Corner Comparison: Corner Chamfer vs. Corner Radius

Using Finite Element Analysis (FEA) simulations by Third Wave Systems’ AdvantEdge CAE product, we tested different end mill corner geometries to compare their effects on both the tool and the workpiece. We studied and compared four 4 flute tools with either a 0.010” or 0.030” radius or chamfer. All tools were tested in 304 stainless steel at 1865 RPM, 244 SFM, and 0.0045 IPT for one revolution.

Both Corner Radius and Corner Chamfer tools offer advantages over Square End Mills by improving tool strength and reducing wear, though their benefits vary. One drawback of corner radius end mills is chip thinning along the radius, which can generate excess heat due to changes in chip thickness. This can lead to premature tool wear, poor surface finish, and potential work hardening. On the other hand, Corner Chamfers have the disadvantage of sharp corners where the chamfer meets the outer diameter (OD) and the end of the tool, causing local stress concentrations.

Force Analysis

The graphs above demonstrate the force exerted on the tool during cutting and how the corner size impacts the required force. As each flute engages, the forces peak in each direction. The 0.010” Chamfer generates the greatest force, while the 0.030” Chamfer requires the least. The forces with the radiused tools are very similar and fall between those of the two chamfered tools.

Temperature Analysis

The peak tool temperature graph shows the impact of chip thinning on corner radius tools and the overall corner size. The 0.030” Radius generated the most heat, while the 0.030” Chamfer generated the least. The temperature differences between the 0.010” Chamfer and 0.010” Radius was minimal, with the 0.010” Radius generated slightly less heat.

Chip and Workpiece Temperature

Understanding the temperature of the chip and workpiece is crucial for assessing tool performance. The contours above illustrate that the most heat is generated along the 0.030” Radius, followed by the 0.010” Radius. Corner Chamfer tools performed better, maintaining a lower overall temperature due to the absence of chip thinning.

Stress Analysis

The minimum principal stress on the backside of the flute indicates areas prone to tool failure. While there were slight differences between the chamfers and radii, the most notable finding was the reduction in stress with increased corner break size.

Similarly, the Mises stress analysis shows where stress is concentrated within the tool, potentially leading to failure. Again, the most significant observation was the reduction in stress with larger corner breaks.

Corner Chamfer vs. Corner Radius: Wrapped Up

Considering all factors, the 0.030” Corner Chamfer proved to be the best overall tool for 304 stainless steel. This is partly due to 304’s tendency to work harden, making excess heat generation particularly detrimental. When working with heat-sensitive materials, Corner Chamfer tools are preferable, especially during roughing, as they generate less heat due to the absence of chip thinning. Although there are minor stress concentrations at the sharp corners of Corner Chamfer tools, these are outweighed by the benefits of reduced heat generation. Larger radii exacerbate chip thinning’s impact on heat generation. While both tool styles offer advantages over square end mills, Corner Chamfer tools are more beneficial in high-heat applications where work hardening and tool wear are concerns.

Harvey Tool offers a range of Corner Chamfer Tools, with sizes ranging from 0.047” to 0.500” and various chamfer sizes to suit different applications.

Traditional vs. Free Cutting Finishing Core Tools: Which Is Right for Your Application?

Precision cutting plays a pivotal role in the manufacturing of honeycomb core. CoreHog, a leading provider of composite cutting solutions, offers two distinct styles of Finishing Core Tools: Traditional Finishing Core Tools and Free Cutting Tools. In this post, we explore the advantages and limitations of both Traditional Finishing Core Tools and Free Cutting Core Tools, helping you determine the right choice for your unique manufacturing needs.

CoreHog’s Large Core Finishing Tool

Advantages of Traditional Finishing Core Tools:

CoreHog’s Finishing Core Tools are designed to handle substantial cutting tasks, efficiently. With three size ranges available, they excel at removing high volumes of material and boast excellent tool life, making them ideal for production applications.

Assembly Configuration of CoreHog’s Large & Free Cutting Finishing Core Tools


However, these tools may pose limitations in specific applications. Traditional tools exert tool pressure, but depending on the tool geometry and part profile, the pressure may be too much for the part. This becomes more pronounced when cutting knife edge features such as chamfers and bevels, where the pressure exerted by the tool can cause the part to arch, dislodging it from the table, and ultimately causing it to deviate from specifications.

Introducing Free Cutting Core Finishing Tools:­­

To address the limitations of traditional honeycomb core finishing tools when cutting knife edge features, CoreHog offers Free Cutting Finishing Core Tools. The innovative design reduces tool pressure seen in both the Coreslicer and CoreHogger. The Free Cutting Coreslicer features a more acute and sharper angle, reducing the upward pressure exerted on the part during cutting.

 Differentiation of angle between the Large Coreslicer and the Free Cutting Coreslicer

Further, these tools feature a CoreHogger with a reduced diameter, allowing for greater offset between the CoreHogger and Coreslicer. This allows the Coreslicer to be more forward and free cutting, engaging with the material prior to the CoreHogger and reducing the resulting pressure typically exhibited by the CoreHogger.  

Reduced diameter design of Free Cutting CoreHogger decreases tool pressure on the part.

When to Use Free Cutting Tools:

CoreHog’s Free Cutting Core Finishing Tools are particularly well-suited for applications involving chamfering, beveling, and cutting angled profiles in honeycomb core materials. By reducing pressure and preventing lifting on the part, these tools ensure precise cuts without compromising part quality.

­­Traditional vs. Free Cutting Core Finishing Tool: Summarized

In conclusion, choosing the right cutting tool is crucial for achieving precise results in composite manufacturing. While traditional finishing core tools excel in handling substantial tasks, they may pose challenges when cutting angled profiles in honeycomb core materials. CoreHog’s Free Cutting Core Finishing Tools offer a solution by minimizing pressure on the part, making them ideal for chamfering, beveling, and most other angled profiles. However, in finicky applications where the knife edge part is extremely shallow, a Valve Stem Cutter may still be necessary to achieve your desired cut. By understanding your specific cutting requirements, you can select the most suitable tool for your application, ensuring optimal results in your honeycomb manufacturing processes.

Multi-Axis Finisher Q&A

What is a Multi-Axis Finisher?

A tool that uses an extremely large radius to increase finishing performance in two different ways, depending on the needs of the machinist. Either the Multi-Axis Finisher will provide a better surface finish than a traditional Ball End Mill in the same amount of time, or will provide the same surface finish in far less time than a traditional Ball End Mill. A middle ground with improved surface finish and reduced cycle time is also easily achievable.

What Are Other Names for Multi-Axis Finishers?

Multi-Axis Finishers are oftentimes referred to as Barrel Cutters or Conical Barrel Mills or Circle Segment Cutters, among many others.

What Are the Different Forms of Multi-Axis Finishers, and How Do They Differ?

There are several different forms of Multi-Axis Finishers, including Lens, Taper, Oval, and Barrel. With a Lens Form, there’s a large radius on the end of the tool that’s in line with the tool axis. Taper Form, in contrast, has three tangential radii and a large radius defined at a specific angle relative to the tool axis. An Oval Form has two tangential radii, offering additional angle flexibility, while a Barrel Form has a large radius on the OD of the tool.

The most significant benefit is oftentimes observed utilizing a Taper Form Multi-Axis Finisher, as the radius of this tool can become vastly large on this form, while the others are more limited. However, this great benefit also comes with the least amount of flexibility in terms of approach to a workpiece.

What Are the Benefits of a Multi-Axis Finisher?

There are two clear benefits to using a Multi-Axis Finisher, compared to a Ball End Mill: Increased surface finish, and reduced cycle time (Or most likely both, concurrently).

What is a Benefit Multiple?

Helical Solutions is the industry’s premier manufacturer of Multi-Axis Finishers, and the Benefit Multiple is a significant reason why. Helical specifies the theoretical benefit that can be seen with its Multi-Axis Finishers, providing machinists direct insight into the gains that can be realized with these tools.

Benefit Multiple refers to the Cusp Height, correlated directly with the theoretically-achievable surface finish. Assuming the same cusp height from a Ball End Mill to a Multi-Axis Finisher, the Benefit Multiple relates to the time savings that could be seen in a machinists’ toolpath. For example, a Benefit Multiple of 4 would result in a toolpath ¼ as long as for a Ball End Mill of the same diameter. The stepover pass-to-pass would be 400% as much as a Ball End Mill to keep the same cusp.

When Should I Not Use a Multi-Axis Finisher?

Multi-Axis Finishers are best applied to wide-open surface areas; or large, smooth contours rather than small features or tight areas. Application of these tools will always be on a case-by-case basis. For help with your specific application, contact Helical Solutions Technical Support at 866-543-5422.

How Can I Get the Most Out of My Multi-Axis Finisher?

Multi-Axis finishers are best utilized when working further towards the OD of the tool. Tapered Form Multi-Axis Finishers are the most obvious choice for this, as its nose radius is small and has the least amount of efficiency. Similarly to a ball end mill, working near the center will have limited cutting ability, while the OD of the tool will see the full surface footage of the programmed RPM.

Taper Form Multi-Axis Finishers should be used when tilted at the specified taper angle. Oval Form Multi-Axis Finishers should be used towards the OD. Lens Form Multi-Axis Finishers should be tilted to avoid working on-center.

Lens Form Multi-Axis Finishers Look Like a High Feed End Mill. Can I Use it That Way?


Yes. However, there are differences in the form, and while a Lens Form Multi-Axis Finisher could theoretically be used as a High Feed End Mill, the two tools are not interchangeable.  A High Feed End Mill would not be the best choice for Multi-Axis Finishing, nor would a Lens Form Multi-Axis Finisher be our first recommendation for feed milling.

Do I need special software to program Multi-Axis Finishers?

Yes. A number of years ago, there were only a few CAM software packages that supported the programming of these specific forms. Nowadays, most CAM software providers have some degree of support for this method. Two of the first CAM software offerings to support this were MasterCAM and Hypermill, though many additional options exist today.

Why haven’t I heard of Multi-Axis Finishers Until Now?

In the grand scheme of things, Multi-Axis Finishers provide a very new approach to finishing, having been developed within the last handful of years.  Similar to High Efficiency Milling, these tools offer a new technique to approach your workpiece, offering increased efficiency and reduced cycle times.  Compared to the history of milling, modern tool manufacturing and CAM software have only just become able to program these unique forms.  Multi-axis finishers are positioned to revolutionize the world of finishing.

For more information on Multi-Axis Finishers, visit Multi-Axis Finishers: The Key to Amazing Surface Finish.

10 CNC Drill Geometries Every Machinist Must Know

A CNC drill has many different features and geometries that directly impact the tool’s performance, productivity, and tool life in the specific material it’s machining. It is important to understand the different geometries of a drill to ensure you’re not only recognizing how they affect an application, but also which geometries you should be looking for when selecting your next drill.

1.    Point Angle

This drill geometry refers to the angle of the cutting edge of the drill. As the point angle increases on a drill, the radial forces decrease, making the angle size a huge factor in what type of material the drill is optimized for and what types of applications should be run. The smaller the point angle, the better it will perform in through hole applications. This is because the smaller angle reduces the axial forces, allowing less of the chip to be pushed out and more cutting to occur.

118° & 120° Point Angle

Many machinists opt for this angle when machining soft gummy materials.

135° Point Angle

This point angle size is an excellent choice for machining aluminum and stainless steels.

140° Point Angle

This larger point angle size is great for machining steels.

150° Point Angle

Large angles are often used for spot drilling applications, but the optimal spot drill angle is determined by the size of the angle of the final drill being used. Selecting the proper spot drill is essential to eliminating the chance of drill walking and ensuring a more accurate final product. Learn which spot angle should be used for your next drilling job in this in-depth guide.

2.    Chisel and Cutting Edges


Although the chisel edge of a CNC drill does not provide any cutting action, it is responsible for the centering of the drill, as it extrudes the material towards the cutting edges. The cutting edges are then able to start the process of producing chips, which then travel up the flutes of the drill.

3.    Flutes

The most recognizable part of a drill is its flutes. They are the deep grooves that allow for chip evacuation to occur. When one thinks of a drill, they are likely imagining a spiral flute drill. These spiral flutes complement the point angle, chisel edge, and the cutting edges. They work like an elevator system to lift the chips out of the hole, allowing them to provide excellent chip evacuation. They work great in most material types and provide good hole quality.

4.    Helix Angle

The helix angle is the angle formed by the leading edge of the land with a plane containing the axis of the drill. The main function of the helix angle is to transfer the chips out of the hole and a specific angle is relevant to the type of material that is being machined in and the particular application being run.

Low Helix

A low helix of 12° – 22° is recommended for materials like cast iron, brass, and hardened steels. In these “short chipping” materials, the chips move more freely, and the coolant provides enough assistance to properly evacuate the chips out of the hole.

Medium Helix

The most widely used helix angles are medium as they provide optimal chip evacuation and strength to the drill. Medium helix angles range from 28° – 32° and are recommended for any general purpose drilling applications.

High Helix

A high helix angle of 34° – 38° is recommended for long chipping material such as softer non-ferrous materials like brass, aluminum, and plastics. Drills with a high helix are also beneficial in deep hole applications as the chips can evacuate more easily.

5.    Web Thickness (Core)

The web is the core section of the drill body, which connects the two flutes. The thickness of the web determines the torsional strength of a drill. A drill with a larger web diameter will have more torsional strength than a drill with a smaller web diameter.

The proper web thickness is determined by the material type to be machined. Long chipping materials will require a drill with a smaller web thickness to provide adequate clearance for chip removal. When drilling short chipping materials such as cast iron, the drill web can be increased for additional strength.

6.    Corner Chamfer


A corner chamfer or radius is often added to eliminate the sharp edge at the intersection of the flutes and the outside diameter of a drill. This helps to eliminate material breakout when exiting a hole, while also helping to reduce the size of the entrance and exit burrs. This feature is also widely known to significantly extend tool life.

7.    Drill Margin

Margin(s) are the surfaces along the outer diameter of the drill which provide stability to the hole as they support the radial forces that are directed radially by the drill point.

Size of Drill Margin

The size of the margin will determine the overall quality of the hole. Wide marginswill stabilize the drill better, hold a tighter hole diameter tolerance, and improve the circularity of the hole. Narrow margins reduce friction and heat, eliminate work hardening, mitigate built-up edge, and provide better tool life.

Number of Drill Margins

The number of margins on a drill is usually determined by the type of hole being machined. Single margin drills are very common in non-interrupted holes. Double or triple margin drills are common in interrupted or intersecting holes. The more margins there are, the better the guidance is to help the drill stay straight through interrupted cuts, cross holes, and irregular or angled surfaces on exit. While adding margins does provide these benefits for irregular style cuts, they also increase friction, which causes the drill to produce more heat. This causes wear to be accelerated, reducing the life of the tool.

8.    Land of a Drill

The land is the outer portion of the body of the drill between two adjacent flutes. Land width will determine how much torsional force a drill can withstand before catastrophic failure. The smaller the land is, the more chip space there is, producing less torsional strength. The larger the land is, the less chip space there is, providing more torsional strength.

9.    Coolant-Through Channels


Not only do coolant-through channels offer any drilling application a multitude of benefits, but they are also highly recommended for hole depths that exceed 4XD (4 times diameter). Coolant-Through Drills allow for higher speed and feed rate capabilities, increased lubricity, better chip control, improved surface finish, and enhanced tool life.

10.  Shank

The shank is a very important yet overlooked drill geometry as it is the drive mechanism and is what is mounted into a Tool Holder. It is essential that the shank is held to proper diameter tolerance and considerations are being made depending on the holder being used. For example, a shank with an h6 tolerance is essential when a shrink fit style tool holder is being used.

Learning the different geometries of a CNC drill can greatly assist you in ensuring you are selecting the right drill for your next job, while understanding the functions of these features will allow you to trouble shoot any potential machining hiccups you may encounter in your future CNC drilling applications.

3 Tips for Avoiding Misaligned Holes


One of the most common issues machinists face during a drilling operation is hole misalignment. Hole alignment is an essential step in any assembly or while mating cylindrical parts. When holes are properly aligned, the mating parts fit easily in each other. When one of the pieces to the puzzle is inaccurate, however, machinists run into issues and parts can be scrapped. The two types of common misalignment woes are Angular Misalignment and Offset Misalignment.

Angular Misalignment

Angular misalignment is the difference in slope of the centerlines of the holes. When the centerlines are not parallel, a shaft will not be able to fit through the hole properly.

Offset Misalignment

Offset misalignment is the distance between the centerlines of the hole. This is the position of the hole from its true position or mating part. Many CAD software programs will help to identify if holes are misaligned, but proper technique is still paramount to creating perfect holes.

1.    Utilize a Spotting Drill

Using a spotting drill is a common way to eliminate the chance of the drill walking when it makes contact with the material. A spotting drill is designed to mark a precise location for a drill to follow, minimizing the drill’s ability to walk from a specific area.

valor holemaking high performance spotting drill

Valor Holemaking High Performance Spotting Drill

Although using a spotting drill would require an additional tool change during a job, the time spent in a tool change is far less than the time required to redo a project due to a misaligned hole. A misaligned hole can result in scrapping the entire part, costing time and money.

Do you know how to choose the perfect spot drill angle? Learn how in this in-depth guide so you can eliminate the chance of drill walking and ensure a more accurate final product.

2.    Be Mindful of Web Thickness

A machinist should also consider the web thickness of the drill when experiencing hole misalignment. A drill’s web is the first part of the drill to make contact with the workpiece material.

Essentially, the web thickness is the same as the core diameter of an end mill. A larger core will provide a more rigid drill and a larger web. A larger web, however, can increase the risk of walking, and may contribute to hole misalignment. To overcome this machining dilemma, machinists will oftentimes choose to use a drill that has a thinned web.

Web Thinning

Also known as a split point drill, web thinning is a drill with a thinned web at the point, which helps to decrease thrust force and increase point accuracy. There are many different thinning methods, but the result allows a drill to have a thinner web at the point while having the benefit of a standard web through­out the rest of the drill body.

A thinner web will:

  1. Be less susceptible to walking
  2. Need less cutting resistance
  3. Create less cutting force

3.    Select a Material Specific Drill

Choosing a material specific drill is one of the easiest ways to avoid hole misalignment. A material specific drill design has geometries that will mitigate the specific challenges that each unique material presents. Further, material specific drills fea­ture tool coatings that are proven to succeed in the specific material a machinist is working in.

Valor Holemaking High Performance Drills for Steels and High Performance Drills for Aluminum

Titan USA Carbide Drills: Jobber, Stub, & Straight Flutes

When navigating Titan USA’s offering of carbide drills, it is imperative to understand the key differences among the three carbide drill styles: Jobber Length, Stub Length, and Straight Flute Drills. The right drill for your application depends on, among other factors, the material you are working in, the job requirements, and the required accuracy.

PRO TIP:

Chip evacuation can be an obstacle for hole making. Pecking cycles can be used to aid in chip removal. Peck cycles are when the drill is brought in and out of the hole location, increasing depth each time until the desired depth is reached. However, pecking cycles should only be used when necessary; this process increases cycle time and subjects the tool to added wear from the repeated engaging and disengaging.

Jobber Length Drills

Titan USA jobber length drill

A carbide Jobber Length Drill is the standard general-purpose drill within Titan USA’s offering. It has a long flute length and an included angle of 118o. These drills are great for general purpose drilling where the tolerances are not as tight as the Stub Drill or Straight Flute Drill. Due to the length of these drills, however, they will be more affected by any lack of rigidity in the set up and can have higher runout, or straying from a desired location, during the drilling operation.

PRO TIP:

To achieve high accuracy and great finish, consider utilizing a Reamer. Reamers are designed to remove a finite amount of material but bring a hole to a very specific size. To do this, first drill 90% – 94% of the desired hole diameter with a Jobber Drill. After 90% – 94% of the material is removed, go in for a finishing pass with a Reamer. Reaming tools are highly accurate and leave a beautiful finish.

Stub Length Drills

Titan USA stub length drill

Titan USA carbide Stub Length Drills have a shorter flute length, wider included point angle, and a significant drop in helix angle, when compared to Jobber Length Drills. The shorter length and wider tip create for a more rigid tool and, in turn, more accurate holes. The stub drill is the best option when drilling with tight tolerances on shallower holes.

Straight Flute Drills

Titan USA straight flute drill

Carbide Straight Flute Drills have the smallest core of the three drill types mentioned within this post. Titan USA offers Straight Flute Drills with 2 flutes and a 140o included angle. These drills are designed for hole making in materials that create short chips. Materials in which the Straight Flute Drill typically performs best include cast aluminums and cast irons, as well as copper. In addition, this type of drill can work very well in high hardness materials, but the core diameter should first be adjusted to accommodate the increased hardness. For these difficult to machine materials, casting the part with a core hole and then opening it up with the Straight Flute is a great option. This removes some of the stress caused by chip removal and allows for the drill to do what it does best.

Chip removal can be more difficult in this style of carbide drill because the chips are not guided along a helix. With helix flutes, the motion of chip removal is mostly continuous from their initiation point, through the flute valleys, and finally out of the flute valleys. The helix creates a wedge which helps push the chips along, but the straight flute does not have that. It interrupts that natural turning motion created by the drill face which can affect chip evacuation. Due to the interruption in motion this type of drill is better suited for applications involving chips of smaller size.

PRO TIP:

Helix drills create multiple different forces on the part, which can create micro imperfections. The Straight Flute Drills do not create those forces, so the finish is much more consistent down to the micro level. The margins of the Straight Flute Drill also burnish the inside of the hole as they spin, which improves the finish as well. When comparing the Straight Flute Drill to a helix drill, the length of the overall contact point is much shorter in the Straight Flute Drill, and has less heat generation. The decreased heat will also reduce the probability of work hardening.

Selecting Your Perfect Titan USA Carbide Drill

Selecting the correct carbide drill for your application is a crucial step in hole making. The Jobber Drill is a great general-purpose drill and should be utilized in applications requiring long reach. The Stub Drill increases the rigidity with its shorter length of flute, allowing it to drill with higher accuracy. Applications which involve tight tolerances and more shallow holes can be done with the Stub Drill for high-quality results. Lastly, for difficult to machine and hard materials, the Straight Flute Drill is the perfect solution. When the core diameter and chip evacuation is properly addressed, the Straight Flute Drill produces beautifully consistent surface finish and extremely tight tolerances. Similarly, Titan USA offers its carbide drills in both an uncoated option, and AlTiN coating. Traditionally, uncoated tools are general purpose workhorses in a wide variety of materials both ferrous and non-ferrous. AlTiN or Aluminum Titanium Nitride is an enhanced coating specifically made for ferrous materials that extends tool life and performance across a wide range of steels and their alloys.

For more information on Titan USA Drills, and to view its full selection, click here.

Understanding Key Qualities in Micro 100’s Offering of Micro-Quik Quick Change Tool Holders

Did you know that, along with supplying the machining industry with premier turning tools, Micro 100 also fully stocks tool holders for its proprietary Micro-Quik Quick Change Tool Holder System? In fact, Micro 100’s Spring 2021 Product Catalog introduced new “headless” style tool holders, which are revolutionizing the machine setup process for turning operations.

This “In the Loupe” guide is designed to provide you with insight for navigating Micro 100’s offering, and to help you select the optimal holder style for your operation.

Micro 100 ad showing four different tool holders

Understanding Micro 100’s Micro-Quik

Micro 100’s Micro-Quik is unlike any other tool change system you may have seen from other tool manufacturers because of its incredible axial and radial repeatability and its ease of use. This foolproof system delivers impressive repeatability, tip-to-tip consistency, and part-to-part accuracy, all the while resulting in tool changes that are 90 % faster than conventional methods.

In all, a tool change that would regularly take more than 5 minutes is accomplished in fewer than 30 seconds.

Micro 100 Quick Change Tool Holder Selection

Straight Style, Headless Tool Holders

When using a straight style tool holder, you will enjoy significantly enhanced versatility during the machine set up process. These holders are engineered specifically for use in any Swiss, standard lathe, or multi-function lathe, and allow for adjustable holder depth in a tooling block. Radial coolant access ports provide easier access to coolant and the ability to utilize coolant through functionality in tooling blocks that share a static and live tool function, and cannot be plumbed through the back of the holder. Further, their headless design allows for installation through the backside of the tooling block in machines where the work envelope is limited, allowing for a simplified installation process.

Created by Harvey Performance Company Application Engineers, the following videos outline the simple process for inserting each style of Micro 100 Straight Tool Holder into a tooling block.

Micro 100 Straight Holder, Plumbed Style (QTS / QTSL)

In the video, you’ll notice that the first step is to place your Micro-Quik tool in this quick change holder, and align it with the locating pin. Then, tighten the locating and locking screw into the whistle notch. This forces the tool against the locking pin, and allows for repeatable accuracy, every time. From there, the quick change tool holder can be installed as a unit into a tooling block. When desired tool position is achieved, set screws can be tightened to lock the holder in place.

Micro 100 Straight Holder, Plumbed & Ported Style (QTSP / QTSPL)

This unique Micro 100 quick change tool holder style is plumbed and ported, allowing for enhanced versatility and coolant delivery efficiency. The setup process using this style of holder is also simple. First, place your Micro 100 quick change tool into the holder, and align it with the locating pin. From there, tighten the locating and locking screw into the whistle notch, forcing the tool against the locating pin and allowing for repeatable accuracy, every time. When plumbed coolant is being used, remove the plumbed plug in the back of the holder, and connect the appropriate coolant adapter and line. Then, the holder can be installed as a unit into the tooling block and locked into place with set screws.

When using ported coolant, make sure that the coolant plug in the back of the holder is tightly installed. Then, be sure to only use one of the radial ports. Simply plug the two that aren’t in use. Install the provided porting adapter to allow for coolant access. Porting options allow for coolant capabilities in machine areas where coolant is not easily accessible.

Headed Tool Holders

headed quick change tool holder

Micro 100’s original quick change tool holder for its Micro-Quik system, this style of tool holder for lathe applications features a unique “3 point” locking and locating system to ensure repeatability. When conducting a tool change with this tool holder style, you must follow a simple, 3-step process:

  1. Loosen the tool holder’s set screw
  2. Remove the used tool from the holder
  3. Insert the new tool and retighten the set screw

These headed holders are plumbed through the back of the holder for NPT coolant connection and are available in standard length and long length styles.

Try Micro 100’s “Headless” Tool Holders for Incredible Flexibility

Double-Ended Modular Tool Holder System

double ended quick change tool holder

For twin spindle and Y-axis tooling block locations, Micro 100 fully stocks a double-ended modular system. Similar to its single-ended counterparts, this modular is headless, meaning it enhances machine access during the tool block installation process, and the holder depth can be adjusted while in the block. Because this system is double-ended, however, there is obviously no plumbed coolant option through the end of the tool. Instead, coolant is delivered via an external coolant port, the adapter for which is included in the purchase of the modular system. Right hand and left hand tool holders are designed so the set screws are facing the operator for easy access. Both right and left hand styles are designed for right hand turning.

Enjoy Quick Change Tool Holding Confidence & Ease of Use

When opting for a quick change system, machinists long for simplicity, versatility, and consistency. Though many manufacturers have a system of their own, Micro 100’s Micro-Quik sets itself apart with axial and radial repeatability, and tip-to-tip consistency. Further, Micro 100 fully stocks several quick change tool holder options, allowing a machinist to select the style that best fits their application.

Micro100 also manufactures and stocks a wide variety of boring tools for the Micro-Quik. Click here to learn more.

For more information on selecting the appropriate quick change tool holder for your job, view our selection chart or call an experienced Micro 100 technical engineer at 800-421-8065.

quick change tool holder selection chart for Micro100

8 Unique Facts About Thread Forming Taps

Unlike most CNC cutting tools, Thread Forming Taps, otherwise known as Form Taps, Forming Taps, or Roll Taps, work by molding the workpiece rather than cutting it. Because of this, Form Taps do not contain any flutes, as there is no cutting action taking place, nor are there any chips to evacuate. Below are 8 unique facts of Thread Forming Taps (and some may surprise you).

1. Chips Aren’t Formed

When using a Form Tap, chips are not formed, nor is any part material evacuated (Yes, you read that right). With thread forming, the tool is void of any flutes, as chip evacuation is not a concern. Form Taps quite literally mold the workpiece, rather than cut it, to produce threads. Material is displaced within a hole to make way for the threads being formed.

Increase Your Tapping Efficiency 20x With Titan USA’s Thread Form Taps

2. Cutting Oils Allow for Reduced Friction & Heat Generation

Did you know that Thread Forming Taps require good lubrication? But why is that the case if chips are not being evacuated, and how does lubrication enter the part with such a limited area between the tool and the perimeter of the hole being threaded? Despite the fact that chips aren’t being formed or evacuated, cutting oils aid the Form Tap as it interacts with the part material, and reduces friction and heat generation. Lube vent grooves are narrow channels engineered into the side of Forming Taps that are designed to provide just enough room for lubricant to make its way into – and out of – a part.

titan usa thread forming tool

Not all materials are well suited for Thread Forming Taps. In fact, attempting to use a tap in the wrong material can result in significant part and tool damage. The best materials for this unique type of operation include aluminum, brass, copper, 300 stainless steel, and leaded steel. In other words, any material that leaves a stringy chip is a good candidate for cold forming threads. Materials that leave a powdery chip, such as cast iron, are likely too brittle, resulting in ineffective, porous threads.

4. Threads Produced Are Stronger Than Conventional Tapping Threads

Thread forming produces much stronger threads than conventional tapping methods, due to the displacements of the grain of the metal in the workpiece. Further, cutting taps produce chips, which may interfere with the tapping process.

5. Chip Evacuation is Never a Concern With Thread Forming

In conventional tapping applications, as with most machining applications, chip evacuation is a concern. This is especially true in blind holes, or holes with a bottom, as chips created at the very bottom of the hole oftentimes have a long distance to travel before being efficiently evacuated. With form taps, however, chip removal is never a concern.

6. Form Taps Offer Extended Tool Life

Thread Forming Taps are incredibly efficient, as their tool life is substantial (Up to 20x longer than cutting taps), as they have no cutting edges to dull. Further, Thread Forms can be run at faster speeds (Up to 2x faster than Cutting Taps).

Pro Tip: To prolong tool life even further, opt for a coated tool. Titan USA Form Taps, for example, are fully stocked in both uncoated and TiN coated styles.

titan usa thread forming tool on stack of red product packaging containers

7. A Simple Formula Will Help You Find the Right Drill Size

When selecting a Tap, you must be familiar with the following formula, which will help a machinist determine the proper drill size needed for creating the starter hole, before a Thread Forming Tap is used to finish the application:

Drill Size = Major Diameter – [(0.0068 x desired % of thread) / Threads Per Inch]
Drill Size (mm) = Major Diameter – [(0.0068 x desired % of thread x pitch (mm)]

two titan usa thread form taps

8. Thread Forming Taps Need a Larger Hole Size

  1. Thread Form Taps require a larger pre-tap hole size than a cutting tap. This is because these tools impact the sides of the hole consistently during the thread forming process. If the pre-tap hole size is too small, the tool would have to work too hard to perform its job, resulting in excessive tool wear, torque, and possible breakage.

As an example, a ¼-20 cut tap requires a #7 drill size for the starter hole, whereas a ¼-20 roll tap requires a #1 drill size for 65% thread.

The 3 Critical Factors of Turning Speeds and Feeds

Many factors come into play when determining a proper turning speeds and feeds and depth of cut strategy for turning operations. While three of these factors – the ones we deemed to be among the most critical – are listed below, please note that there are many other considerations that are not listed, but that are also important. For instance, safety should always be the main focus of any machining operation, as improper cutting tool parameters can test a machine’s limits, resulting in an accident that can potentially cause significant bodily harm.

Machine condition, type, capabilities, and set-up are all significantly important to an overall successful turning operation, as is turning tool and holder selection.

Turning Speeds and Feeds Factor 1: Machine Condition

The condition of your machine should always be considered prior to beginning a machining operation on a lathe. Older machines that have been used for production operations where hard or abrasive materials are machined tend to have a large amount of backlash, or wear, on the machine’s mechanical parts. This can cause it to produce less than optimal result and may require that a tooling manufacturer’s recommended speeds and feeds parameters need to be dialed back a bit, as to not run the machine more aggressively than it can handle.

turning machine engaging with workpiece

Factor 2: Machine Type and Capabilities

Before dialing in turning speeds and feeds, one must understand their machine type and its capabilities. Machines are programmed differently, depending on the type of turning center being used: CNC Lathe or Manual Lathe.

CNC Lathe Turning Centers

With this type of machine, the part and tool have the ability to be set in motion.

CNC lathe turning centers can be programmed as a G96 (constant surface footage) or G97 (constant RPM). With this type of machine, the maximum allowable RPM can be programmed using a G50 with an S command. For example, inputting a G50 S3000 into your CNC program would limit the maximum RPM to 3,000. Further, with CNC Lathe Turning Centers, the feed rate is programmable and can be changed at different positions or locations within a part program.

Manual Lathe Turning Centers

With this type of machine, only the part is in motion, while the tool remains immobile.

For manual lathe turning centers, parameters are programmed a bit differently. Here, the spindle speed is set at a constant RPM, and normally remains unchanged throughout the machining operation. Obviously, this puts more onus on a machinist to get speed correct, as an operation can quickly be derailed if RPM parameters are not optimal for a job. Like with CNC lathe turning centers, though, understanding your machine’s horsepower and maximum feed rate is critical.

Factor 3: Machine Set-Up

image demonstrating proper tool setup beside depiction of excessive tool stickout
Excessive Tool Stickout. Digital Image, Hass Automation. https://www.haascnc.com/service/troubleshooting-and-how-to/troubleshooting/lathe-chatter—troubleshooting.html

Machining Conditions

When factoring in your machine set-up, machining conditions must be considered. Below are some ideal conditions to strive for, as well as some suboptimal machining conditions to avoid for dialing in proper turning speeds and feeds.

Ideal Machining Conditions for Turning Applications

  • The workpiece clamping or fixture is in optimal condition, and the workpiece overhang is minimized to improve rigidity.
  • Coolant delivery systems are in place to aid in the evacuation of chips from a part and help control heat generation.

Suboptimal Machining Conditions for Turning Applications

  • Utilizing turning tools that are extended for reach purposes, when not necessary, causing an increased amount of tool deflection and sacrificing the rigidity of the machining operations.
  • The workpiece clamping or fixturing is aged, ineffective, and in poor condition.
  • Coolant delivery systems are missing, or are ineffective
  • Machine does not feature any guarding or enclosures, resulting in safety concerns.

Cutting Tool & Tool Holder Selection

As is always the case, cutting tool and tool holder selection are pivotal. Not all turning tool manufacturers are the same, either. The best machinists develop longstanding relationships with tooling manufacturers, and are able to depend on their input and recommendations. Micro 100, for example, has manufactured the industry’s highest quality turning tools for more than 50 years. Further, its tool holder offering includes multiple unique styles, allowing machinists to determine the product that’s best for them.

lathe tool holder next to micro 100 tool product packaging
Pro Tip: Be sure to take into consideration the machine’s horsepower and maximum feed rate when determining running parameters.

Bonus: Common Turning Speeds and Feeds Application Terminology

Vc= Cutting Speed

n= Spindle Speed

Ap=Depth of Cut

Q= Metal Removal Rate

G94 Feedrate IPM (Inches Per Minute)

G95 Feedrate IPR (Inches Per Revolution)

G96 CSS (Constant Surface Speed)

G97 Constant RPM (Revolutions Per Minute)

The Secret Mechanics of High Feed End Mills

A High Feed End Mill is a type of High-Efficiency Milling (HEM) tool with a specialized end profile that allows the tool to utilize chip thinning to have dramatically increased feed rates. These tools are meant to operate with an extremely low axial depth so that the cutting action takes place along the curved edge of the bottom profile. This allows for a few different phenomena to occur:

  • The low lead angle causes most of the cutting force to be transferred axially back into the spindle. This amounts to less deflection, as there is much less radial force pushing the cutter off its center axis.
  • The extended curved profile of the bottom edge causes a chip thinning effect that allows for aggressive feed rates.

The Low Lead Angle of a High Feed End Mill

As seen in Figure 1 below, when a High Feed End Mill is properly engaged in a workpiece, the low lead angle, combined with a low axial depth of cut, transfers the majority of the cutting force upward along the center axis of the tool. A low amount of radial force allows for longer reaches to be employed without the adverse effects of chatter, which will lead to tool failure. This is beneficial for applications that require a low amount of radial force, such as machining thin walls or contouring deep pockets.

high feed mill roughing
Figure 1: Isometric view of a feed mill engaged in a straight roughing pass (left), A snapshot front-facing view of this cut (right)

Feed Mills Have Aggressive Feed Rates

Figure 1 also depicts an instantaneous snapshot of the chip being formed when engaged in a proper roughing tool path. Notice how the chip (marked by diagonal lines) thins as it approaches the center axis of the tool. This is due to the curved geometry of the bottom edge. Because of this chip thinning phenomenon, the feed of the tool must be increased so that the tool is actively engaged in cutting and does not rub against the workpiece. Rubbing will increase friction, which in turn raises the level of heat around the cutting zone and causes premature tool wear. Because this tool requires an increased chip load to maintain a viable cutting edge, the tool has been given the name “High Feed Mill.”

high feed end mill ad

Other Phenomena Due to Curved Geometry of Bottom Edge

The curved geometry of the bottom edge also sanctions for the following actions to occur:

  • A programmable radius being added to a CAM tool path
  • Scallops forming during facing operations
  • Different-shaped chips created during slotting applications, compared to HEM roughing

Programmable Radius

Helical Solutions’ High Feed End Mills has a double radius bottom edge design. Because of this, the exact profile cannot be easily programmed by some CAM software. Therefore, a theoretical radius is used to allow for easy integration.  Simply program a bullnose tool path and use the theoretical radius (seen below in Figure 2) from the dimensions table as the corner radius.

high feed mill programmable radius
Figure 2: Programmable radius of a double radius profile tool

Managing Scallops

A scallop is a cusp of material left behind by cutting tools with curved profiles. Three major factors that determine the height and width of scallops are:

  1. Axial Depth of Cut
  2. Radial Depth of Cut
  3. Curvature of Bottom Edge or Lead Angle

Figure 3 below is a depiction of the scallop profile of a typical roughing cut with a 65% radial step over and 4% axial depth of cut. The shaded region represents the scallop that is left behind after 2 roughing passes and runs parallel to the tool path.

roughing cut scallop profile
Figure 3: Back view of roughing cut with a 65% radial step over

Figures 4 and 5 show the effects of radial and axial depth of cuts on the height and width of scallops. These figures should be viewed in the context of Figure 3. Percentage by diameter is used rather than standard units of measurement to show that this effect can be predicted at any tool size. Figure 4 shows that a scallop begins to form when the tool is programmed to have a radial step over between 35% and 40%. The height increases exponentially until it is maximized at the axial depth of cut. Figure 5 shows that there is a linear relationship between the radial step over and scallop width. No relationship is seen between scallop width and axial depth of cut as long as ADOC and the radius of curvature of the bottom cutting edge remains consistent.

graph of scallop height versus depth of cut
Figure 4: Graph of Scallop Height vs. Depth of Cut
graph of scallop width versus depth of cut
Figure 5: Scallop Width vs. Depth of Cut

From the graphs in Figures 4 and 5 we get the following equations for scallop dimensions.

Notes regarding these equations:

  • These equations are only applicable for Helical Solutions High Feed End Mills
  • These equations are approximations
  • Scallop height equation is inaccurate after the axial depth of cut is reached
  • RDOC is in terms of diameter percentage (.55 x Diameter, .65 x Diameter, etc…)

Shop Helical Solutions’ Fully Stock Selection of High Feed End Mills

Curvature of the Bottom Edge of High Feed End Mills

The smaller the radius of curvature, the larger the height of the scallop. For example, the large partial radius of the Helical Solutions High Feed End Mill bottom cutting edge will leave a smaller scallop when compared to a ball end mill programmed with the same tool path. Figure 6 shows a side by side comparison of a ball end mill and high feed mill with the same radial and axial depth of cut. The scallop width and height are noticeably greater for the ball end mill because it has a smaller radius of curvature.

feed mill versus ball end mill
Figure 6: Scallop diagram of High Feed Mill and Ball End Mill with the same workpiece engagement

Full Slotting

When slotting, the feed rate should be greatly reduced relative to roughing as a greater portion of the bottom cutting edge is engaged. As shown in Figure 7, the axial step down does not equate to the axial engagement. Once engaged in a full slot, the chip becomes a complex shape. When viewing the chip from the side, you can see that the tool is not cutting the entirety of the axial engagement at one point in time. The chip follows the contour on the slot cut in the form of the bottom edge of the tool. Because of this phenomenon, the chip dips down to the lowest point of the slot and then back up to the highest point of axial engagement along the side. This creates a long thin chip that can clog up the small flute valleys of the tool, leading to premature tool failure. This can be solved by decreasing the feed rate and increasing the amount of coolant used in the operation.

high feed mill chip formation
Figure 7: Formation of a chip when a feed mill is engaged in a full slotting operation.

In summary, the curved profile of the bottom edge of the tool allows for higher feed rates when high feed milling, because of the chipping thinning effect it creates with its low lead angle. This low lead angle also distributes cutting forces axially rather than radially, reducing the amount of chatter that a normal end mill might experience under the same conditions. Machinists must be careful though as the curved bottom edge also allows for the formation of scallops, requires a programmable radius when using some CAM packages, and make slotting not nearly as productive as roughing operations.