these days. In the beginning, I was afraid of end mills with a longer length of cut singing like crazy in the machine. I started experimenting with the reduced neck tools from Helical and was blown away by the rigidity. The tool pressure remains consistent throughout the part, so you will get the same great results on the top of the part as on the bottom.

I don’t know how many people are currently using them but it makes so much stuff possible. I have gone as large as ¾” diameter with the 5” reach and have never had an issue. Maintaining the low levels of runout is definitely key with these tools, which again comes back to having solid toolholding. Now that I have the REGO-FIX system, I am getting much better runout and plan to start pushing the reduced neck tools even harder.

helical reduced neck end mill

Most of my reduced neck end mills are the standard style, but the chipbreaker with the reduced neck has been a powerhouse for me as well. No matter what I tried with Helical’s reduced neck tooling, I have had success, so I would recommend the entire line if the situation calls for it. Just be careful with runout and make sure to double check your clearance!

What are some of your key Helical products that you use on a daily basis?

My main workhorse is Helical EDP 29422 – the ½” 45 Degree Chipbreaker for Aluminum. I swear I use that tool every single day across all of my machines. That tool is gold for me; it is night and day compared to standard roughers. It has a long enough flute length to be versatile or aggressive, depending on the situation. It is just a great tool. You will need a good holder for sure to keep it from pulling out when you get aggressive, but again my new software and tool holding helps with that.

helical solutions

Outside of performance, I love getting the smaller chips that the chipbreaker tools create. It is so much easier to clean a machine with small chips than long, stringy ones, which saves me time. I do all my roughing with chipbreakers. If you are making stringy chips while running HEM toolpaths, they can be a major pain to deal with.

My customers love the finish that Helical gives me as well. The wiper flat on the bottom of the H40ALV-3 end mill stands out as one of my favorite features on any of my tools. That tool gets me compliments on the floor finishes of pockets and enclosures all the time. Across the board, tool life and finish has been awesome with my Helical end mills. I currently use the Zplus coating for all my aluminum tools and have no complaints.

part finish

This summer I had the privilege of working on some aerospace parts that will be going up into space!  Most all parts were being machined from pre-hardened stainless steels and exotic alloys.  The Helical 5-flute and 7-flute endmills with the Aplus coating proved to be great tools to have in the arsenal.

What are your “go-to” Harvey Tool products?

For Harvey Tool, I use a lot of the full radius Keyseat Cutters to surface mill areas you can’t get to with a ball nose end mill. This saves me valuable time because I can avoid flipping the part to surface mill both sides by doing it all in one operation with the Keyseat Cutter.

keyseat cutter

Outside of the keyseats, I use a lot of miniature end mills with reduced shanks and chamfers mills in a variety of angles. I also use lollipops (undercutting end mills) to surface mill parts with hard-to-reach holes.

Overall, being able to look through a single catalog and find tons of options for neck diameters and cutter diameters is what sells me on the Harvey Tool product. It is really neat to have all those different tools available to me in one place – it’s a great catalog.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Master Machine Manufacturing – Featured Customer

Master Machine Manufacturing, or MMM USA, is a family-owned and operated machine shop based out of Tulsa, Oklahoma. Master Machine is a rapidly expanding company which has seen serious growth as both a job shop and as an OEM Manufacturer of their own Quick Vise Handles and Piranha Jaws for CNC machinists.

Brothers Geordan and Nace Roberts, along with their mother, Sherry Roberts, are the owners of Master Machine Manufacturing. With Geordan and Nace, we dove into topics like having a growth mindset, working smarter instead of harder, and expanding a “job shop” business while also creating and manufacturing their own OEM products.

Tell us a little about Master Machine’s history and the type of work that your company does.

Geordan: Master Machine has been in business since 1981. Our father, George Roberts, started the business. At the beginning it was a pretty typical manual machine shop operating primarily as a job shop. As Nace and I got older, Dad introduced us to the business and we started working there part-time, eventually transitioning into full-time employees. In 1996, we transitioned to high precision machining with our first CNC machine – a Haas VF1, and we kept adding new CNC machines from there.

Nace and I took over in 2013 after our Dad passed. We had to make the transition from managers and shop foreman to owners and dealing with customers. We now own and operate the business with our mother, Sherry Roberts.

master machine

Geordan, Nace, Sherry, and the rest of the MMM USA team at IMTS with Mark Terryberry from Haas Automation

At its core, Master Machine is a job shop that does a lot of high precision machining. We work on things like lab test equipment, parts for the aerospace industry, and a lot of parts for the oil and gas industry. More medical jobs and odd things like parts for off-road racing have started to come in recently as well. One cool thing about us is that we have the unique ability to operate as a job shop, but also to design and manufacture our own products. Many of your readers have probably seen some of our vise handles and jaws in use online, especially on Instagram.

Your MMM USA Jaws and Vise Handles have become extremely popular in the CNC machining community. Where did you get the idea for that product?

Geordan: We had been using other brands of vise handles and jaws for a long time and got tired of buying products that were cheap and didn’t work well. We had this idea for a while, so in 2013 when things started to slow down a little bit, we had an opportunity to spend some time and design our own products. It was just about 2 years ago that we designed our first vise handle and Piranha Jaws. After using social media, showing them off at IMTS and other Industrial Trade Shows, they really started to take off. Our vise handles and jaws have really started to become a business of their own over the past couple of years.

vise handle

Can you breakdown the shop for us? What are you working with in terms of shop size, machine capabilities, and software?

Nace: We operate as a 100% debt-free company, so we grow as we need to. We have been at our current location for 10 years with 5-7 different additions along the way. Our shop is now spread across 10,300 square feet.

We currently have 18 CNC milling machines, including our original machine, the 1996 Haas VF1. We have been growing very fast over the past 10 years. From 2004-2007, we only had 3 CNC mills, and we have acquired the other 15 machines all in the last decade. We like buying from companies that make their products right here in the USA, so we have grown our shop through the Haas line of machines. Almost everything we own here is made by Haas Automation. In fact, our Haas VF4 and our 5-axis Haas UMC750 are some of our biggest mills in the shop right now.

Geordan: We also have other capabilities in the shop. We can do welding, painting, surface grinding, and we have a nice setup of bar feeders and lathes. For software, we use a lot of BOBCAD V31 for our 4th and 5th axis mill programming and all of our lathe programming, Nace uses a lot of Autodesk Fusion 360 for the mill side of things.

For inspection, we have many inspection tools, including a Fowler Z-Cat CMM that can measure down to +/- .0002″ for our most high precision jobs.

How did you guys first get involved in manufacturing?

Geordan: I started machining with my Dad at age 13, and got into it full-time after high school, but was not yet fully committed. At this point, I learned manual and CNC machining entirely through working with my Dad and my Uncle.  It wasn’t until my Uncle, the main machinist in our shop, decided to split off and start his own shop that I was faced with a more urgent need to commit to the family business. So I decided to make manufacturing a full time career move and started learning fixturing, programming, and everything I needed to know to be successful. We still have a great relationship with my uncle and his shop and I wouldn’t be where I am today without him stepping out on his own.

Nace: I didn’t know what I wanted to do with my life. I just knew I wanted to make money, and a lot of money. I was actually in college for radiology and physical therapy, but I didn’t like the layout of the career path. I could not convince myself to wait to start making real money until I had finished a long education and received a license 6-8 years down the road.

Instead of physical therapy and radiology, I started taking more computer engineering courses and learned a lot about programming and technology. After my uncle left, I told my Dad I would like to be a bigger part of the business and take what I knew from my computer programming classes and apply it to the shop. Within a year I had gone from never running a CNC to fully doing everything on the machine. My computer programming skills definitely helped me make the transition into CNC machining and programming.

master machine

As a second generation owner of a family business, how do you stick to those family values while also rapidly expanding the business?

Nace: We have grown a lot with our systems and technology, but our culture has also changed since we took over. We educated ourselves on workplace culture and maintaining a positive work environment. When we were kids, Dad worked probably 100 hours a week and we were always fortunate that he was able to provide us with food, clothes, and a roof over our heads. But no matter how hard he worked, he can’t replace the time with us that was spent working.

One of the major improvements we focused on was trying to maintain repeatability. Everything in the shop is labeled in boxes and readily available for our employees. Ultimately, we want to do everything we can to make it easy as possible for our employees. We want to work smarter, not harder, so there is more time for our employees to spend with family and not spend their lives in the shop.

As owners, we often need to work odd hours of the day to maintain the business, but we do it in a way that makes sure we have our family time. There are many times where we will go home, have dinner and hang out with the family, and wait until they are all sleeping to go back to work until 2 or 3 a.m.. We will get back home later that morning to sleep a little and have breakfast with the family and send them on their way before heading back in to the shop.

Working with family, we have to remind ourselves that business is business, and outside of business it is all about family. It can be tough to differentiate those two, but you have to. We went to business counseling and learned how to respect family members and build up the team while also making tough business decisions. We have our tough moments at the shop, but at the end of the day this is still your family. You can’t carry any frustration with other family members outside of those shop doors and into the home.

mmm usa piranha jaws

What are some other things you have done to maintain your “Work Smarter, Not Harder” mantra?

Geordan: One of the first things we did was look into getting more tooling and better tooling. We paid more for tools that can push harder and faster, and last longer. When Dad ran the shop, he would just buy whatever he thought we could afford and still get the job done. Now as CNC technology and advanced CAM systems have improved, the need for quality tooling is extremely important. Finding the best and most reliable tools helped take our shop to the next level and that is where Harvey Tool and Helical come into play.

Nace: We like to be the “purple cow” of the industry, differentiating ourselves in any way that we can. We strive to maintain a certain level of quality across our website, our Instagram page, our products, and the entire business as a whole. We are proud to support products made in the USA and keep supporting American manufacturing to help keep the business thriving in our shop and others. We are always happy to support companies like Haas, Harvey Tool, Helical, and many others who are doing it all right here in the USA.

What are some of your “go-to” Harvey Tool and Helical products?

Geordan: The Helical Chipbreaker End Mill for Aluminum is key for making our vise handles. We use the ½” end mill and run it at 10k RPM, 300 IPM with a .700” DOC and 40% stepover. We can push those tools harder than others while also maintaining our product’s quality. We also rely heavily on Helical’s HEV-5 for our steel applications.

One of our favorite and most-used tools is the Harvey Tool 90 Degree Helically Fluted Chamfer Mill. We use the 3-flute style on everything that isn’t Aluminum because we can simply push it faster and harder than anything else that we have tried.

master machine

Nace: We actually keep a ton of other Harvey Tool and Helical products in our Autocrib. It made sense for us to get an inventory system, and we got a great deal on a system during the recession. Industrial Mill & Maintenance Supply got us hooked up with an Autocrib and a ton of tools, and they have been great at supplying it whenever we need more. It has helped a lot having an inventory system like that. It is reassuring to know that we have the best tools ready on hand so we can eliminate any potential downtime.

Master Machine is everywhere in the online machining community, specifically on Instagram. How has online marketing and social media changed the way you promote your business?

Geordan: Most people who run businesses seem to just hope that the word of mouth gets out there, or they have a website and hope it just goes viral one day and gets some attention. With the way the Internet is so crowded these days, you have to do something more to stand out. On our side, we have boosted our business through the use of paid online advertising with Google, boosting our SEO (Search Engine Optimization) to rank higher in search results, and being heavy users of social media like Instagram.

When I started the Master Machine Instagram account, I was really just using it to see what other machinists were doing. It was actually only a personal account for my use. I was skeptical of Instagram because of the Facebook community of machinists. I always viewed Facebook as a little more negative and less productive, while the Instagram community was much more collaborative.

mmm usa

I started by following people like Aeroknox, Kalpay, John Saunders, Bad Ass Machinists, and Tactical Keychains. I immediately noticed how helpful everyone was. I started posting as a business just about 2 years ago, when I posted our first version of the vise handles. Almost immediately people started asking to buy them. We were blown away by the response.

We didn’t set out to create something new with these handles, but by getting our name out there and filling a need for people following us, the hype continued to grow and grow and grow. Instagram has been a great tool for that aspect of the business, especially. We now have around 15 distributors across the US who are carrying our products, and are getting some great momentum. We also sell a lot of our products direct on our website, and 99% of that probably comes through Instagram.

Nace: We have actually landed distributors through someone following us online and going to their integrated distributor asking for our products. The distributor then called us and asked if they could carry our product on their shelves. Other online connections have also helped us land distributors through simple messages and phone calls.

Where do you see MMM USA in 10 years?

Nace: That’s a tough question…

At the shop, we always stress four major actions: Define, Act, Measure, and Refine. In our eyes, there are always better ways to do things and improve our processes. We hire people to have a growth mindset, and so we are redefining our future every day through our continual improvement process. We strive to always have that growth mindset to figure out how to do a job more efficiently. With constant improvement always taking place, it is hard to nail down exactly where the shop will be in 10 years, 5 years, or even 1 year from now. One thing is for sure – we will be successful.

Geordan: Something we do want to focus on is creating new assets, exploring new ventures, and doubling in size every year. We want to continue to release new products to build out our own product line and have MMM USA distributors worldwide.

Back in the day, Kurt Workholding was just a job shop, and now they are one of the most recognized workholding brands in the CNC machining industry. It is really hard to say where this ends or goes, but we think we have a bright future as both a job shop and as a supplier of our own OEM products for manufacturing.

vise handles

Are you currently hiring new machinists? If so, what qualities and skills do you look for?

Geordan: Every Tuesday we have an open interview at 4 PM. As you can imagine, with our company’s growth, we are constantly hiring. We are looking for people that are positive that have a growth mindset who can grow within the company. We always believe we can promote from within. Most of our people have been at Master Machine for 10-15 years because we can always move people up closer to the top and help them advance in their careers as we grow.

Nace: We are really focused on finding people with good attitudes, and people who want to be here. Skilled machinists are great, but they can be rare, so attitude and fitting in with the culture is huge. We can always take a good attitude and train the skill level up, but we can’t take a good skill level and change the bad attitude. We want team members who will coach each other up and help improve the team as a whole. We love working together and supporting the business together in every aspect of the business.

master machine

What is the best advice you have ever received?

Geordan: We really like “Notable Quotables.” Here are a couple of our favorites.

“The pen is for remembering, and the mind is for making decisions.”

We only have so much brain power to make crucial decisions, so we write all the day-to-day action items down on our checklists to make sure nothing is left undone. That frees our minds up from having to remember every little piece of the business so we can save that brain power for strategic decision making moments. We must be proactive and not reactive as we lead our team.

Nace: “Your employees want to follow someone who is always real, and not always right.”

As a leader, you need to take responsibility when you screw up, and be open with the team. Let them be a part of fixing the problem, and approach every situation looking at the positive.


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Workholding Styles & Considerations

Machinists have a number of variables to consider when setting up workholding devices for a machining operation. When it comes to workholding, there are some major differences between holding a loosely toleranced duplicate part with a 10-minute cycle time and holding a tightly toleranced specialized part with a 10-hour cycle time. Determining which method works best for your machining job is essential to maintaining an efficient operation.

Workholding Devices

Ideal workholding devices have easily repeatable setups. For this reason, some machines have standard workholding devices. Vises are generally used with milling machines while chucks or collets are used when running a lathe machine. Sometimes, a part may need a customized workholding setup in order to secure the piece properly during machining. Fixtures and jigs are examples of customized workholding devices.

Fixtures and Jigs

A jig is a work holding device that holds, supports and locates a workpiece and guides the cutting tool into a specific operation (usually through the use of one or more bushings). A fixture is essentially the same type of device, but the main difference is that it does not guide the cutting tool into a specified operation. Fixtures are typically used in milling operations while jigs are generally used in drilling, reaming, tapping and boring. Jigs and fixtures are more precise relative to standard workholding devices, which leads to tighter tolerances. They can also be indexable, allowing them to control the cutting tool movement as well as workpiece movement. Both jigs and fixtures are made up of the same basic components: fixture bodies, locators, supports, and clamps.

The 4 Fixture Bodies

There are 4 basic types of fixture bodies: faceplates, baseplates, angle plates, and tombstones.

Faceplates: Typically used in lathe operations, where components are secured to the faceplate and then mounted onto the spindle.

Baseplates: Common in milling and drilling operations and are mounted to the worktable.

Angle plates: Two plates perpendicular to each other but some are adjustable or customized to change the angle of the workpiece.

Tombstones: Large vertically oriented rectangular fixtures that orients a workpiece perpendicular to the worktable. Tombstones also have two sides to accommodate multiple parts.

workholding

Locators

Locators are characterized by four criteria: assembled, integral, fixed, and adjustable. Assembled locators, can be attached and removed from the fixture, which is contrary to integral locators that are built into the fixture. Fixed locators allow for no moving components, while adjustable locators permit movement through the use of threads and/or springs, and can adjust to a workpiece’s size. These can be combined to provide the appropriate rigidity-assembly convenience ratio. For example, a V-locator fixture is the combination of assembled and fixed locators. It can be secured to a fixture but has no moving components.

workholding

Supports

Supports do exactly what their name suggests, they support the workpiece during the machining process to avoid workpiece deformation. These components can double as locators and also come fixed, adjustable and integral, or assembled. Generally, supports are placed under the workpiece during manufacturing but this also depends on the geometry of the workpiece, the machine being operated and where the cutting tool will make contact. Supports can come in different shapes and sizes. For example, rest buttons are smaller support components used in series either from underneath the workpiece or from the sides. Concurrently, parallel supports are placed on either side of the part to provide general support.

workholding

Clamps

Clamps are devices used for strengthening or holding things together, and come in different shapes, sizes and strengths. Vises and chucks have movable jaws and are considered standard clamps. One atypical example is the toggle clamp, which has a pivot pin that acts as a fulcrum for a lever system. One of the more convenient types is a power clamping system. There are two type of power clamping methods: hydraulic and pneumatic.

workholding

Example of a standard fixture setup.

Hydraulic Systems

Hydraulic Systems create a gripping force by attaining power from compressing a liquid. This type of power clamp is generally used with larger workpieces as it usually takes up less space relative to pneumatic clamps.

Pneumatic clamps

Pneumatic clamps attain their gripping force from the power created by a compressed gas (usually air). These systems are generally bulkier and are used for smaller workpieces that require less room on the worktable. Power clamping offers a few advantages over conventional clamping. First, these systems can be activated and deactivated quickly to save on changeover time. Second, they place uniform pressure on the part, which help prevent errors and deformation. A significant disadvantage they pose is the cost of a system but this can be quickly offset by production time saved.

Key Guidelines to Follow

Lastly, there are a few guidelines to follow when choosing the appropriate fixture or jig setup.

Ensure Proper Tolerancing

The tolerances of the workholding device being used should be 20%-50% tighter than those of the workpiece.

Utilize Acceptable Locating & Supporting Pieces

Locating and supporting pieces should be made of a hardened material to prevent wear and allow for several uses without the workpieces they support falling out of tolerance. Supports and locators should also be standardized so that they can be easily replaced.

Place Clamps in Correct Locations

Clamps should be placed above the locations of supports to allow the force of the clamp to pass into the support without deforming the workpiece. Clamps, locators and supports should also be placed to distribute cutting forces as evenly as possible throughout the part. The setup should allow for easy clamping and not require much change over time

Maximize Machining Flexibility

The design of the fixture or jigs should maximize the amount of operations that can be performed in one orientation. During the machining operation, the setup should be rigid and stable.

Bottom Line

Workholding can be accomplished in a number of different ways and accomplish the same task of successfully gripping a part during a machining operation with the end result being in tolerance. The quality of this workholding may differ greatly as some setups will be more efficient than others. For example, there is no reason to create an elaborate jig for creating a small slot down the center of a rectangular brick of aluminum; a vise grip would work just fine. Maximizing the efficiency and effectiveness of an operators’ workholding setup will boost productivity by saving on changeover, time as well as cost of scrapped, out of tolerance parts.

The Advances of Multiaxis Machining

CNC Machine Growth

As the manufacturing industry has developed, so too have the capabilities of machining centers. CNC Machines are constantly being improved and optimized to better handle the requirements of new applications. Perhaps the most important way these machines have improved over time is in the multiple axes of direction they can move, as well as orientation. For instance, a traditional 3-axis machine allows for movement and cutting in three directions, while a 2.5-axis machine can move in three directions but only cut in two. The possible number of axes for a multiaxis machine varies from 4 to 9, depending on the situation. This is assuming that no additional sub-systems are installed to the setup that would provide additional movement. The configuration of a multiaxis machine is dependent on the customer’s operation and the machine manufacturer.

Multiaxis Machining

With this continuous innovation has come the popularity of multiaxis machines – or CNC machines that can perform more than three axes of movement (greater than just the three linear axes X, Y, and Z). Additional axes usually include three rotary axes, as well as movement abilities of the table holding the part or spindle in place. Machines today can move up to 9 axes of direction.

Multiaxis machines provide several major improvements over CNC machines that only support 3 axes of movement. These benefits include:

  • Increasing part accuracy/consistency by decreasing the number of manual adjustments that need to be made.
  • Reducing the amount of human labor needed as there are fewer manual operations to perform.
  • Improving surface finish as the tool can be moved tangentially across the part surface.
  • Allowing for highly complex parts to be made in a single setup, saving time and cost.

9-Axis Machine Centers

The basic 9-axis naming convention consists of three sets of three axes.

Set One

The first set is the X, Y, and Z linear axes, where the Z axis is in line with the machine’s spindle, and the X and Y axes are parallel to the surface of the table. This is based on a vertical machining center. For a horizontal machining center, the Z axis would be aligned with the spindle.

Set Two

The second set of axes is the A, B, and C rotary axes, which rotate around the X, Y, and Z axes, respectively. These axes allow for the spindle to be oriented at different angles and in different positions, which enables tools to create more features, thereby decreasing the number of tool changes and maximizing efficiency.

Set Three

The third set of axes is the U, V, and W axes, which are secondary linear axes that are parallel to the X, Y, and Z axes, respectively. While these axes are parallel to the X, Y, and Z axes, they are managed by separate commands. The U axis is common in a lathe machine. This axis allows the cutting tool to move perpendicular to the machine’s spindle, enabling the machined diameter to be adjusted during the machining process.

A Growing Industry

In summary, as the manufacturing industry has grown, so too have the abilities of CNC Machines. Today, tooling can move across nine different axes, allowing for the machining of more intricate, precise, and delicate parts. Additionally, this development has worked to improve shop efficiency by minimizing manual labor and creating a more perfect final product.

Zootility – Featured Customer

Zootility prides themselves on designing products that blend art and function for everyday use. Everything from design to manufacturing to distribution is done at their custom shop in Portland, Maine. Utilizing laser-cutters, laser-etchers, and CNC Machines, their skilled team works 15 hours a day to carry out their mission to get their incredibly thin, extremely useful “zootilitarian” tools into pockets everywhere. Zootility was founded by Nate Barr and was launched on the back of a successful Kickstarter campaign for their first tool, the PocketMonkey. Nate has now expanded Zootility and grown into several more products and brands, including the “WildCard” Wallet (Pocket) Knife, “Open Beer Season” bottle openers, the popular “Headgehog” Wallet Comb, and their new line of “Tülry” multi-tools that disguise as fashionable jewelry.

We visited Zootility at their shop in Maine and talked to Nate and Chris, one of their CNC Machinists, about using Kickstarter campaigns to launch new products, the state of the Manufacturing Industry, machining in very tight tolerances, and more in this latest Featured Customer blog.

Thanks for having us, Nate! Tell us a little bit about your shop and how you got started with Zootility.

Nate: Zootility really started as a maker shop for our first product, PocketMonkey. The goal was always to take the idea behind the PocketMonkey and grow it from just a Kickstarter project so that I could expand the business. I also wanted to make sure that I was learning something new myself every step of the way; I wanted to understand how to make our products, so we could keep production in-house and use our knowledge to expand the business in the future. When we started, I was re-investing all of our proceeds back into the business, allowing us to buy more equipment and really build out the shop. Our shop is fairly unique, where we now have nearly total vertical integration across the board. The only thing we need to do now is buy an iron mine and get our own materials!

How did you come up with the idea for the original Pocket Monkey?

Nate: I came up with the idea for the Pocket Monkey one day while I was locked out of my apartment. I was living in Boston at the time, and I would run out every night to the stores around the corner to buy food for dinner, typically only taking my wallet with me. One night, the door locked behind me, and I was locked out, sitting on my front steps and wishing I had some sort of a shim to slip the lock. I started thinking what that would look like and how it could fit in a wallet for easy carrying and realized that I could add on more tools like bottle openers and screwdrivers while still keeping it slim enough to fit in my wallet. I had studied Mechanical Engineering in college, so I had the background to create what I was envisioning.

Pocket Monkey

You have used Kickstarter campaigns very successfully, not only to launch Zootility, but also to further your product line and expand the business. How was the Kickstarter experience, and would you recommend it to other entrepreneurs looking to launch a new business?

Nate: Our Kickstarter experience was great. We have raised up to $90,000 in a single campaign, and we have figured out a strategy that works for us. We found that if you set a reasonable goal that will allow you to cover start-up costs, say $25,000 rather than $100,000, people are more willing to take the time to invest. A reasonable goal gives people more confidence that the project will be funded, and that it will be successful, leading to more backers and more exposure; it is a great Marketing tool in that regard.

Kickstarter also levels the playing field for smaller companies like Zootility – I consider it to be “The Great Equalizer”. There is no longer a need to have tens of thousands of dollars for upfront costs when starting a business. You can spend a little bit of time creating the campaign and invest a small amount of money into that without taking the huge risk of throwing your life savings into an unproven idea. When I started Zootility, I was still working my day job and did not have the money to put up front, so Kickstarter was a natural fit. We have continued to use Kickstarter for new product lines because we are committed to manufacturing our products in the US, so Kickstarter campaigns allow us to validate new ideas and collect funds up front as we continue to grow the business. I do recommend it for all the entrepreneurs out there, and it has been a great tool that has contributed to our success.

You mentioned your commitment to manufacturing Zootility products in the US. What makes this ideal so important to you?

Nate: Let me start by saying that I think that Globalization is a good thing; it has pulled huge numbers of people across the world out of poverty. However, American policies have essentially allowed large corporations to gut the middle class by moving jobs overseas, especially in more rural areas. This has created unbalanced manufacturing and retail sectors. Personally, I believe things have gone too far, and standing behind our belief in American-made goods allows us to contribute to a more balanced approach to manufacturing. As with all things in life, a balanced approach is the best option. There will never be a time when 100% of goods can be feasibly made in America, so overseas manufacturing will continue, but bringing back more jobs to the middle class here in America is a good thing for the entire industry.

zootility

We have definitely made an effort to re-invest in our local community and the people who live here by manufacturing our products right here in Maine. Offshoring has resulted in a loss of knowledge and a real disconnect from the products that we use every day. Products that were previously considered to be of a high quality are now losing their shine, as less care is put into them and there is less appreciation and understanding of how these things are made. By investing in our local community and ourselves by learning something new every day, we believe we are doing our part to bring this knowledge back and instill more of a sense of pride in our employees and the products that they help to create.

You are originally from the Boston area. What made you decide to move the company and shop to Maine?

Nate: I had originally looked at a few places in the Boston-area, but it just didn’t make sense financially. There is a lot of great technology being developed in Boston by the innovative companies in the area, but to set up a manufacturing business in Boston was cost-prohibitive. By moving our shop to Portland, Maine we were able to save a lot on the space, which helped us in the early stages of the business.

The other thing was the lifestyle change. Portland has a great downtown area with lots of small businesses. There are restaurants, breweries, coffee shops, and plenty of locally-owned shops. It is also easy to get around, either by car or bike, and there is very little traffic throughout the city. I also wanted to locate our shop so that it felt like part of a community. We were able to find a great spot in downtown Portland surrounded by other manufacturers and small businesses. It makes for a great place to come to work every day.

What does the future hold for Zootility?

Nate: Right now, we do as much business in Q4 around the holidays as we do the entire rest of the year, so we have been exploring ways to make better use of the machines during the slower months. As we have completed installing and setting up our new machines, we have begun to do contract manufacturing to fill out the rest of the year. We have the unique ability to create small parts with extremely tight tolerances, and we are willing to do small volume, small batch manufacturing that other shops may turn down. We have been getting business from companies in Boston, who are looking for the “just in time” manufacturing which we can provide. The extra revenue from these projects will allow us to take off the Kickstarter training wheels and expand the business faster on our own.

tulry

From a product standpoint, we are looking to launch more “serious” tools for the outdoor enthusiast. Right now we are in the process of launching our new RNGR brand, which will be a line of minimalist every day carry products, without the whimsical nature of the Zootility Tools products. We also are on the verge of shipping our new TÜLRY brand, which is a series of jewelry infused with every day carry tools.

Chris, you create a lot of very thin products. How does that affect your workholding when working in materials that thin?

Chris: Our workholding has been built entirely custom for our CNC machine, due to the nature of the products. For example, we are currently working on our WildCard knives, which are only .040″ thick. There really isn’t much on the workholding market that will work well for something that small, so our team actually machined our own metal strips on the CNC, held the knives down with small bolts, added some rubber bumpers so we do not have metal on metal contact, and it has worked really well for us so far. We also created custom workholding for the new TÜLRY line tools, which are also extremely thin.

helical solutions

The biggest challenge with our custom workholding is the additional time it adds to each job. Right now, we can run batches of 72 knives per cycle, with a cycle time of 28 minutes. Then, we need 20-25 minutes to unscrew each of the bolts, remove the finished knives, and then insert the new knives and screw the bolts back in. However, it is the only way we can machine products this thin with our tight tolerances, and we can still finish around 600 knives per day.

You mentioned your tight tolerances. What are some of the tolerances you are working in every day?

Chris: Right now, all of our tolerances are in the thousandths. For example, the WildCard knives have a tolerance of just +/- .003″, and the screwdriver tools on the TÜLRY necklace, while one of our highest tolerances, stick to just +/- .005″. The tightest tolerance we are currently working in is on the hex wrench tools for the TÜLRY necklace. The hex wrench tools have to be spot on, or they will be too loose when they go to be used on a hex nut. Right now, we like to keep those tools to a tolerance of +/- .001″.

How has your experience been using Harvey and Helical tools on these projects?

Chris: The Harvey and Helical tools have been great for us. When I started, we had another brand of end mills in stock, and they simply weren’t cutting it (no pun intended) in the types of heat-treated stainless steel which we were working in. We switched over to the Helical 7 flute end mills for roughing and finishing of the knives. Each knife has a very small shelf on it, which allows it to be a removable piece of the WildCard tool. We use a 3/8″ 7 flute Helical end mill with a .020″ corner radius for this cut, with a 3/8″ 7 flute square end mill for finishing. One interesting part of this job is that it requires a very low ADOC because the tools are already so thin, that the roughing we do removes only a very small amount of material.

harvey tool

We also use both Harvey and Helical chamfer mills to create all of the box cutter and hex wrench TÜLRY tools. With the hex wrenches, we have found that the 60° tipped off chamfer mill has been great for creating those intricate cuts. With the box cutters, we needed an edge sharp enough to cut through tape and cardboard, but not sharp enough to cut through the skin. We have found that the 2 flute 120° chamfer mills work best for those cuts.

What is the biggest challenge you face at the CNC machine?

Chris: Right now, we laser cut all of the outlines for the knives from a thin sheet of steel. Then the knives come to us right off the laser cutter for machining. The laser cutting does create a rough finish on some of the knives, which can make them hard to lock down when machining. This can result in some movement, which can lead to the occasional scrapped part. The laser cutter can also leave burrs at the start and stop points, or leave a scorch mark or some slag on the knives, which can make them tougher to machine.

The Zootility shop uses a lot of different equipment. How has the CNC machine in particular impacted the shop as a whole?

Chris: Our CNC machine comes in handy for a lot of different things around the shop. As I previously mentioned, we used it to create our own custom workholding, which has worked very well for us. We also used the CNC machine to create all of our forming dies, which are used to create all of our tools from scratch. As we move into more contract manufacturing for other companies, these machines will get even more use when we are working on the small batch jobs we will (hopefully) be getting.

cnc machinist


Would you like to be considered for a future “Featured Customer” blog? Click here to submit your information.

Work Hardening and When It Should Scare You

Work hardening is often an unintentional part of the machining process, where the cutting tool generates enough heat in one area to harden the workpiece. This makes for a much more difficult machining process and can lead to scrapped parts, broken tools, and serious headaches.

Work Hardening Overview

During machining, the friction between the tool and the workplace generates heat. The heat that is transferred to the workpiece causes the structure of the material to change and in turn harden the material. The degree to which it is hardened depends on the amount of heat being generated in the cutting action and the properties of the material, such as carbon content and other alloying elements. The most influential of these alloying elements include Manganese, Silicon, Nickel, Chromium, and Molybdenum.

While the hardness change will be the highest at the surface of the material, the thermal conductivity of the material will affect how far the hardness changes from the surface of the material.

titanium

Often times, the thermal properties of a material that makes it appealing for an application are also the main cause of its difficulty to machine. For example, the favorable thermal properties of titanium that allow it to function as a jet turbine are the same properties that cause difficulty in machining it.

Major Problems

As previously stated, work hardening can create some serious problems when machining. The biggest issue is heat generated by the cutting tool and transferring to the workpiece, rather than to the chips. When the heat is transferred to the workpiece, it can cause deformation which will lead to scrapped parts. Stainless Steels and High-Temp Alloys are most prone to work hardening, so extra precaution is needed when machining in these materials.

work hardening

One other issue that scares a lot of machinists is the chance that a workpiece can harden to the point that it becomes equally as hard as the cutting tool. This is often the case when improper speeds and feeds are used. Incorrect speeds and feeds will cause more rubbing and less cutting, resulting in more heat generation passed to the workpiece. In these situations, machining can become next to impossible, and serious tool wear and eventual tool breakage are inevitable if the tool continues to be fed the same way.

How To Avoid Work Hardening

There are a few main keys to avoiding work hardening: correct speeds and feeds, tool coatings, and proper coolant usage. As a general rule of thumb, talking to your tooling manufacturer and using their recommended speeds and feeds is essential for machining success. Speeds and feeds become an even bigger priority when you want to avoid heat and tool rubbing, which can both cause serious work hardening. More cutting power and a constant feed rate keeps the tool moving and prevents heat from building up and transferring to the workpiece. The ultimate goal is to get the heat to transfer to the chips, and minimize the heat that is transferred into workpiece and avoiding any deformation of parts.

While friction is often the main culprit of heat generation, the appropriate coating for the material may help combat the severity. Many coatings for ferrous materials reduce the amount of friction generated during cutting action. This added lubricity will reduce the friction on the cutting tool and workpiece, therefore transferring the heat generated to the chip, rather than to the workpiece.

Proper coolant usage helps to control the temperature in a cutting operation. Flooding the workpiece with coolant may be necessary to maintain the proper temperature, especially when machining in stainless steels and high-temp alloys. Coolant-fed tools can also help to reduce the heat at the contact point, lessening work hardening. While coolant-fed tools are typically a custom modification, saving parts from the scrap heap and using more machine time for the placement part will see the tool pay for itself over time.

Applying HEM to Micromachining

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

Introduction to High Efficiency Milling I High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear I Intro to Trochoidal Milling


Benefits of Using HEM with Miniature Tooling

High Efficiency Milling (HEM) is a technique for roughing that utilizes a lower Radial Depth of Cut (RDOC), and a higher Axial Depth of Cut (ADOC). This delays the rate of tool wear, reducing the chance of failure and prolonging tool life while boosting productivity and Material Removal Rates (MRR). Because this machining method boosts MRR, miniature tooling (<.125”) is commonly overlooked for HEM operations. Further, many shops also do not have the high RPM capabilities necessary to see the benefits of HEM for miniature tooling. However, if used properly, miniature tooling can produce the same benefits of HEM that larger diameter tooling can.

Benefits of HEM:

  • Extended tool life and performance.
  • Faster cycle times.
  • Overall cost savings

Preventing Common Challenges

Utilizing miniature tooling for HEM, while beneficial if performed correctly, presents challenges that all machinists must be mindful of. Knowing what to keep an eye out for is a pivotal first step to success.

Tool Fragility & Breakage

Breakage is one of the main challenges associated with utilizing HEM with miniature tooling due to the fragility of the tool. Spindle runout and vibration, tool deflection, material inconsistencies, and uneven loading are just some of the problems which can lead to a broken tool. To prevent this, more attention must be paid to the machine setup and material to ensure the tools have the highest chance of success.

As a general rule, HEM should not be considered when using tools with cutting diameters less than .031”. While possible, HEM may still be prohibitively challenging or risky at diameters below .062”, and your application and machine must be considered carefully.

Techniques to Prevent Tool Failure:

Excessive Heat & Thermal Shock

Due to the small nature of miniature tooling and the high running speeds they require, heat generation can quickly become an issue. When heat is not controlled, the workpiece and tooling may experience thermal cracking, melting, burning, built up edge, or warping.

To combat high heat, coolant is often used to decrease the surface temperature of the material as well as aid in chip evacuation and lubricity. However, care must be taken to ensure that using coolant doesn’t cool the material too quickly or unevenly. If an improper coolant method is used, thermal shock can occur. Thermal shock happens when a material expands unevenly, creating micro fractures that propagate throughout the material and can crack, warp, or change the physical properties of the material.

Techniques to Prevent Heat & Thermal Shock:

Key Takeaways

If performed properly, miniature tooling (<.125”) can reap the same benefits of HEM that larger diameter tooling can: reduced tool wear, accelerated part production rates, and greater machining accuracy. However, more care must be taken to monitor the machining process and to prevent tool fragility, excessive heat, and thermal shock.

Check out this example of HEM toolpaths (trochoidal milling) being run with a 3/16″ Harvey Tool End Mill in aluminum.

 

Introduction to High Efficiency Milling

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear I Intro to Trochoidal Milling


High Efficiency Milling (HEM) is a strategy that is rapidly gaining popularity in the metalworking industry. Most CAM packages now offer modules to generate HEM toolpaths, each with their own proprietary name. In these packages, HEM can also be known as Dynamic Milling or High Efficiency Machining, among others. HEM can result in profound shop efficiency, extended tool life, greater performance, and cost savings. High performance end mills designed to achieve higher speeds and feeds will help machinists to reap the full benefits of this popular machining method.

High Efficiency Milling Defined

HEM is a milling technique for roughing that utilizes a lower Radial Depth of Cut (RDOC) and a higher Axial Depth of Cut (ADOC). This spreads wear evenly across the cutting edge, dissipates heat, and reduces the chance of tool failure.

This strategy differs from traditional or conventional milling, which typically calls for a higher RDOC and lower ADOC. Traditional milling causes heat concentrations in one small portion of the cutting tool, expediting the tool wear process. Further, while Traditional Milling call for more axial passes, HEM toolpaths use more passes radially.

For more information on optimizing Depth of Cut in relation to HEM, see Diving into Depth of Cut: Peripheral, Slotting & HEM Approaches.

High Efficiency Milling

Built-In CAM Applications

Machining technology has been advancing with the development of faster, more powerful machines. In order to keep up, many CAM applications have developed built-in features for HEM toolpaths, including Trochoidal Milling, a method of machining used to create a slot wider than the cutting tool’s cutting diameter.

HEM is largely based on the theory surrounding Radial Chip Thinning, or the phenomenon that occurs with varying RDOC, and relates to the chip thickness and feed per tooth. HEM adjusts parameters to maintain a constant load on the tool through the entire roughing operation, resulting in more aggressive material removal rates (MRR). In this way, HEM differs from other high performance toolpaths, which involve different methods for achieving significant MRR.

Virtually any CNC machine can perform HEM – the key is a fast CNC controller. When converting from a regular program to HEM, about 20 lines of HEM code will be written for every line of regular code. A fast processor is needed to look ahead for the code, and keep up with the operation. In addition, advanced CAM software that intelligently manages tool load by adjusting the IPT and RDOC is also needed.

HEM Case Studies

The following example shows the result a machinist had when using a Helical Solutions HEV-5 tool to perform an HEM operation in 17-4PH stainless steel. While performing HEM, this ½” diameter, 5-flute end mill engaged the part just 12% radially, but 100% axially. This machinist was able to reduce tool wear and was able to complete 40 parts with a single tool, versus only 15 with a traditional roughing toolpath.

The effect of HEM on a roughing application can also be seen in the case study below. While machining 6061 aluminum with Helical’s H45AL-C-3, a 1/2″, 3-flute rougher, this machinist was able to finish a part in 3 minutes, versus 11 minutes with a traditional roughing toolpath. One tool was able to make 900 parts with HEM, a boost of more than 150% over the traditional method.

Importance of Tooling to HEM

Generally speaking, HEM is a matter of running the tool – not the tool itself. Virtually every tool can perform HEM, but using tooling built to withstand the rigors of HEM will result in greater success. While you can run a marathon in any type of shoes, you’d likely get the best results and performance from running shoes.

HEM is often regarded as a machining method for larger diameter tooling because of the aggressive MRR of the operation and the fragility of tooling under 1/8” in size. However, miniature tooling can be used to achieve HEM, too.

Using miniature tooling for HEM can create additional challenges that must be understood prior to beginning your operation.

Best Tools for HEM:

  • High flute count for increased MRR.
  • Large core diameter for added strength.
  • Tool coating optimized for the workpiece material for increased lubricity.
  • Variable Pitch/Variable Helix design for reduced harmonics.

Key Takeaways

HEM is a machining operation which continues to grow in popularity in shops worldwide. A milling technique for roughing that utilizes a lower RDOC and higher ADOC than traditional milling, HEM distributes wear evenly across the cutting edge of a tool, reducing heat concentrations and slowing the rate of tool wear. This is especially true in tooling best suited to promote the benefits of HEM.

High Speed Machining Vs. HEM

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

Introduction to High Efficiency Milling I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear I Intro to Trochoidal Milling


Advancements in the metalworking industry have led to new, innovative ways of increasing productivity. One of the most popular ways of doing so (creating many new buzzwords in the process) has been the discovery of new, high-productivity toolpaths. Terms like trochoidal milling, high speed machining, adaptive milling, feed milling, and High Efficiency Milling are a handful of the names given to these cutting-edge techniques.

With multiple techniques being described with somewhat similar terms, there is some confusion as to what each is referring to. High Efficiency Milling (HEM) and High Speed Machining (HSM) are two commonly used terms and techniques that can often be confused with one another. Both describe techniques that lead to increased material removal rates and boosted productivity.  However, the similarities largely stop there.

High Speed Machining

High speed machining is often used as an umbrella term for all high productivity machining methods including HEM. However, HEM and HSM are unique, separate machining styles. HSM encompasses a technique that results in higher production rates while using a much different approach to depth of cut and speeds and feeds. While certain HEM parameters are constantly changing, HSM uses constant values for the key parameters. A very high spindle speed paired with much lighter axial depths of cut results in a much higher allowable feed rate. This is also often referred to as feed milling. Depths of cut involve a very low axial and high radial components. The method in general is often thought of as z-axis slice machining, where the tool will step down a fixed amount, machine all it can, then step down the next fixed amount and continue the cycle.

High speed machining techniques can also be applied to contoured surfaces using a ball profile or corner radius tool. In these situations, the tool is not used in one plane at a time, and will follow the 3 dimensional curved surfaces of a part. This is extremely effective for using one tool to bring a block of material down to a final (or close to final) shape using high resultant material removal rates paired with the ability to create virtually any shape.

High Efficiency Milling

HEM has evolved from a philosophy that takes advantage of the maximum amount of work that a tool can perform. Considerations for chip thinning and feed rate adjustment are used so that each cutting edge of a tool takes a consistent chip thickness with each rotation, even at varying radial depths of cut and while interpolating around curves. This allows machinists the opportunity to utilize a radial depth of cut that more effectively uses the full potential of a given tool. Utilizing the entire available length of cut allows tool wear to be spread over a greater area, prolonging tool life and lowering production costs. Effectively, HEM uses the depths associated with a traditional finishing operation but boosts speeds and feeds, resulting in much higher material removal rates (MRR). This technique is typically used for hogging out large volumes of material in roughing and pocketing applications.

In short, HEM is somewhat similar to an accelerated finishing operation in regards to depth of cut, while HSM is more of a high feed contouring operation. Both can achieve increased MRR and higher productivity when compared to traditional methods. While HSM can be seen as an umbrella term for all high efficiency paths, HEM has grown in popularity to a point where it can be classified on its own. Classifying each separately takes a bit of clarification, showing they each have power in certain situations.

Check out the video below to see HEM in action!

 

Tackling Titanium: A Guide to Machining Titanium and Its Alloys

In today’s manufacturing industry, titanium and its alloys have become staples in aerospace, medical, automotive, and firearm applications. This popular metal is resistant to rust and chemicals, is recyclable, and is extremely strong for its weight. However, there are several challenges that must be considered when machining titanium and selecting the appropriate tools and parameters for the job.

Titanium Varieties

Titanium is available in many varieties, including nearly 40 ASTM grades, as well as several additional alloys. Grades 1 through 4 are considered commercially pure titanium with varying requirements on ultimate tensile strength. Grade 5 (Ti6Al4V or Ti 6-4) is the most common combination, alloyed with 6 percent aluminum and 4 percent vanadium. Although titanium and its alloys are often grouped together, there are some key differences between them that must be noted before determining the ideal machining approach.

titanium

A custom AR15, with the lower machined in titanium.
Photo courtesy of @TitaniumSpecialty (Instagram)

Titanium Concerns

Workholding

Although titanium may have more desirable material properties than your average steel, it also behaves more flexibly, and is often not as rigid as other metals. This requires a secure grip on titanium workpieces, and as rigid a machine setup as is possible. Other considerations include avoiding interrupted cuts, and keeping the tool in motion at all times of contact with the workpiece. Dwelling in a drilled hole or stopping a tool next to a profiled wall will cause the tool to rub – creating excess heat, work-hardening the material, and causing premature tool wear.

Heat Generation

Heat is a formidable enemy, and heat generation must be considered when selecting speeds and feeds. While commercially pure grades of titanium are softer and gummier than most of its alloys, the addition of alloying elements typically raises the hardness of titanium. This increases concerns regarding generated heat and tool wear. Maintaining a larger chipload and avoiding unnecessary rubbing aids with tool performance in the harder titanium alloys, and will minimize the amount of work hardening produced. Choosing a lower RPM, paired with a larger chipload, can provide a significant reduction in temperature when compared to higher speed options. Due to its low conduction properties, keeping temperatures to a minimum will put less stress on the tool and reduce wear. Using high-pressure coolant is also an effective method to reduce heat generation when machining titanium.

cutting tools for titanium

These camshaft covers were custom made in titanium for Mitsubishi Evos.
Photo courtesy of @RebootEng (Instagram)

Galling and Built-Up Edge

The next hurdle to consider is that titanium has a strong tendency to adhere to a cutting tool, creating built up edge. This is a tricky issue which can be reduced by using copious amounts of high pressure coolant aimed directly at the cutting surface. The goal is to remove chips as soon as possible to prevent chip re-cutting, and keep the flutes clean and clear of debris. Galling is a big concern in the commercially pure grades of titanium due to their “gummy” nature. This can be addressed using the strategies mentioned previously, such as continuing feed at all times of workpiece contact, and using plenty of high-pressure coolant.

Titanium Solutions

While the primary concerns when machining titanium and its alloys may shift, the methods for mitigating them remain somewhat constant. The main ideas are to avoid galling, heat generation, work hardening, and workpiece or tool deflection. Use a lot of coolant at high pressure, keep speeds down and feeds up, keep the tool in motion when in contact with the workpiece, and use as rigid of a setup as possible.

In addition, selecting a proper tool coating can help make your job a successful one. With the high heat being generated during titanium machining operations, having a coating that can adequately deal with the temperature is key to maintaining performance through an operation. The proper coating will also help to avoid galling and evacuate chips effectively. Coatings such as Harvey Tool’s Aluminum Titanium Nitride (AlTiN Nano) produce an oxide layer at high temperatures, and will increase lubricity of the tool.

As titanium and its many alloys continue to grow in use across various industries, more machinists will be tasked with cutting this difficult material. However, heat management and appropriate chip evacuation, when paired with the correct coating, will enable a successful run.

machining titanium