Maximizing Tool Life with Helical’s Dplus Coating

Choosing the correct tool coating is extremely important when machining highly abrasive materials like composites, graphite, aluminum alloys, and other non-ferrous materials. Proper coating selection will result in maximized tool life and a higher quality final part. When searching for a coating, it is imperative to find one that has high hardness and maintains a sharp cutting edge, like Helical Solutions’ Dplus coating. This post will explore what Dplus coating is (and isn’t), and when it might help you gain a competitive edge at the spindle.

What is Helical Solutions’ Dplus Coating?

Helical’s Dplus is a premium coating, specially engineered to extend tool life when machining materials ranging from aerospace aluminums to graphite or abrasive composites. It has a Tetrahedral Amorphous Carbon (taC) bond structure, which delivers remarkable enhancements in tool life compared to traditional DLC coatings.

Helical’s Dplus coating is applied by a Physical Vapor Deposition (PVD) process. This method of coating takes place in a near-vacuum and distributes micron-thick layers evenly onto a properly prepared tool. Since this coating is applied via a PVD process, it is inherently different than true diamond created through Chemical Vapor Deposition (CVD) processes. While this means it can be outlasted by CVD diamond, Dplus is a thinner coating allowing it to have a sharper cutting edge.

For more information on the PVD coating process, read PVD Coating vs. CVD: Two Common Coating Application Methods.

When Should a Machinist Use Dplus Coating?

When Machining Highly Abrasive Materials

Dplus is an excellent choice when working in abrasive non-ferrous materials like graphite and high-silicon aluminums. It is an extremely hard coating (50 Gpa), which enables it to remain strong against abrasive materials. It also has a very low coefficient of friction, allowing for optimal lubricity. This reduces the risk of built-up edge and ensures chips can be easily evacuated out of the flute valleys.

In Production Runs

The combination of Dplus being an extremely hard and sharp coating, makes it a true winner when it comes to tool life. Using a Dplus coated tool in extended production runs can pay dividends at the spindle, especially when working in highly abrasive non-ferrous materials.  

Although Dplus takes the spot as Helical’s highest performing coating for non-ferrous materials, it may not be needed in certain applications. Its high hardness and abrasion resistance may be necessary for long production jobs, but may not be necessary for shorter jobs and one-off parts.

When Should a Machinist NOT Use Dplus Coating?

In High Temperature Applications

Although Dplus coating provides outstanding tool life and sharpness, it can’t be run at extremely high temperatures. This coating should not be run in any ferrous material or high temperature aerospace alloys.

Key Takeaways

Featuring an exceptionally low coefficient of friction and extremely high hardness, Helical’s Dplus coating maintains a sharp cutting edge, while still resisting abrasion, making it an excellent choice in low temperature applications of highly abrasive non-ferrous materials.

For more information on Helical Solutions’ coatings, visit https://www.helicaltool.com/resources/tool-coatings.

The Advantageous Qualities of Helical Solutions’ Nplus Coating

When it comes to machining difficult materials like high-silicon aluminums, abrasive copper alloys, and other non-ferrous and aluminum alloys, finding a coating that improves performance and increases tool life can be difficult. When machining in aluminum-based materials, machinists often opt for an uncoated tool due to the sharp cutting edge needed. Uncoated tools may give you the sharpest edge possible, but Helical’s Nplus coating helps combat wear and keep your edge sharp for longer, allowing you to win at the spindle and gain a competitive edge.  

What is Helical Solutions’ Nplus Coating?

Helical’s Nplus coating is applied by a Physical Vapor Deposition (PVD) process. This method of coating takes place in a near-vacuum and distributes micron-thick layers evenly onto a properly prepared tool.

For more information on the PVD coating process, read PVD Coating vs. CVD: Two Common Coating Application Methods.

Nplus is a premium coating, specially engineered to extend tool life when machining non-ferrous and aluminum alloys. 

nplus coating chart
The above image was taken from Helical Solutions’ Coating Chart.

When Should a Machinist Use Nplus Coating?

When Machining Non-ferrous and Aluminum Alloys

Helical’s Nplus coating is optimized for machining difficult aluminum alloys and other abrasive non-ferrous materials, as its composition doesn’t react with aluminum as some other coatings do. This coating possesses many advantageous qualities, including its high hardness (40 GPa), which provides excellent edge retention to ensure that your tool stays sharp for longer. Also, its high working temperatures (2,012°) and its thickness (1-4 µm) provide further wear resistance when tackling these difficult-to-machine materials.

Nplus coated Helical end mills

When Working in High Temperature Non-Ferrous Applications

When machining in many non-ferrous and aluminum alloys, high temperatures can become an issue. Nplus is specially designed to withstand temperatures up to 2,012°, allowing tooling to run at the high temperatures these abrasive materials require, without degrading them.

When Machining Large Production Runs

Machining materials like wrought aluminum, cast aluminum, graphite, and other non-ferrous alloys can quickly end the life of your tool, costing time and money. Nplus coating is specially engineered to extend tool life in these materials, allowing your tool to stay in the spindle for longer. This calls for less tool changes, creating a more efficient process flow in your large production runs.

Helical’s Nplus Coated Tooling

Helical’s 5 Flute End Mills for Aluminum

Introduced in Helical’s Spring 2022 Catalog, Helical’s 5 Flute End Mills for Aluminum are specially engineered for optimal performance in High Efficiency Milling (HEM) of aerospace aluminum alloys and other non-ferrous alloys. They’re offered in two unique styles, both fully stocked in Helical’s Nplus coating:

5 Flute – Corner Radius  – Variable Pitch – Chipbreaker Rougher

5 Flute – Corner Radius – Variable Pitch – End Mill

Helical’s Multi-Axis Finishers for Aluminum

Also introduced in Helical’s Spring 2022 catalog, this offering of Multi-Axis Finishers feature a specially defined profile for massive reductions in cycle times and vastly improved surface finish when machining aluminum.  They’re offered in 3 styles, all fully stocked in Helical’s Nplus coating to ensure excellent finish in abrasive aluminums and extended tool life in a wide variety of non-ferrous materials.

Multi-Axis Finishers – 3 Flute – Lens Form

Multi-Axis Finishers – 4 Flute – Taper Form

Multi-Axis Finishers – 4 Flute – Oval Form

For more information on Helical Solutions’ coatings, visit https://www.helicaltool.com/resources/tool-coatings.

How to Adjust Running Parameters for Miniature Tooling

High precision machining is a subset of subtractive manufacturing that has grown in popularity over the years, especially as industries like medical, dental, mold tool and die, and semi-conductor manufacturing grow. Some jobs can call for extremely small diameters (down to even .001”) and ultra-precise tolerancing. With tooling this miniature, machinists must utilize different machining practices than they otherwise would, as common issues that would arise with larger end mills are magnified within miniature tooling applications.  Speeds and feeds become critical to ensure your tool survives the job.

Three Miniature Tools sitting over a page of a dictionary

Where Breakage Occurs with Miniature Tooling

When breakage happens with miniature tooling, it’s important to determine where on the tool the breakage is occurring. Breakage points are sometimes quite difficult to see with such small tooling. Finding the location, when possible, helps to diagnose the issue. For example, if the breakage occurs along the length of cut, there could be chip packing. If chip packing is the issue, it’s helpful to decrease the feed rate and lower the depth of cut per pass. If the tool breaks on the transition angle toward the shank, this could be due to a few things. The first instinct should be to check the runout of the tool. Runout should be measured at less than .0001”. In this case, check tool set up to ensure that the tool is stable within the tool holder. Another issue could be excess pressure on the tool caused by high pressure coolant or even deflection. Deflection occurs when the cutting pressure causes the tool to bend slightly – in this case, the tool will break at its weakest point. To minimize the opportunity for deflection, ensure the tool is the largest diameter and shortest length of cut possible for the job.

Miniature tooling sitting over a dime

Tips for Avoiding Future Breakage

There are a few different points of interest to focus on to prevent tool breakage.

The Right Tool

 Determining the correct end mill is the necessary first step toward preventing breakage. Choosing a material specific end mill is preferred, especially with the more difficult to machine materials. Harvey Tool’s material specific tools have different geometries and coatings for different materials. For example, our aluminum specific end mills have a variable helix of approximately 42 ° whereas the high temperature alloy specific end mills we offer have a variable helix of about 34°. A tool with an odd number of flutes or a variable helix or pitch also helps to avoid chatter that could lead to breakage in the machining process. Approaches also change depending on the application. With slotting for example, rigidity is critical for success, therefore a tool with the most flutes possible is recommended.

Tool Set Up

The smaller the tool, the more fragile it is. Therefore, proper handling before and during set up is critical. It is key to keep tooling in the original packaging if it is not in the machine and covering the tip when positioning the tool in the tool holder. Determining coolant for miniature tooling is also critical to ensure that high pressure from the coolant doesn’t cause damage of the tool. High pressure coolant directly to the tool almost always causes some form of breakage. For this reason, high pressure coolant is not recommended on the smaller end of the miniature tooling spectrum. In this case, flood coolant is the recommended approach.

Miniature Tooling Running Parameters

Running speed of an end mill is determined based on the tool diameter, so the smaller the tool, the faster the RPM. To ensure best tool life, it is crucial to run the smaller end mills at the recommended parameters.

Harvey Tool speeds and feeds charts list recommendations for SFM, chip load and depth of cut based on the cutting material, tool diameter and cutting application. To calculate speeds and feeds using Harvey Tool speeds and feeds charts, follow the following formulas and our recommended parameters:

Note*: There are often limitations with the machines used for these tools. One of the most asked questions about our speeds and feeds for miniature end mills is how to adjust for this quick speed. We recommend setting the RPM at something the machine can handle (or the fastest the customer feels comfortable with) and keep the feed rates and depth of cut the same.

Choosing depth of cut parameters for miniature tooling is extremely important based on the application. For example, finishing parameters often have a much higher speed and feed rate than slotting or roughing parameters but the depth of cut passes are much smaller. This enables the tool to run such high parameters without breakage as there is less contact with the workpiece.

zoomed in miniature tooling

Using miniature tooling can be a little bit intimidating if you’ve never used it before. Issues that arise with larger end mills tend to be amplified with smaller tools. It is very important to have the right end mill for the application. Speeds, feeds, and depth of cut are also essential in proper cutting. With smaller tooling comes higher speeds. Always follow manufacturer recommended speeds and feeds, lowering the speed when necessary to accommodate machine capabilities. Lastly, if breakage does occur, be sure to find where the break is to help diagnose the issue.

The Secret Mechanics of High Feed End Mills

A High Feed End Mill is a type of High-Efficiency Milling (HEM) tool with a specialized end profile that allows the tool to utilize chip thinning to have dramatically increased feed rates. These tools are meant to operate with an extremely low axial depth so that the cutting action takes place along the curved edge of the bottom profile. This allows for a few different phenomena to occur:

  • The low lead angle causes most of the cutting force to be transferred axially back into the spindle. This amounts to less deflection, as there is much less radial force pushing the cutter off its center axis.
  • The extended curved profile of the bottom edge causes a chip thinning effect that allows for aggressive feed rates.

The Low Lead Angle of a High Feed End Mill

As seen in Figure 1 below, when a High Feed End Mill is properly engaged in a workpiece, the low lead angle, combined with a low axial depth of cut, transfers the majority of the cutting force upward along the center axis of the tool. A low amount of radial force allows for longer reaches to be employed without the adverse effects of chatter, which will lead to tool failure. This is beneficial for applications that require a low amount of radial force, such as machining thin walls or contouring deep pockets.

high feed mill roughing
Figure 1: Isometric view of a feed mill engaged in a straight roughing pass (left), A snapshot front-facing view of this cut (right)

Feed Mills Have Aggressive Feed Rates

Figure 1 also depicts an instantaneous snapshot of the chip being formed when engaged in a proper roughing tool path. Notice how the chip (marked by diagonal lines) thins as it approaches the center axis of the tool. This is due to the curved geometry of the bottom edge. Because of this chip thinning phenomenon, the feed of the tool must be increased so that the tool is actively engaged in cutting and does not rub against the workpiece. Rubbing will increase friction, which in turn raises the level of heat around the cutting zone and causes premature tool wear. Because this tool requires an increased chip load to maintain a viable cutting edge, the tool has been given the name “High Feed Mill.”

high feed end mill ad

Other Phenomena Due to Curved Geometry of Bottom Edge

The curved geometry of the bottom edge also sanctions for the following actions to occur:

  • A programmable radius being added to a CAM tool path
  • Scallops forming during facing operations
  • Different-shaped chips created during slotting applications, compared to HEM roughing

Programmable Radius

Helical Solutions’ High Feed End Mills has a double radius bottom edge design. Because of this, the exact profile cannot be easily programmed by some CAM software. Therefore, a theoretical radius is used to allow for easy integration.  Simply program a bullnose tool path and use the theoretical radius (seen below in Figure 2) from the dimensions table as the corner radius.

high feed mill programmable radius
Figure 2: Programmable radius of a double radius profile tool

Managing Scallops

A scallop is a cusp of material left behind by cutting tools with curved profiles. Three major factors that determine the height and width of scallops are:

  1. Axial Depth of Cut
  2. Radial Depth of Cut
  3. Curvature of Bottom Edge or Lead Angle

Figure 3 below is a depiction of the scallop profile of a typical roughing cut with a 65% radial step over and 4% axial depth of cut. The shaded region represents the scallop that is left behind after 2 roughing passes and runs parallel to the tool path.

roughing cut scallop profile
Figure 3: Back view of roughing cut with a 65% radial step over

Figures 4 and 5 show the effects of radial and axial depth of cuts on the height and width of scallops. These figures should be viewed in the context of Figure 3. Percentage by diameter is used rather than standard units of measurement to show that this effect can be predicted at any tool size. Figure 4 shows that a scallop begins to form when the tool is programmed to have a radial step over between 35% and 40%. The height increases exponentially until it is maximized at the axial depth of cut. Figure 5 shows that there is a linear relationship between the radial step over and scallop width. No relationship is seen between scallop width and axial depth of cut as long as ADOC and the radius of curvature of the bottom cutting edge remains consistent.

graph of scallop height versus depth of cut
Figure 4: Graph of Scallop Height vs. Depth of Cut
graph of scallop width versus depth of cut
Figure 5: Scallop Width vs. Depth of Cut

From the graphs in Figures 4 and 5 we get the following equations for scallop dimensions.

Notes regarding these equations:

  • These equations are only applicable for Helical Solutions High Feed End Mills
  • These equations are approximations
  • Scallop height equation is inaccurate after the axial depth of cut is reached
  • RDOC is in terms of diameter percentage (.55 x Diameter, .65 x Diameter, etc…)

Shop Helical Solutions’ Fully Stock Selection of High Feed End Mills

Curvature of the Bottom Edge of High Feed End Mills

The smaller the radius of curvature, the larger the height of the scallop. For example, the large partial radius of the Helical Solutions High Feed End Mill bottom cutting edge will leave a smaller scallop when compared to a ball end mill programmed with the same tool path. Figure 6 shows a side by side comparison of a ball end mill and high feed mill with the same radial and axial depth of cut. The scallop width and height are noticeably greater for the ball end mill because it has a smaller radius of curvature.

feed mill versus ball end mill
Figure 6: Scallop diagram of High Feed Mill and Ball End Mill with the same workpiece engagement

Full Slotting

When slotting, the feed rate should be greatly reduced relative to roughing as a greater portion of the bottom cutting edge is engaged. As shown in Figure 7, the axial step down does not equate to the axial engagement. Once engaged in a full slot, the chip becomes a complex shape. When viewing the chip from the side, you can see that the tool is not cutting the entirety of the axial engagement at one point in time. The chip follows the contour on the slot cut in the form of the bottom edge of the tool. Because of this phenomenon, the chip dips down to the lowest point of the slot and then back up to the highest point of axial engagement along the side. This creates a long thin chip that can clog up the small flute valleys of the tool, leading to premature tool failure. This can be solved by decreasing the feed rate and increasing the amount of coolant used in the operation.

high feed mill chip formation
Figure 7: Formation of a chip when a feed mill is engaged in a full slotting operation.

In summary, the curved profile of the bottom edge of the tool allows for higher feed rates when high feed milling, because of the chipping thinning effect it creates with its low lead angle. This low lead angle also distributes cutting forces axially rather than radially, reducing the amount of chatter that a normal end mill might experience under the same conditions. Machinists must be careful though as the curved bottom edge also allows for the formation of scallops, requires a programmable radius when using some CAM packages, and make slotting not nearly as productive as roughing operations.

Successful Slotting With Miniature Cutting Tools

Whether your tool is a 1” diameter powerhouse rougher or a .032” precision end mill, slotting is one of the hardest operations on the tool. During slotting operations, a lot of force and pressure is placed on the entire cutting edge of the tool. This results in slower speeds and feeds and increased tool wear, making it one of the nastier processes even for the best cutting tools.

With miniature tooling (for the purposes of this blog, under 1/8” diameter) the game changes. The way we approach miniature tooling is completely different as it relates to slotting. In these instances, it is vitally important to select the correct tool for these operations. A few of the suggestions may surprise you if you are used to working with larger tooling, but rest assured, these are tried and tested recommendations which will dramatically increase your success rate in miniature slotting applications.

Use as Many Flutes as Possible

When running traditional slotting toolpaths, the biggest concern with the cutting tool is getting the best chip evacuation by using the proper flute count. Traditionally speaking, you want to use the fewest amount of flutes possible. In Aluminum/Non-Ferrous jobs, this is typically no more than 2/3 flutes, and in Steel/Ferrous applications, 4 flutes is recommended. The lower flute count leaves room for the chips to evacuate so you are not re-cutting chips and clogging the flutes on your tool in deep slots.

Achieve Increased Efficiency With Miniature Tooling – Utilize Harvey Tool’s Speeds & Feeds Charts Today

When slotting with miniature tools, the biggest concerns are with tool rigidity, deflection, and core strength. With micro-slotting we are not “slotting”, but rather we are “making a slot”. In traditional slotting, we may drive a ½” tool down 2xD into the part to make a full slot, and the tool can handle it! But this technique simply isn’t possible with a smaller tool.

graphic showing difference between core sizes on 3 flute and 5 flute slotting tools

For example, let’s take a .015” end mill. If we are making a slot that is .015” deep with that tool, we are likely going to take a .001” to .002” axial depth per pass. In this case, chips are no longer your problem since it is not a traditional slotting toolpath. Rigidity and core strength are now key, which means we need to add as many flutes as possible! Even in materials like Aluminum, 4 or 5 flutes will be a much better option at smaller diameters than traditional 2/3 flute tools. By choosing a tool with a higher flute count, some end users have seen their tool life increase upwards of 50 to 100 times over tools with lower flute counts and less rigidity and strength.

Use the Strongest Corner Possible When Slotting

Outside of making sure you have a strong core on your miniature tools while making a slot, you also need to take a hard look at your corner strength. Putting a corner radius on your tooling is a great step and does improve the corner strength of the tool considerably over a square profile tool. However, if we want the strongest tip geometry, using a ball nose end mill should also be considered.

A ball nose end mill will give you the strongest possible tip of the three most common profiles. The end geometry on the ball nose can almost work as a high feed end mill, allowing for faster feed rates on the light axial passes that are required for micro-slotting. The lead angle on the ball nose also allows for axial chip thinning, which will give you better tool life and allow you to decrease your cycle times.

.078" harvey tool ball nose end mill for slotting
A .078″ ball nose end mill was used for this miniature slotting operation

Finding the Right Tool for Miniature Slotting Operations

Precision and accuracy are paramount when it comes to miniature tooling, regardless of whether you are slotting, roughing, or even simply looking to make a hole in a part. With the guidelines above, it is also important to have a variety of tooling options available to cater to your specific slotting needs. Harvey Tool offers 5 flute end mills down to .015” in diameter, which are a great option for a stronger tool with a high flute count for slotting operations.

miniature .010" harvey tool end mill
Harvey Tool offers many miniature end mill options, like the .010″ long reach end mill above.

If you are looking to upgrade your corner strength, Harvey Tool also offers a wide selection of miniature end mills in corner radius and ball nose profiles, with dozens of reach, length of cut, and flute count options. Speeds and feeds information for all of these tools is also available, making your programming of these difficult toolpaths just a little bit easier.

speeds and feeds chart ad

Achieving Slotting Success: Summary

To wrap things up, there are three major items to focus on when it comes to miniature slotting: flute count, corner strength, and the depth of your axial passes.

It is vital to ensure you are using a corner radius or ball nose tool and putting as many flutes as you can on your tool when possible. This keeps the tool rigid and avoids deflection while providing superior core strength.

For your axial passes, take light passes with multiple stepdowns. Working your tool almost as a high feed end mill will make for a successful slotting operation, even at the most minuscule diameters.

Titanium Machining Cost Savings With Helical Solutions

When the manufacturing team at Geospace Technologies was looking for better tool life and improved performance on a Titanium CNC milling job, they turned to Harvey Performance Company and local Application Engineer Mike Kanigowski to dial in some Helical Solutions End Mills. With Mike’s help, Geospace Technologies, led by Lead Mill Programmer Tranquilino Sosa, achieved massive success and extensive titanium machining cost savings, which led them to completely shift their tooling repertoire to Helical’s high-performance end mills in their shop.

Struggling With Tool Life

Prior to switching to Helical, Geospace Technologies was experiencing trouble with tool life on a job that required both roughing and finishing toolpaths on a Titanium (Ti-6AL-4V) part. For their roughing pass, Geospace was using a competitor’s 4 flute, 3/8” diameter end mill with a 30° helix angle and TiALN coating. In traditional roughing toolpaths, this tool was running at 1,750 RPM with a 10 IPM feed rate. The tool would take four step downs, three with an axial depth of cut of .200”, and a final pass at .100” for a total depth of .700”.

When finishing, the team used a 1/2” version of the same competitor tool, running at 900 RPM with an 8 IPM feed rate. This would take two passes, one at .400” deep and the last down to the bottom of the part at .700”.

geospace technologies fadal VMC 4020 in a machining facility

With this strategy and tooling, the team was creating high-quality parts at a cycle time of 15 minutes and 22 seconds per part, but were only seeing the roughing tool last for 60 parts on average, and the finishing tool for around 120 parts. This was causing tool costs to be higher than they would like, and costing the team precious time with frequent tool changes.

Sosa had seen some of the success that other shops were having with Titanium milling using Helical Solutions end mills, and so they reached out to Kanigowski to see how Helical could help them lower their cost per part while achieving an even better finish.

Helical solutions HVTI-6 end mill Ad

Dialing in Tool Selection

When Mike got in touch with the team at Geospace, he knew there were some immediate benefits to changing the toolpaths used in this job. Using their ESPRIT software, the team was able to dial in a new program using high efficiency milling (HEM) toolpaths through ESPRIT’s “Profit Milling” technology.

With HEM toolpaths in place, Geospace was going to need new high performance tools to take full advantage of the programming adjustments. After much testing and evaluating several options from Helical’s extensive line of end mills for Titanium, Geospace settled on two solid tools.

Helical offers many different options for Titanium milling in HEM toolpaths. During testing, the team at Geospace decided on Helical EDP 59424, a 3/8” diameter, 7 flute, corner radius end mill. This tool features variable pitch geometry and offset chipbreakers for optimal chip evacuation, reduced harmonics, and minimized tool pressure, as well as Helical’s Aplus coating for high temperature resistance, decreased wear, and improved tool life.

7 flute chipbreaker tools lined up one by one
7 Flute Chipbeaker Tools Fresh Off the Grinder

When looking at the finishing toolpath, Geospace decided on Helical EDP 82566, a 3/8”, 6 flute, square end mill from Helical’s well known HEV-6 product line. This tool featured a variable pitch design to help mitigate chatter and leave a superior finish. While Helical also offers several tools for finishing toolpaths in Titanium, during testing this tool provided Geospace with the best finish for their specific part geometry.

Achieve Impressive Efficiency in Titanium Machining Operations With Helical Solutions’ HVTI-6 Cutter

Experiencing the “Helical Difference”

With the new tools in place, Sosa’s team reached out to Helical for help dialing in speeds and feeds. The Helical tech team was able to get them set up on Machining Advisor Pro, an advanced speeds and feeds calculator developed by the experts behind Helical Solutions tooling. With this “miracle worker” application in their arsenal, the team was able to easily dial in their new tools for their specific material grade, depth of cut, and machine setup.  

The team saw immediate positive results and cost-savings on this job. They were able to increase their roughing toolpaths to 4,500 RPM and 157 IPM. The finishing path remained largely the same, but resulted in a much improved final part. In total, cycle time dropped from 15 minutes and 22 seconds per part to 12 minutes and 17 seconds per part, which was great, but the improvement in tool life was where Sosa was most impressed.

Geospace technologies employee inspecting titanium end mills in a facility

With the new Helical end mill in the shop, Geospace was able to run both tools for 580 parts with very minimal wear on the tool. This was a nearly 1000% improvement in tool life for their roughing passes and a 483% improvement in tool life for the finishing operation. In total, one roughing tool was able to last more than 42 hours in the cut before needing to be replaced.

Eliminating the need for a tool change every 60 parts was also a significant time-saver. Constant tool changes were causing serious machine downtime, which was eliminated with the longer tool life experienced with the Helical end mills. What seems like a minor inconvenience will truly add up to dozens of hours in saved time over the course of a few months for Sosa’s team.

zoomed in image of titanium machining tool wear on a 7 flute chipbreaker
A Closeup of the 7 Flute Chipbreaker After 42 Hours In The Cut

Geospace was thrilled with the results they saw on this Titanium job, as they had never experienced long tool life in Titanium with any other competitor brand. Sosa and his team are excited to continue using Helical Solutions product across all of their other jobs going forward and to continue working with Kanigowski and the Helical tech team on dialing in tool selection and speeds and feeds on future projects.

Please see below for a head-to-head breakdown of the Helical end mills’ performance in terms of total costs and productivity gained versus that of the competitor. These numbers are measured per 1,000 parts, taking into account tooling costs, tool change time, labor costs, running parameters, and cycle times.


titanium machining cost savings chart

Chipbreaker Tooling: Not Just for Roughing

When many people think about solid carbide tools with chip breakers, they are usually tooling up for a roughing application. While the chipbreaker tool is a great choice for such applications, it can be utilized in a number of other areas too. In this post, we’ll examine many other benefits of the chip breaker style of tooling.

High Efficiency Milling (HEM)

High Efficiency Milling (HEM) uses CAM software to program advanced toolpaths that reduce cutting forces. These tool paths employ smaller end mills with a higher number of flutes (for a stronger core) running at higher speeds and feeds. This strategy includes a light radial depth of cut (RDOC), high axial depth of cut (ADOC), and a controlled angle of engagement.

Helical’s chipbreaking tools include serrated indents along the edge of flute for the entire length of cut. Because HEM utilizes heavy axial depths of cuts, these tools are able to break long chips into smaller ones. In addition to improving chip control and reducing cutting resistance, chipbreaker tools also help in decreasing heat load within the chips. This delays tool wear along the cutting edge and improves cutting performance. 

chipbreaker in spindle

Check out this testimony from a Helical Solutions customer:

“We were able to get going with the 7 flute tools with the chipbreaker. I have to say the difference was INCREDIBLE! We can now rough the entire part with one tool. Also, the operator doesn’t have to open the door to clear chips hardly at all. We were able to rough and finish a 4.15 dia. bore 2 inches deep through the part without having to clear chips at all. Before we had to clear the chips out at least 15-20 times. Many thanks for your support.”

Explore Helical Solutions’ Chipbreaker Roughers Today

Slotting

When slotting, a major concern is chip control. A large buildup of chips can cause the recutting of chips, which adds a lot of heat back into the tool. Chip buildup can also cause a heavy amount of chattering. Both of these conditions are detrimental to tool life. A chip breaking tool can help reduce chip build-up when slotting which will extend tool life. Remember when slotting that 4 flute tools should be utilized in steel. For aluminum and other non- ferrous materials, a 3 flute tool is best.

3 flute chipbreaker
Helical Solutions 3-Flute Chipbreakers

Trochoidal Slotting

Trochoidal slotting is a form of slotting that uses HEM techniques to form a slot. Trochoidal milling implements a series of circular cuts to create a slot wider than the cutting tool’s cutting diameter. Using the logic listed in the earlier paragraphs of this article, a chipbreaker should be used when performing this operation.

Advantages of Trochoidal Slotting:

Decreased cutting forces

Reduced heat

Greater machining accuracy

Improved tool life

Faster cycle times

One tool for multiple slot sizes

chipbreaker rougher ad

Finishing

A little known fact about Helical’s chipbreaker style tool is that the chip breakers are offset flute to flute, which allows for a quality finish on the walls of the part. When utilizing light depths of cuts, high-quality finishes can be achieved.

Save Time With Quick Change Tooling

Making a manual tool change on any CNC machine is never a timely or rewarding process. Typically, a tool change in a standard holder can take up to 5 minutes. Add that up a few times, and suddenly you have added significant minutes to your production time.

As CNC machine tool and cutting tool technology has advanced, there are more multi-functional tools available to help you avoid tool changes. However, sometimes it just isn’t feasible, and multiple tool changes are needed. Luckily, Micro 100 has developed a revolutionary new method to speed up tool changes significantly.

What is the Micro-Quik Tooling System?

Developed in Micro 100’s world-class grinding facility in Meridian, Idaho, the Micro 100 Micro-Quik tooling system is held to the same standards and tight tolerances as all of the Micro 100 carbide tooling.

The quick change tooling system allows for highly repeatable tool changes that save countless hours without sacrificing performance. This system combines a unique tool holder with a unique tool design to deliver highly repeatable and accurate results.

Each quick change tool holder features a locating/locking set screw to secure the tool and a locating pin which helps align the tool for repeatability. Removing a tool is as simple as loosening the set screw and inserting its replacement.

depiction of removing tool from quick change system

During tool changes, the precision ground bevel on the rear of the tool aligns with a locating pin inside the tool holder. The distance from this locational point to the tip of the tool is highly controlled under tight tolerances, meaning that the Micro-Quik tooling system ensures a very high degree of tool length and centerline repeatability. The “L4” dimension on all of our quick change tools, as seen in the image above, remains consistent across the entire product line. Check out the video below for a demonstration of the Micro 100 Micro-Quik system in action!

Quick Change Tooling Benefits

quick change system with micro 100 boring bar close up image

The most obvious benefit to using Micro 100’s Micro-Quik Quick Change Tooling System is the time savings that come with easier tool changes. By using the quick change holders in combination with quick change tooling, it is easy to reduce tool changes from 5 minutes to under 30 seconds, resulting in a 90% decrease in time spent swapping out tools. This is a significant benefit to the system, but there are benefits once the tool is in the machine as well.

As mentioned above, the distance from the locational point on each tool shank to the tip of the tool is highly controlled, meaning that regardless of which type of tool you insert into the holder, your stick out will remain the same. This allows you to have confidence in the tooling and does not require additional touch offs, which is another major time saver.

assortment of boring bars with quick change system

By removing additional touch-offs and tool changes from your workflow, you also reduce the chances for human or machine error. Improper touch-offs or tool change errors can cause costly machine crashes and result in serious repairs and downtime. With the Micro 100 Micro-Quik Quick Change Tooling System, initial setups become much easier, allowing you to hit the cycle start button with total confidence for each run.

By making a few simple changes to your tool holding configurations and adopting the Micro-Quik system, your shop can save thousands in time saved, with less machine downtime and increased part production. To learn more about the Micro 100 Micro-Quik cutting tools and tool holders, please visit Micro 100.

5 Things to Know About Helical’s High Feed End Mills

Helical Solutions‘ High Feed End Mills provide many opportunities for machinists, and feature a special end profile to increase machining efficiencies. A High Feed End Mill is a High Efficiency Milling (HEM) style tool with specialized end geometry that utilizes chip thinning, allowing for drastically increased feed rates in certain applications. While standard end mills have square, corner radius, or ball profiles, this Helical tool has a specialized, very specific design that takes advantage of chip thinning, resulting in a tool that can be pushed harder than a traditional end mill.

helical solutions high feed end mills ad with both solid round and coolant through options

Below are 5 things that all machinists should know about this exciting Helical Solutions product offering.

1. They excel in applications with light axial depths of cut

A High Feed End Mill is designed to take a large radial depth of cut (65% to 100% of the cutter diameter) with a small axial depth of cut (2.5% to 5% diameter) depending on the application. This makes them perfect for face milling, roughing, slotting, deep pocketing, and 3D milling. Where HEM toolpaths involve light radial depths of cut and heavy axial depths of cut, these utilize high radial depths of cut and smaller axial depths of cut.

2. This tool reduces radial cutting forces

The end profile of this tool is designed to direct cutting forces upward along the axis of the tool and into the spindle. This reduces radial cutting forces which cause deflection, allowing for longer reach tools while reducing chatter and other issues that may otherwise lead to tool failure. The reduction of radial cutting forces makes this tool excellent for use in machines with lower horsepower, and in thin wall machining applications.

3. High Feed End Mills are rigid tools

The design and short length of cut of these end mills work in tandem with the end geometry to produce a tool with a strong core, further limiting deflection and allowing for tools with greater reach lengths.

Push Harder in HEM With Helical Solutions’ High Feed End Mills

4. They can reduce cycle times

In high RDOC, low ADOC applications, these tools can be pushed significantly faster than traditional end mills, saving time and money over the life of the tool.

5. High Feed End Mills are well suited for hard materials

The rigidity and strength of High Feed End Mills make them excellent in challenging to machine materials. Helical’s High Feed End Mills come coated with Tplus coating, which offers high hardness and extended tool life in high temp alloys and ferrous materials up to 45Rc.

In summary, these tools with specialized end geometry that utilizes chip thinning and light axial depths of cut to allow for significantly increased feed rates in face milling, slotting, roughing, deep pocket milling, and 3D milling applications. The end profile of a High Feed End Mill applies cutting forces back up into the spindle, reducing radial forces that lead to deflection in long reach applications. Combining this end geometry with a stubby length of cut results in a tool that is incredibly rigid and well suited for harder, difficult to machine materials.

High Efficiency Milling for Titanium Made Easy With Helical’s New HVTI Cutter

Titanium is a notoriously difficult material to machine, especially in aggressive toolpaths, such as those associated with High Efficiency Milling (HEM). Helical Solutions’ new line of tooling, the HVTI-6 series of end mills for titanium, is optimized specifically for this purpose, and proven to provide 20% more tool life than a competitor’s similar tool.

At face level, these new Helical end mills for titanium feature corner radius geometry, 6 flutes, and are Aplus coated for optimal tool life and increased cutting performance. But there is much more to these end mills than the typical geometry of standard 6 flute tools. The HVTI-6 was designed with a combination of a unique rake, core, and edge design that give it a leg up over standard 6 flute tools for milling titanium while cutting HEM toolpaths. Click here to watch the HVTI-6 in action!

End Mills for Titanium

The design of the HVTI-6 was the result of significant testing by the Harvey Performance Company Innovation and New Product Development teams. These teams spent many months testing tools, doing in-depth analysis on materials and tool geometry, and pushing these tools through dozens of hours in the cut at testing sites across the country.

The new HVTI-6 cutter experienced higher metal removal rates (MRR) and 20% longer tool life while performing HEM in Titanium when compared to a standard 6 flute tool offered by a Helical Solutions competitor. This type of tool life improvement will produce huge cost savings on tooling, as well as shortened cycle times and lower cost per part.

Helical HVTI Titanium

The Harvey Performance Innovation team targeted Titanium grade Ti6Al4V for their testing, which accounts for the vast majority of the Titanium being machined in North America. The test part was designed and programmed to allow for a more defined agility test of the tool, taking the tool into key geometry cutting exercises like tight corners, long straight line cuts, and rapid movement.

Many hours were spent with Lyndex-Nikken, manufacturers of high-quality rotary tables, tool holders, and machining accessories, at their Chicago headquarters. By working with the team at Lyndex-Nikken, the Harvey Performance Company team was able to test under optimal conditions with top-of-the-line tool holders, work holding, and machining centers. Lyndex was also available to provide their expert support on tool holding techniques and were an integral part of the testing process for these tools. Video of the impressive test cuts taken at the Lyndex facility can be seen below.

WATCH THE HVTI IN ACTION

In these tests, the HVTI end mills for titanium was able to run HEM toolpaths at 400 SFM and 120 IPM in Ti6Al4V, which served as the baseline for most of the testing.

While the standard 6 flute tools offered by Helical will still perform to high standards in Titanium and other hard materials (steels, exotic metals, cast iron), the HVTI-6 is a specialized, material-specific tool designed specifically for HEM toolpaths in Titanium. Advanced speeds and feeds for these new tools are already available in Machining Advisor Pro, and the complete offering is now available in the Helical CAM tool libraries for easy programming.

To learn more about the HVTI 6 Flute End Mills for Titanium, please visit the Helical Solutions website. To learn more about HEM techniques, download the HEM Guidebook for a complete guide on this advanced toolpath.