Carbon Fiber Reinforced Polymers (CFRP): Running Parameters, Tool Life, & Safety Tips


Carbon Fiber Reinforced Polymers (CFRP) is a collection of carbon fibers that, when bound together via resin, creates a material with a wide range of application possibilities. It’s strong, durable, and resistant to corrosion, making it an advantageous material for use in several advanced industries, including the aerospace and automotive industries. Despite its unique abilities, however, machining CFRP is not without its set of challenges, all of which machinists must be cognizant of to achieve desired results. Once CFRP is properly understood and the right cutting tool is selected for the job, the next step is to properly set running parameters for your application.

Square piece of cfrp laminate carbon fiber material

Running Parameters

Comparison of Metal Machining vs Composite Machining

When machining CFRP, the suggested running parameters are to have a high RPM with low feed rates. Feed rates will need to be adjusted to account for heat minimization, while RPMs may need to be dialed back to prevent excessive fraying, tearing, or splitting of fibers when cutting.

In metal machining, the tool cuts away at material, forming chips. This is possible due to the formation of the metal having natural fracture and stress lines that can be wedged by the cutting tool to create a chip. Unlike metals, machining carbon fiber does not peel away material but rather fracture and break the fibers and resin.

Milling vs Drilling Carbon Fiber

Composite holemaking or drilling is found to be more challenging than milling carbon fiber. It generates more dust due to the drilling speed. Using specific tooling for composites will be crucial in effective drilling. When machining holes, the carbon fiber will relax, creating undersized holes which requires extensive adjustments that are best automated for efficiency.

For help mitigating the challenges of composite holemaking, read Overcoming Composite Holemaking Challenges and browse CoreHog’s offering of drills, specially engineered to mitigate all-too-common holemaking headaches. To achieve better finish and avoid delamination, it is recommended to utilize conventional milling over climb milling within composites contrary to what is recommended in metal machining.

Combination of corehog specific cfrp drills including helical step, dagger, 8 facet, and tapered drill reamer

Within the aerospace industry, drilling is the most common application in machining. Like milling, performing operations such as pecking may be preferred even with increased cycle time if it reduces any chances of error that result in scrapping of the part.

Running Parallel to Grain of Fibers

While every part is different, there is a method for reducing fraying, chipping, or delamination by cutting parallel to the fiber direction when possible. This can be like cutting along the grain of wood instead of cutting perpendicular or at an angle to the grain.

Coolant Applications

The use of coolant when machining CFRP can either benefit or negatively affect the part depending on the application. The preferred coolant of choice for machining carbon fiber is typically using water or a water-soluble coolant. This is due to composites having a porous surface that could allow contaminates to enter the part itself. By using water, it prevents any issues after machining where adhesives or paint may need to be applied to the part that otherwise would not have adhered properly with contaminates present.

cnc machine looking through glass window focusing on a tool in the cut with external coolant spraying the workpiece

High Scrapping Costs

Many composite parts are unique in shape and size with custom molded designs that create a large initial cost prior to the machining stage. After the part is molded near to its shape, machining is often used to finish the part or drill holes where needed to finalize the part.

Importance of Considering Machining Challenges to Avoid Scrapping

Having a set process that is consistent and reliable is important in helping to prevent scrapping. Eliminating human error with machines that can monitor the entire process while automating tool changes when tools are worn, avoids issues before they can happen. A key factor is ensuring the setup is correct, having the right tooling, tool path, and coolant option to perform the operation effectively and accurately. With some parts serving critical functions and with a high cost, there is no exception for poor finish or incorrect cuts emphasizing the importance of having a procedure that gets the job done the right way.

Composite Cutting Tool Life Management

Wear Rate & its Effects 

Due to carbon fiber’s abrasion on the cutting tools, a rapid decrease in cutting quality will occur as soon as the tool begins to dull. Fibers will be grabbed instead of fractured, causing fraying and damage to the part. Therefore, tool life should be vigilantly monitored to replace the tool before reaching the point of dullness.

Developing a Process for Success

Unlike metal machining where tools may be utilized until they show signs of wear, this method would be unideal for CFRP as the highly expensive part could be ruined or damaged causing scrapping costs and time. It is good practice to take preventative measures by taking note of typical wear of your tools and using that information to set tool changes before it dulls. Noting tool changes and having high interval checks on cutting and dimension quality will aid in avoiding poor finish or scrapping. Some machines are equipped with tool life management systems which will greatly reduce the chances of having to scrap a part because of tool dullness.

Safety Practices When Machining CFRP

Being that chips are not formed when machining CFRP, and instead, the material is fractured, it creates dust that can spread throughout the air and other surfaces. Not only does this cause hazardous conditions for anyone nearby who may inhale the dust, but the dust is also conductive, which can ruin electronics. To avoid these issues, two different extraction methods can be used depending on the needs of the application.

Wet vs Dry Extraction

The two options for dust extraction are using coolant (wet) or vacuuming (dry). Choosing between the two is dependent on the application, but mostly dictated by the size of the application. Smaller scale machining can be contained through vacuuming, but larger applications would require coolant as vacuuming a large area may be challenging. If a lot of heat will be generated, then it is necessary to have a water-soluble coolant. This would also benefit the use of diamond tooling as they will wear faster at lower temperatures in comparison to carbide tooling. Another would be the dust collection would remain contained with the liquid preventing any airborne exposure.

Disposal Considerations

One benefit of vacuuming over coolant is the disposal process. After machining, the coolant/dust mix would require post-treatment to remove excess water before being transferred to a landfill. This would incur additional costs to the process which may cause some to lean towards vacuuming if heat is not an issue.

Conclusion

With CFRP’s wide range of uses and desirable mechanical properties for its applications, comes the effect of its challenges in machining and high cost of scrapping. Refining this process will be essential for the growing demand of carbon fiber machining in the near future. For more information on CFRP, specifically related to material properties and tool selection, read In the Loupe’s complementary post “Carbon Fiber Reinforced Polymers (CFRP): Material Properties & Tool Selection”.

Understanding Wood Properties for CNC Woodworking Projects

Machinists oftentimes confuse wood for being an “easy to machine material” during CNC Woodworking because of how much softer the material is than metal. In some sense this is true, as you can program wood cutting parameters in CNC Woodworking with much higher feed rates compared to that of most metals. On the other hand, however, wood has many unique properties that need to be accounted for in order to optimize the cutting process for maximum efficiency.

Get the Most Out of Your CNC Woodworking Projects With Harvey Tool’s Speeds and Feeds

Types of Wood for CNC Woodworking

There are 3 main categories of wood for woodworking: hardwood, softwood and engineered wood.

Hardwood

The textbook definition of a hardwood tree is an angiosperm, more commonly referred to as a broadleaf tree. A few examples would be oak, birch, and maple trees. These types of trees are often used for making high quality furniture, decks, flooring, and construction components.

Softwood

A softwood is a coniferous tree, sometimes known as a gymnosperm. These are typically less dense than hardwoods and are therefore associated with being easier to machine. Do not let the name fool you: some soft woods are harder than some hardwoods. Harvey Tool’s Speeds and Feeds Charts for its offering of Material Specific End Mills for Wood are categorized by Janka hardness for this exact reason. Janka hardness is a modified hardness scale with a test specifically designed for classifying types of wood.

Softwood is used to make furniture, but can also be used for doors, window panes, and paper products. A couple of examples are pine and cedar trees. Table 1 lists 20 common woods with their Janka hardness.

Common Name:Janka Imperial Hardness:
Balsa90
Buckeye, Yellow350
Willow, Black360
Pine, Sugar380
Cottonwood, Eastern430
Chesnut, American540
Pine, Red560
Douglas-Fir, Interior North600
Birch, Gray760
Ash, Black850
Cedar, Eastern Red900
Cherry, American Black950
Walnut, Black1010
Beech, American1300
Oak, White1360
Maple, Sugar1450
Apple1730
Cherry, Brazilian2350
Olive2700
Rosewood, Indian3170
Table 1: Janka Hardness of Common Woods

Engineered Woods

Engineered wood, or composite wood, is any type of wood fiber, particle, or strand material held together with an adhesive or binding agent. Although some of these materials are easier to machine than solid woods, the adhesive holding the material together can be extremely abrasive. This can cause premature tool wear and create difficulties when cnc woodworking. It’s important to note that some types of engineered woods are more difficult to machine than others, specifically those with a higher amount of binding material. These types should be programmed with less aggressive speeds and feeds. For example, medium density fiberboard (MDF) if more difficult to machine than plywood, but much easier to machine than phenolic.

stack of medium density fiberboard pieces for cnc woodworking
Figure 1: Example of Medium Density Fiberboard

Properties of Wood

Grain Size

Technically speaking, wood can be considered a natural composite material as it consists of strong and flexible cellulose fibers held together by a stiffer glue-like matrix composed of lignin and hemicellulose. If you think in terms of construction, the cellulose fibers would be the steel rebar, and the concrete would be the lignin and hemicellulose. Wood with large cellulose fibers are considered to be coarse-grained (oak and ash). Woods that have smaller and fewer fibers are considered fine-grained (pine and maple). Softwoods tend to be fine-grained and are therefore stereotyped as being easier to machine since they do not have as many strong fibers to shear. It’s important to note that not all hardwood trees are coarse grained and not all softwood trees are fine-grained.

diagram of natural wood fibers for cnc woodworking
Figure 2: Simplified diagram of fibers that constitute natural wood. The cellulose fibers run vertically in this depiction.

Moisture Content (MC)

Moisture content (MC) is one of the most important variables to consider when machining wood. An extremely common problem with building anything with wood is its tendency to warp. Moisture variability in the air inevitably affects the moisture content within the wood. Any change in moisture content (whether an increase or a decrease) will disturb the shape of the workpiece. This is why one must take into account what type of moisture a product will be exposed to in its final resting place.

Equilibrium Moisture Content (EMC)

Equilibrium moisture content (EMC) occurs when wood has reached a balance point in its moisture content. Interior EMC values across the United States average at about 8%, with exterior values averaging around 12%. These values vary around the country due to the differences in temperature and humidity. For example, the southeastern United States have an average interior EMC of 11% while the southwest averages about 6% (excluding the coastal region). It’s important to consider what region and application the final product is going to encounter so that the wood with the correct moisture content can be selected before machining. Most species of flat-grain wood will change size 1% for every 4% change in MC. The direction of warping depends on the grain orientation.

United States map showing average regional indoor EMC
Figure 4: Average regional indoor EMC

Generally, power requirements for an operation rise with increasing moisture content, mainly because of the surge in density. Density of wood increases with rising MC. The additional power may be necessary to push a heavier chip out of the cutting zone during CNC Woodworking. It’s worth noting that, like synthetic polymers, wood is a viscoelastic material that absorbs energy as it becomes wetter. The proportional limit of its mechanical properties intensifies as MC increases.

When machining some types of wood, cutting region temperature will surge with increasing MC, but in other species it will decline. Be safe and avoid rapid tool wear by decreasing SFM when machining a wood with a moisture content above 10%. Harvey Tool Speeds and Feeds Charts suggest a decrease of 30 per MC percentage point. As always, though, it depends on the type of wood being machined and the type of operation being performed.

Temperature change is not the only reason higher moisture content is associated with rapid tool wear. Moisture within wood isn’t just associated with water, but also with resins, sugars, oils, starches, alkaloids, and tannin present within the water. These substances react particularly well with high speed steel, and to a lesser degree with carbide.

Knots and Their Effect on CNC Woodworking

A knot is a portion of a branch or limb that has become incorporated in the trunk of a tree. The influence of knots on the mechanical properties of wood is due to the interruption of continuity and change in direction of wood fibers associated with it. These properties are lower in this portion of the wood because the fibers around the knot are distorted and lead to stress concentrations. “Checking” (cracking due to shrinking) often occurs around knots during drying. Hardness and strength perpendicular to the grain are exceptions to generally lower mechanical properties. Because of these last two exceptions, woodworking machining parameters should be reduced when encountering a knotted portion of the workpiece to avoid shock loading.

typical natural wood knot in hardwood
Figure 5: Photo of a typical knot

Successful Slotting With Miniature Cutting Tools

Whether your tool is a 1” diameter powerhouse rougher or a .032” precision end mill, slotting is one of the hardest operations on the tool. During slotting operations, a lot of force and pressure is placed on the entire cutting edge of the tool. This results in slower speeds and feeds and increased tool wear, making it one of the nastier processes even for the best cutting tools.

With miniature tooling (for the purposes of this blog, under 1/8” diameter) the game changes. The way we approach miniature tooling is completely different as it relates to slotting. In these instances, it is vitally important to select the correct tool for these operations. A few of the suggestions may surprise you if you are used to working with larger tooling, but rest assured, these are tried and tested recommendations which will dramatically increase your success rate in miniature slotting applications.

Use as Many Flutes as Possible

When running traditional slotting toolpaths, the biggest concern with the cutting tool is getting the best chip evacuation by using the proper flute count. Traditionally speaking, you want to use the fewest amount of flutes possible. In Aluminum/Non-Ferrous jobs, this is typically no more than 2/3 flutes, and in Steel/Ferrous applications, 4 flutes is recommended. The lower flute count leaves room for the chips to evacuate so you are not re-cutting chips and clogging the flutes on your tool in deep slots.

Achieve Increased Efficiency With Miniature Tooling – Utilize Harvey Tool’s Speeds & Feeds Charts Today

When slotting with miniature tools, the biggest concerns are with tool rigidity, deflection, and core strength. With micro-slotting we are not “slotting”, but rather we are “making a slot”. In traditional slotting, we may drive a ½” tool down 2xD into the part to make a full slot, and the tool can handle it! But this technique simply isn’t possible with a smaller tool.

graphic showing difference between core sizes on 3 flute and 5 flute slotting tools

For example, let’s take a .015” end mill. If we are making a slot that is .015” deep with that tool, we are likely going to take a .001” to .002” axial depth per pass. In this case, chips are no longer your problem since it is not a traditional slotting toolpath. Rigidity and core strength are now key, which means we need to add as many flutes as possible! Even in materials like Aluminum, 4 or 5 flutes will be a much better option at smaller diameters than traditional 2/3 flute tools. By choosing a tool with a higher flute count, some end users have seen their tool life increase upwards of 50 to 100 times over tools with lower flute counts and less rigidity and strength.

Use the Strongest Corner Possible When Slotting

Outside of making sure you have a strong core on your miniature tools while making a slot, you also need to take a hard look at your corner strength. Putting a corner radius on your tooling is a great step and does improve the corner strength of the tool considerably over a square profile tool. However, if we want the strongest tip geometry, using a ball nose end mill should also be considered.

A ball nose end mill will give you the strongest possible tip of the three most common profiles. The end geometry on the ball nose can almost work as a high feed end mill, allowing for faster feed rates on the light axial passes that are required for micro-slotting. The lead angle on the ball nose also allows for axial chip thinning, which will give you better tool life and allow you to decrease your cycle times.

.078" harvey tool ball nose end mill for slotting
A .078″ ball nose end mill was used for this miniature slotting operation

Finding the Right Tool for Miniature Slotting Operations

Precision and accuracy are paramount when it comes to miniature tooling, regardless of whether you are slotting, roughing, or even simply looking to make a hole in a part. With the guidelines above, it is also important to have a variety of tooling options available to cater to your specific slotting needs. Harvey Tool offers 5 flute end mills down to .015” in diameter, which are a great option for a stronger tool with a high flute count for slotting operations.

miniature .010" harvey tool end mill
Harvey Tool offers many miniature end mill options, like the .010″ long reach end mill above.

If you are looking to upgrade your corner strength, Harvey Tool also offers a wide selection of miniature end mills in corner radius and ball nose profiles, with dozens of reach, length of cut, and flute count options. Speeds and feeds information for all of these tools is also available, making your programming of these difficult toolpaths just a little bit easier.

speeds and feeds chart ad

Achieving Slotting Success: Summary

To wrap things up, there are three major items to focus on when it comes to miniature slotting: flute count, corner strength, and the depth of your axial passes.

It is vital to ensure you are using a corner radius or ball nose tool and putting as many flutes as you can on your tool when possible. This keeps the tool rigid and avoids deflection while providing superior core strength.

For your axial passes, take light passes with multiple stepdowns. Working your tool almost as a high feed end mill will make for a successful slotting operation, even at the most minuscule diameters.

How to Optimize Results While Machining With Miniature End Mills

 The machining industry generally considers micromachining and miniature end mills to be any end mill with a diameter under 1/8 of an inch. This is also often the point where tolerances must be held to a tighter window. Because the diameter of a tool is directly related to the strength of a tool, miniature end mills are considerably weaker than their larger counterparts, and therefore, lack of strength must be accounted for when micromachining. If you are using these tools in a repetitive application, then optimization of this process is key.

Size Comparison for Harvey Tool’s #13901 Square Miniature End Mill

Key Cutting Differences Between Conventional and Miniature End Mills

Runout

Runout during an operation has a much greater effect on miniature tools, as even a very small amount can have a large impact on the tool engagement and cutting forces. Runout causes the cutting forces to increase due to the uneven engagement of the flutes, prompting some flutes to wear faster than others in conventional tools, and breakage in miniature tools. Tool vibration also impacts the tool life, as the intermittent impacts can cause the tool to chip or, in the case of miniature tools, break. It is extremely important to check the runout of a setup before starting an operation. The example below demonstrates how much of a difference .001” of runout is between a .500” diameter tool and a .031” diameter tool.

chart comparing tool diameter for runout in micromachining with miniature end mills
The runout of an operation should not exceed 2% of the tool diameter. Excess runout will lead to a poor surface finish.

Chip Thickness

The ratio between the chip thickness and the edge radius (the edge prep) is much smaller for miniature tools. This phenomena is sometimes called “the size effect” and often leads to an error in the prediction of cutting forces. When the chip thickness-to-edge radius ratio is smaller, the cutter will be more or less ploughing the material rather than shearing it. This ploughing effect is essentially due to the negative rake angle created by the edge radius when cutting a chip with a small thickness.

If this thickness is less than a certain value (this value depends of the tool being used), the material will squeeze underneath the tool. Once the tool passes and there is no chip formation, part of the plowed material recovers elastically. This elastic recovery causes there to be higher cutting forces and friction due to the increased contact area between the tool and the workpiece. These two factors ultimately lead to a greater amount of tool wear and surface roughness.

chart of edge radius in relation to chip thickness for micromachining
Figure 1: (A) Miniature tool operation where the edge radius is greater than the chip thickness (B) Conventional operation where the edge radius is small than the chip thickness

Tool Deflection in Conventional vs. Micromachining Applications

Tool deflection has a much greater impact on the formation of chips and accuracy of the operation in micromachining operations, when compared to conventional operations. Cutting forces concentrated on the side of the tool cause it to bend in the direction opposite the feed. The magnitude of this deflection depends upon the rigidity of the tool and its distance extended from the spindle. Small diameter tools are inherently less stiff compared to larger diameter tools because they have much less material holding them in place during the operation. In theory, doubling the length sticking out of the holder will result in 8 times more deflection. Doubling the diameter of an end mill it will result in 16 times less deflection. If a miniature cutting tool breaks on the first pass, it is most likely due to the deflection force overcoming the strength of the carbide. Here are some ways you can minimize tool deflection.

Workpiece Homogeny

Workpiece homogeny becomes a questionable factor with decreasing tool diameter. This means that a material may not have uniform properties at an exceptionally small scale due to a number of factors, such as container surfaces, insoluble impurities, grain boundaries, and dislocations. This assumption is generally saved for tools that have a cutter diameter below .020”, as the cutting system needs to be extremely small in order for the homogeny of the microstructure of the material to be called into question.

Surface Finish

Micromachining may result in an increased amount of burrs and surface roughness when compared to conventional machining. In milling, burring increases as feed increases, and decreases as speed increases. During a machining operation, chips are created by the compression and shearing of the workpiece material along the primary shear zone. This shear zone can be seen in Figure 2 below. As stated before, the chip thickness-to-edge radius ratio is much higher in miniature applications. Therefore, plastic and elastic deformation zones are created during cutting and are located adjacent to the primary shear zone (Figure 2a). Consequently, when the cutting edge is close to the border of the workpiece, the elastic zone also reaches this border (Figure 2b). Plastic deformation spreads into this area as the cutting edge advances, and more plastic deformation forms at the border due to the connecting elastic deformation zones (Figure 2c). A permanent burr begins to form when the plastic deformation zones connect (Figure 2d) and are expanded once a chip cracks along the slip line (Figure 2e). When the chips finally break off from the edge of the workpiece, a burr is left behind (Figure 2f).

burr formation mechanism using a miniature end mill
Figure 2: Burr formation mechanism using a miniature end mill 

Tool Path Best Practices for Miniature End Mills

Because of the fragility of miniature tools, the tool path must be programmed in such a way as to avoid a sudden amount of cutting force, as well as permit the distribution of cutting forces along multiple axes. For these reasons, the following practices should be considered when writing a program for a miniature tool path:

Ramping Into a Part

Circular ramping is the best practice for moving down axially into a part, as it evenly distributes cutting forces along the x, y, and z planes. If you have to move into a part radially at a certain depth of cut, consider an arching tool path as this gradually loads cutting forces onto the tool instead of all at once.

Micromachining in Circular Paths

You should not use the same speeds and feed for a circular path as you would for a linear path. This is because of an effect called compounded angular velocity. Each tooth on a cutting tool has its own angular velocity when it is active in the spindle. When a circular tool path is used, another angular velocity component is added to the system and, therefore, the teeth on the outer portion of tool path are traveling at a substantially different speed than expected. The feed of the tool must be adjusted depending on whether it is an internal or external circular operation. To find out how to adjust your feed, check out this article on running in circles.

Slotting with a Miniature End Mill

Do not approach a miniature slot the same way as you would a larger slot. With a miniature slot, you want as many flutes on the tool as possible, as this increases the rigidity of the tool through a larger core. This decreases the possibility of the tool breaking due to deflection. Because there is less room for chips to evacuate with a higher number of flutes, the axial engagement must be decreased. With larger diameter tools you may be stepping down 50% – 100% of the tool diameter. But when using miniature end mills with a higher flute count, only step down between 5% – 15%, depending on the size of the diameter and risk of deflection. The feed rate should be increased to compensate for the decreased axial engagement. The feed can be increased even high when using a ball nose end mill as chip thinning occurs at these light depths of cut and begins to act like a high feed mill.

Slowing Down Your Feed Around Corners

Corners of a part create an additional amount of cutting forces as more of the tool becomes engaged with the part. For this reason it is beneficial to slow down your feed when machining around corners to gradually introduce the tool to these forces.

Climb Milling vs. Conventional Milling in Micromachining Applications

This is somewhat of a tricky question to answer when it comes to micromachining. Climb milling should be utilized whenever a quality surface finish is called for on the part print. This type of tool path ultimately leads to more predictable/lower cutting forces and therefore higher quality surface finish. In climb milling, the cutter engages the maximum chip thickness at the beginning of the cut, giving it a tendency to push away from the workpiece. This can potentially cause chatter issues if the setup does not have enough rigidity.  In conventional milling, as the cutter rotates back into the cut it pulls itself into the material and increases cutting forces. Conventional milling should be utilized for parts with long thin walls as well as delicate operations.

Combined Roughing and Finishing Operations

These operations should be considered when micromachining tall thin walled parts as in some cases there is not sufficient support for the part for a finishing pass.

Helpful Tips for Achieving Successful Micromachining Operations With Miniature End Mills

Try to minimize runout and deflection as much as possible when micromachining with miniature end mills. This can be achieved by using a shrink-fit or press-fit tool holder. Maximize the amount of shank contact with the collet while minimizing the amount of stick-out during an operation. Double check your print and make sure that you have the largest possible end mill because bigger tools mean less deflection.

  • Choose an appropriate depth of cut so that the chip thickness to edge radius ratio is not too small as this will cause a ploughing effect.
  • If possible, test the hardness of the workpiece before machining to confirm the mechanical properties of the material advertised by the vender. This gives the operator an idea of the quality of the material.
  • Use a coated tool if possible when working in ferrous materials due to the excess amount of heat that is generated when machining these types of metals. Tool coatings can increase tool life between 30%-200% and allows for higher speeds, which is key in micro-machining.
  • Consider using a support material to control the advent of burrs during a micromachining application. The support material is deposited on the workpiece surface to provide auxiliary support force as well as increase the stiffness of the original edge of the workpiece. During the operation, the support material burrs and is plastically deformed rather than the workpiece.
  • Use flood coolant to lower cutting forces and a greater surface finish.
  • Scrutinize the tool path that is to be applied as a few adjustments can go a long way in extending the life of a miniature tool.
  • Double-check tool geometry to make sure it is appropriate for the material you are machining. When available, use variable pitch and variable helix tools as this will reduce harmonics at the exceptionally high RPMs that miniature tools are typically run at.
variable pitch versus non-variable pitch
Figure 3: Variable pitch tool (yellow) vs. a non-variable pitch tool (black)

Titanium Machining Cost Savings With Helical Solutions

When the manufacturing team at Geospace Technologies was looking for better tool life and improved performance on a Titanium CNC milling job, they turned to Harvey Performance Company and local Application Engineer Mike Kanigowski to dial in some Helical Solutions End Mills. With Mike’s help, Geospace Technologies, led by Lead Mill Programmer Tranquilino Sosa, achieved massive success and extensive titanium machining cost savings, which led them to completely shift their tooling repertoire to Helical’s high-performance end mills in their shop.

Struggling With Tool Life

Prior to switching to Helical, Geospace Technologies was experiencing trouble with tool life on a job that required both roughing and finishing toolpaths on a Titanium (Ti-6AL-4V) part. For their roughing pass, Geospace was using a competitor’s 4 flute, 3/8” diameter end mill with a 30° helix angle and TiALN coating. In traditional roughing toolpaths, this tool was running at 1,750 RPM with a 10 IPM feed rate. The tool would take four step downs, three with an axial depth of cut of .200”, and a final pass at .100” for a total depth of .700”.

When finishing, the team used a 1/2” version of the same competitor tool, running at 900 RPM with an 8 IPM feed rate. This would take two passes, one at .400” deep and the last down to the bottom of the part at .700”.

geospace technologies fadal VMC 4020

With this strategy and tooling, the team was creating high-quality parts at a cycle time of 15 minutes and 22 seconds per part, but were only seeing the roughing tool last for 60 parts on average, and the finishing tool for around 120 parts. This was causing tool costs to be higher than they would like, and costing the team precious time with frequent tool changes.

Sosa had seen some of the success that other shops were having with Titanium milling using Helical Solutions end mills, and so they reached out to Kanigowski to see how Helical could help them lower their cost per part while achieving an even better finish.

HVTI-6 Ad

Dialing in Tool Selection

When Mike got in touch with the team at Geospace, he knew there were some immediate benefits to changing the toolpaths used in this job. Using their ESPRIT software, the team was able to dial in a new program using high efficiency milling (HEM) toolpaths through ESPRIT’s “Profit Milling” technology.

With HEM toolpaths in place, Geospace was going to need new high performance tools to take full advantage of the programming adjustments. After much testing and evaluating several options from Helical’s extensive line of end mills for Titanium, Geospace settled on two solid tools.

Helical offers many different options for Titanium milling in HEM toolpaths. During testing, the team at Geospace decided on Helical EDP 59424, a 3/8” diameter, 7 flute, corner radius end mill. This tool features variable pitch geometry and offset chipbreakers for optimal chip evacuation, reduced harmonics, and minimized tool pressure, as well as Helical’s Aplus coating for high temperature resistance, decreased wear, and improved tool life.

7 flute chipbreaker
7 Flute Chipbeaker Tools Fresh Off the Grinder

When looking at the finishing toolpath, Geospace decided on Helical EDP 82566, a 3/8”, 6 flute, square end mill from Helical’s well known HEV-6 product line. This tool featured a variable pitch design to help mitigate chatter and leave a superior finish. While Helical also offers several tools for finishing toolpaths in Titanium, during testing this tool provided Geospace with the best finish for their specific part geometry.

Achieve Impressive Efficiency in Titanium Machining Operations With Helical Solutions’ HVTI-6 Cutter

Experiencing the “Helical Difference”

With the new tools in place, Sosa’s team reached out to Helical for help dialing in speeds and feeds. The Helical tech team was able to get them set up on Machining Advisor Pro, an advanced speeds and feeds calculator developed by the experts behind Helical Solutions tooling. With this “miracle worker” application in their arsenal, the team was able to easily dial in their new tools for their specific material grade, depth of cut, and machine setup.  

The team saw immediate positive results and cost-savings on this job. They were able to increase their roughing toolpaths to 4,500 RPM and 157 IPM. The finishing path remained largely the same, but resulted in a much improved final part. In total, cycle time dropped from 15 minutes and 22 seconds per part to 12 minutes and 17 seconds per part, which was great, but the improvement in tool life was where Sosa was most impressed.

Geospace technologies employee inspecting titanium end mills

With the new Helical end mill in the shop, Geospace was able to run both tools for 580 parts with very minimal wear on the tool. This was a nearly 1000% improvement in tool life for their roughing passes and a 483% improvement in tool life for the finishing operation. In total, one roughing tool was able to last more than 42 hours in the cut before needing to be replaced.

Eliminating the need for a tool change every 60 parts was also a significant time-saver. Constant tool changes were causing serious machine downtime, which was eliminated with the longer tool life experienced with the Helical end mills. What seems like a minor inconvenience will truly add up to dozens of hours in saved time over the course of a few months for Sosa’s team.

titanium machining tool wear
A Closeup of the 7 Flute Chipbreaker After 42 Hours In The Cut

Geospace was thrilled with the results they saw on this Titanium job, as they had never experienced long tool life in Titanium with any other competitor brand. Sosa and his team are excited to continue using Helical Solutions product across all of their other jobs going forward and to continue working with Kanigowski and the Helical tech team on dialing in tool selection and speeds and feeds on future projects.

Please see below for a head-to-head breakdown of the Helical end mills’ performance in terms of total costs and productivity gained versus that of the competitor. These numbers are measured per 1,000 parts, taking into account tooling costs, tool change time, labor costs, running parameters, and cycle times.


titanium machining cost savings

Chipbreaker Tooling: Not Just for Roughing

When many people think about solid carbide tools with chip breakers, they are usually tooling up for a roughing application. While the chipbreaker tool is a great choice for such applications, it can be utilized in a number of other areas too. In this post, we’ll examine many other benefits of the chip breaker style of tooling.

High Efficiency Milling (HEM)

High Efficiency Milling (HEM) uses CAM software to program advanced toolpaths that reduce cutting forces. These tool paths employ smaller end mills with a higher number of flutes (for a stronger core) running at higher speeds and feeds. This strategy includes a light radial depth of cut (RDOC), high axial depth of cut (ADOC), and a controlled angle of engagement.

Helical’s chipbreaking tools include serrated indents along the edge of flute for the entire length of cut. Because HEM utilizes heavy axial depths of cuts, these tools are able to break long chips into smaller ones. In addition to improving chip control and reducing cutting resistance, chipbreaker tools also help in decreasing heat load within the chips. This delays tool wear along the cutting edge and improves cutting performance. 

chipbreaker in spindle

Check out this testimony from a Helical Solutions customer:

“We were able to get going with the 7 flute tools with the chipbreaker. I have to say the difference was INCREDIBLE! We can now rough the entire part with one tool. Also, the operator doesn’t have to open the door to clear chips hardly at all. We were able to rough and finish a 4.15 dia. bore 2 inches deep through the part without having to clear chips at all. Before we had to clear the chips out at least 15-20 times. Many thanks for your support.”

Explore Helical Solutions’ Chipbreaker Roughers Today

Slotting

When slotting, a major concern is chip control. A large buildup of chips can cause the recutting of chips, which adds a lot of heat back into the tool. Chip buildup can also cause a heavy amount of chattering. Both of these conditions are detrimental to tool life. A chip breaking tool can help reduce chip build-up when slotting which will extend tool life. Remember when slotting that 4 flute tools should be utilized in steel. For aluminum and other non- ferrous materials, a 3 flute tool is best.

3 flute chipbreaker
Helical Solutions 3-Flute Chipbreakers

Trochoidal Slotting

Trochoidal slotting is a form of slotting that uses HEM techniques to form a slot. Trochoidal milling implements a series of circular cuts to create a slot wider than the cutting tool’s cutting diameter. Using the logic listed in the earlier paragraphs of this article, a chipbreaker should be used when performing this operation.

Advantages of Trochoidal Slotting:

Decreased cutting forces

Reduced heat

Greater machining accuracy

Improved tool life

Faster cycle times

One tool for multiple slot sizes

chipbreaker rougher ad

Finishing

A little known fact about Helical’s chipbreaker style tool is that the chip breakers are offset flute to flute, which allows for a quality finish on the walls of the part. When utilizing light depths of cuts, high-quality finishes can be achieved.

Hardenability of Steel

Many types of steel have a beneficial response to a method of heat treatment known as quenching. One of the most important criteria in the selection process of a workpiece material is hardenability. Hardenability describes how deep a metal can be hardened upon quenching from high temperature, and can also be referred to as the depth of hardening.

Steel At Microscopic Scale:

The first level of classification of steels at a microscopic level is their crystal structure, the way in which atoms are arranged in space. Body-Centered Cubic (BCC) and Face Centered Cubic (FCC) configurations are examples of metallic crystal structures. Examples of BCC and FCC crystal structures can be seen below in Figure 1. Keep in mind that the images in Figure 1 are meant to display atomic position and that the distance between the atoms is exaggerated.

depiction of BBC and FCC crystal structures in steel
Figure 1: Example of a BCC crystal structure (left) and FCC crystal structure (right)

The next level of classification is a phase. A phase is a uniform portion of a material that has the same physical and chemical properties. Steel has 3 different phases:

  1. Austenite: Face-Centered cubic iron; also iron and steel alloys that have the FCC crystal structure.
  2. Ferrite: Body-centered cubic iron and steel alloys that have a BCC crystal structure.
  3. Cementite: Iron carbide (Fe3C)

The final level of classification discussed in this article is the microstructure. The three phases seen above can be combined to form different microstructures of steel. Examples of these microstructures and their general mechanical properties are shown below:

  • Martensite: the hardest and strongest microstructure, yet the most brittle
  • Pearlite: Hard, strong, and ductile but not particularly tough
  • Bainite: has desirable strength-ductility combination, harder than pearlite but not as hard as martensite

Hardening at Microscopic Scale:

The hardenability of steel is a function of the carbon content of the material, other alloying elements, and the grain size of the austenite. Austenite is a gamma phase iron and at high temperatures its atomic structure undergoes a transition from a BCC configuration to an FCC configuration.

High hardenability refers to the ability of the alloy to produce a high martensite percentage throughout the body of the material upon quenching. Hardened steels are created by rapidly quenching the material from a high temperature. This involves a rapid transition from a state of 100% austenite to a high percentage of martensite. If the steel is more than 0.15% carbon, the martensite becomes a highly strained body-centered cubic form and is supersaturated with carbon. The carbon effectively shuts down most slip planes within the microstructure, creating a very hard and brittle material. If the quenching rate is not fast enough, carbon will diffuse out of the austenitic phase. The steel then becomes pearlite, bainite, or if kept hot long enough, ferrite. None of the microstructures just stated have the same strength as martensite after tempering and are generally seen as unfavorable for most applications.

The successful heat treatment of a steel depends on three factors:

  1. The size and shape of the specimen
  2. The composition of the steel
  3. The method of quenching

1. The size and shape of the specimen

During the quenching process, heat must be transferred to the surface of the specimen before it can be dissipated into the quenching medium. Consequently, the rate at which the interior of the specimen cools is dependent on its surface area to volume ratio. The larger the ratio, the more rapid the specimen will cool and therefore the deeper the hardening effect. For example, a 3-inch cylindrical bar with a 1-inch diameter will have a higher hardenability than a 3-inch bar with a 1.5-inch diameter. Because of this effect, parts with more corners and edges are more amendable to hardening by quenching than regular and rounded shapes. Figure 2 is a sample time-temperature transformation (TTT) diagram of the cooling curves of an oil-quenched 95 mm bar. The surface will transform into 100% martensite while the core will contain some bainite and thus have a lower hardness.

graph of sample time temperature transformation
Figure 2: Sample time temperature transformation (TTT) diagram also known as an isothermal transformation diagram

2.  The composition of the steel

It’s important to remember that different alloys of steel contain different elemental compositions. The ratio of these elements relative to the amount of iron within the steel yield a wide variety of mechanical properties. Increasing the carbon content makes steel harder and stronger but less ductile. The predominant alloying element of stainless steels in chromium, which gives the metal its strong resistance to corrosion. Since humans have been tinkering with the composition of steel for over a millennium, the number of combinations is endless.

Because there are so many combinations that yield so many different mechanical properties, standardized tests are used to help categorize different types of steel. A common test for hardenability is the Jominy Test, shown in Figure 3 below. During this test a standard block of material is heated until it is 100% austenite. The block is then quickly moved to an apparatus where it is water quenched. The surface, or the area in contact with the water, is immediately cooled and the rate of cooling drops as a function of distance from the surface. A flat is then ground onto the block along the length of the sample. The hardness at various points is measured along this flat. This data is then plotted in a hardenability chart with hardness as the y-axis and distance as the x-axis.

diagram of Jominy end quench specimen for hardened steel
Figure 3: Diagram of a Jominy end quench specimen mounted during quenching (left) and post hardness testing (right)

Hardenability curves are constructed from the results of Jominy Tests. Examples of a few steel alloy curves are shown in Figure 4. With a diminishing cooling rate (steeper drop in hardness over a short distance), more time is allowed for carbon diffusion and the formation of a greater proportion of softer pearlite. This means less martensite and a lower hardenability. A material that retains higher hardness values over relatively long distances is considered highly hardenable. Also, the greater the difference in hardness between the two ends, the lower the hardenability. It is typical of hardenability curves that as the distance from the quenched end increases, the cooling rate decreases. 1040 steel initially has the same hardness as both 4140 and 4340 but cools extremely quickly over the length of the sample. 4140 and 4340 steel cool at a more gradual rate and therefore have a higher hardenability. 4340 has a less extreme rate of coolness relative to 4140 and thus has the highest hardenability of the trio.

chart of hardenability for 4140, 1040, and 4340 steel
Figure 4: Hardenability charts for 4140, 1040 and 4340 steels

Hardenability curves are dependent on carbon content. A greater percentage of carbon present in steel will increase its hardness. It should be noted that all three alloys in Figure 4 contain the same amount of carbon (0.40% C).  Carbon is not the only alloying element that can have an effect on hardenability. The disparity in hardenability behavior between these three steels can be explained in terms of their alloying elements. Table 1 below shows a comparison of the alloying content in each of the steels. 1040 is a plain carbon steel and therefore has the lowest hardenability as there are no other elements besides iron to block the carbon atoms from escaping the matrix. The nickel added to 4340 allows for a slightly greater amount of martensite to form compared to 4140, giving it the highest hardenability of these three alloys. Most metallic alloying elements slow down the formation of pearlite, ferrite and bainite, therefore they increase a steel’s hardenability.

Table 1: Shows the alloying contents of 4340, 4140, and 1040 steel

Type of Steel: Nickel (wt %): Molybdenum (wt %): Chromium (wt %):
4340 1.85% 0.25% 0.80%
4140 0.00% 0.20% 1.00%
1040 0.00% 0.00% 0.00%

There can be a variation in hardenability within one material group. During the industrial production of steel, there are always slight unavoidable variations in the elemental composition and average grain size from one batch to another. Most of the time a material’s hardenability is represented by maximum and minimum curves set as limits.

Hardenability also increases with increasing austenitic grain size. A grain is an individual crystal in a polycrystalline metal. Think of a stained glass window (like the one seen below), the colored glass would be the grains while the soldering material holding it altogether would be the grain boundaries. Austenite, ferrite, and cementite are all different types of grains that make up the different microstructures of steel. It is at the grain boundaries that the pearlite and bainite will form. This is detrimental to the hardening process as martensite is the desired microstructure, the other types get in the way of its growth. Martensite forms from the rapid cooling of austenite grains and its transformation process is still not well understood. With increasing grain size, there are more austenite grains and fewer grain boundaries. Therefore, there are fewer opportunities for microstructures like pearlite and bainite to form and more opportunities for martensite to form.

colorful glass representing austenite
Figure 5: The colorful glass pieces represent grains of austenite which transforms into the desirable martensite upon quenching. The black portions in between the color portions represent grain boundaries. Sites where pearlite or bainite will form upon quenching.

3. The method of quenching

As previously stated, the type of quench affects the cooling rate. Using oil, water, aqueous polymer quenchants, or air will yield a different hardness through the interior of the workpiece. This also shifts the hardenability curves. Water produces the most severe quench followed by oil and then air. Aqueous polymer quenchants provide quenching rates between those of water and oil and can be tailored to specific applications by changing the polymer concentration and temperature. The degree of agitation also affects the rate of heat removal. The faster the quenching medium moves across the specimen, the greater the quenching effectiveness. Oil quenches are generally used when a water quench may be too severe for a type of steel as it may crack or warp upon treatment.

metalworker quenching casts in an oil bath
Figure 6: Metalworker quenching casts in an oil bath

Machining Hardened Steels

The type of cutter that should be chosen for processing tools chosen for machining a workpiece after hardening depends on a few different variables. Not counting the geometric requirements specific to the application, two of the most important variables are the material hardness and its hardenability. Some relatively high-stress applications require a minimum of 80% martensite to be produced throughout the interior of the workpiece. Usually, moderately stressed parts only require about 50% martensite throughout the workpiece. When machining a quenched metal with very low hardenability a standard coated solid carbide tool may work without a problem. This is because the hardest portion of the workpiece is limited to its surface. When machining a steel with a high hardenability it is recommended that you use a cutter with specialized geometry that is for that specific application. High hardenability will result in a workpiece that is hard throughout its entire volume. Harvey Tool has a number of different cutters for hardened steel throughout the catalog, including drills, end mills, keyseat cutters, and engravers.

Shop Harvey Tool’s Offering of Fully Stocked End Mills for Hardened Steels

Hardened Steel, Summarized

Hardenability is a measure of the depth to which a ferrous alloy may be hardened by the formation of martensite throughout its entire volume, surface to core. It is an important material property you must consider when choosing a steel as well as cutting tools for a particular application. The hardening of any steel depends on the size and shape of the part, the molecular composition of the steel, and the type of quenching method used.

Grappling With Graphite: A Machining Guide

Despite being a softer material, graphite is actually one of the most difficult materials to machine. There are many considerations machinists need to make in terms of tooling, coolant use, and personal safety when it comes to machining these parts. This “In The Loupe” post will examine the material properties, key machining techniques to consider, and tips for properly selecting cutting tools to achieve success in this tricky material.

What is Graphite?

While graphite is an allotrope of carbon, the two terms are not simply interchangeable. Carbon is an element that can form into several different allotropes including graphite, diamond, and fullerite. Graphite happens to be the most stable form of carbon, and is the most common, as carbon naturally occurs as graphite under standard conditions.

Graphite is most recognized for its superior conductivity and resistance to high heat and corrosion. This makes it a common material in high heat, high-pressure situations in the aerospace, electrode, nuclear, energy, and military industries.

graphite cnc material

Even though graphite can handle intense high-pressure situations with ease, it is actually a very soft, abrasive, and brittle material. This can cause serious challenges when machining, as graphite can eat up cutting tools, and severely minimize a tool’s usable life. However, with the proper tooling and techniques, there are ways to optimize graphite machining to be more cost-effective than the competition.

Graphite Machining Techniques

Since graphite is such a soft and brittle material, special consideration needs to be made when machining to avoid chipping it. To get a good cut, it is recommended that you take light chip loads and use lower feed rates in graphite. If you were to take a heavy cut at a fast feed rate, you would start chipping the graphite and could cause it to fracture completely. To give a comparison point, chip loads for graphite are similar to those for Aluminum materials, but with less than half the feed rate.

To give you an idea of speeds and feeds for graphite, here is an example using a 1/4″ Harvey Tool CVD Diamond Coated, 4 flute Square End Mill. If that tool was running at a standard RPM of 12,000 at 780 SFM, the recommended chip load would be .00292 for a feed rate of 140 IPM.

electrode machining

In terms of machine setup, the one major tip to remember is to always avoid using coolant. Graphite is a fairly porous material, and so it can absorb coolant and act as a “coolant sponge,” which will cause problems with finished parts. Inside the machine and on the tooling, the coolant can actually react with the graphite dust and create an abrasive slurry, which will cause problems while machining. A vacuum system is recommended for clearing material while machining graphite. Otherwise, coated tools should be able to run dry.

Another thing to note when machining graphite is that because graphite does not produce chips, but rather a cloud of very abrasive dust, it can be harmful to operators and machines without proper care. Operators should be wearing a protective mask to avoid inhaling the graphite dust. Proper ventilation and maintaining air quality in the shop is also key for the protection of machinists when working in graphite.

Since the graphite dust is also extremely conductive, it can easily damage non-protective circuits inside your CNC machine, which can cause major electrical issues. While coolant is not recommended, a vacuum system can help to remove the dust, keeping it from accumulating too much inside the machine and preventing serious problems.

Increase Your Graphite Machining Efficiency – Tap Into Harvey Tool’s Speeds and Feeds Charts Today

Cutting Tools for Graphite Machining

As previously mentioned, graphite is a notorious cutting tool-killer due to its extremely abrasive nature. Even the highest quality carbide end mills, if left uncoated, will wear quickly on most jobs. This extreme wear may force a tool change during an operation, which could lead to an imperfection in the part when trying to restart the operation where the worn tool left off.

graphite cutting tools

When selecting a cutting tool for graphite machining, the coating and cutting edge is the most important consideration. Flute count, helix angles, and other key features of the tool geometry ultimately come second to the coating when purchasing tooling.

For graphite machining, a CVD (Chemical Vapor Deposition) diamond coating is recommended whenever possible to maximize tool life and tool performance. These coatings are grown directly into the carbide end mill, improving the hardness and leaving the tool with a coating layer that is 5 times thicker than a PVD Diamond Coating. While not the sharpest edge, the CVD diamond coating provides much longer tool life than other diamond coatings due to the thicker diamond layer.

Even though initial tooling costs may be higher with CVD coated tools versus uncoated tools, since CVD coated tools see considerably longer tool life than uncoated tools, this makes the cost per part shrink significantly. In difficult, abrasive materials like graphite, the uncoated carbide tool will last a short time before the abrasiveness of the graphite completely wears down the cutting edge. Having a CVD coated tool will give you a leg up over the competition, keep your machine running with less downtime for tool changes, and ultimately deliver substantial cost savings.

end mills for graphite
CVD Diamond Coated End Mill from Harvey Tool

Overall, graphite can be a difficult material to machine, but with the right cutting tools and proper speeds and feeds you will be making quality parts in no time. Harvey Tool offers a wide selection of CVD coated end mills in various diameters, reaches, and lengths of cut to ensure you have what you need for any job that comes your way.

Selecting the Right Chamfer Cutter Tip Geometry

A chamfer cutter, or a chamfer mill, can be found at any machine shop, assembly floor, or hobbyist’s garage. These cutters are simple tools that are used for chamfering or beveling any part in a wide variety of materials. There are many reasons to chamfer a part, ranging from fluid flow and safety, to part aesthetics.

Due to the diversity of needs, tooling manufacturers offer many different angles and sizes of chamfer cutters, and as well as different types of chamfer cutter tip geometries. Harvey Tool, for instance, offers 21 different angles per side, ranging from 15° to 80°, flute counts of 2 to 6, and shank diameters starting at 1/8” up to 1 inch.

After finding a tool with the exact angle they’re looking for, a customer may have to choose a certain chamfer cutter tip that would best suit their operation. Common types of chamfer cutter tips include pointed, flat end, and end cutting. The following three types of chamfer cutter tip styles, offered by Harvey Tool, each serve a unique purpose.

Harvey Tool Chamfer Cutters

Pointed and Flat End Chamfer Cutters

Three Types of Harvey Tool Chamfer Cutters

Type I: Pointed

This style of chamfer cutter is the only Harvey Tool option that comes to a sharp point. The pointed tip allows the cutter to perform in smaller grooves, slots, and holes, relative to the other two types. This style also allows for easier programming and touch-offs, since the point can be easily located. It’s due to its tip that this version of the cutter has the longest length of cut (with the tool coming to a finished point), compared to the flat end of the other types of chamfer cutters. With only a 2 flute option, this is the most straightforward version of a chamfer cutter offered by Harvey Tool.

Type I Chamfer Cutter overview

Type II: Flat End, Non-End Cutting

Type II chamfer cutters are very similar to the type I style, but feature an end that’s ground down to a flat, non-cutting tip. This flat “tip” removes the pointed part of the chamfer, which is the weakest part of the tool. Due to this change in tool geometry, this tool is given an additional measurement for how much longer the tool would be if it came to a point. This measurement is known as “distance to theoretical sharp corner,” which helps with the programming of the tool. The advantage of the flat end of the cutter now allows for multiple flutes to exist on the tapered profile of the chamfer cutter. With more flutes, this chamfer has improved tool life and finish. The flat, non-end cutting tip flat does limit its use in narrow slots, but another advantage is a lower profile angle with better angular velocity at the tip.

Type II Chamfer Cutter overview

Type III: Flat End, End Cutting

Type III chamfer cutters are an improved and more advanced version of the type II style. The type III boasts a flat end tip with 2 flutes meeting at the center, creating a center cutting-capable version of the type II cutter. The center cutting geometry of this cutter makes it possible to cut with its flat tip. This cutting allows the chamfer cutter to lightly cut into the top of a part to the bottom of it, rather than leave material behind when cutting a chamfer. There are many situations where blending of a tapered wall and floor is needed, and this is where these chamfer cutters shine. The tip diameter is also held to a tight tolerance, which significantly helps with programing it.

Type III Chamfer Cutter overview

In conclusion, there could be many suitable cutters for a single job, and there are many questions you must ask prior to picking your ideal tool. Choosing the right angle comes down to making sure that the angle on the chamfer cutter matches the angle on the part. One needs to be cautious of how the angles are called out, as well. Is the angle an “included angle” or “angle per side?” Is the angle called off of the vertical or horizontal? Next, the larger the shank diameter, the stronger the chamfer and the longer the length of cut, but now, interference with walls or fixtures need to be considered. Flute count comes down to material and finish. Softer materials tend to want less flutes for better chip evacuation, while more flutes will help with finish. After addressing each of these considerations, the correct style of chamfer for your job should be abundantly clear.

Drill / End Mills: Drill Style vs. Mill Style

Drill / End Mills are one of the most versatile tools in a machinist’s arsenal. These tools can perform a number of different operations, freeing space on your carousel and improving cycle times by limiting the need for tool changes. These operations include:

  1. Drilling
  2. V-Grooving
  3. Milling
  4. Spot Drilling
  5. Chamfering

Shop Harvey Tool Dill/End Mills Today – Fully Stocked in Multiple Styles

The ability of the Drill / End Mill to cut along the angled tip as well as the outer diameter gives it the range of operations seen above and makes it an excellent multi-functional tool.

drill mill operations

Drill Style vs. Mill Style

The main difference between Drill / End Mill styles is the point geometry.  They are defined by how the flutes are designed on the end of the tool, using geometry typically seen on either an end mill or a drill.  While mill style tools follow the features of an end mill or chamfer mill, the drill style geometry uses an S-gash at the tip.  This lends strength to the tip of the tool, while giving it the ability to efficiently and accurately penetrate material axially.  While both styles are capable of OD milling, mill style tools will be better for chamfering operations, while drill style will excel in drilling.  The additional option of the Harvey Tool spiral tipped Drill / End Mill is an unprecedented design in the industry.  This tool combines end geometry taken from our helical flute chamfer cutters with a variable helix on the OD for enhanced performance. Versatility without sacrificing finish and optimal performance is the result.

drill mills
Left to Right: 2 Flute Drill Style End, 2 Flute Mill Style End, 4 Flute Mill Style End

Drill Mills: Tool Offering

Harvey Tool currently offers Drill / End Mills in a variety of styles that can perform in different combinations of machining applications:

Mill Style – 2 Flute

This tool is designed for chamfering, milling, drilling non-ferrous materials, and light duty spotting. Drilling and spotting operations are recommended only for tools with an included angle greater than 60°. This is a general rule for all drill mills with a 60° point. Harvey Tool stocks five different angles of 2 flute mill-style Drill / End Mills, which include 60°, 82°, 90°, 100° and 120°. They are offered with an AlTiN coating on all sizes as well as a TiB2 coating for cutting aluminum with a 60° and 90° angle.

drill mill

Mill Style – 4 Flute

4 flute mill-style Drill / End Mills have two flutes that come to center and two flutes that are cut back. This Drill / End Mill is designed for the same operations as the 2 flute style, but has a larger core in addition the higher flute count. The larger core gives the tool more strength and allows it to machine a harder range of materials. The additional flutes create more points of contact when machining, leading to better surface finish. AlTiN coating is offered on all 5 available angles (60°, 82°, 90°, 100°, and 120°) of this tool for great performance in a wide array of ferrous materials.

drill mill

Drill Style – 2 Flute

This tool is specifically designed for the combination of milling, drilling, spotting and light duty chamfering applications in ferrous and non-ferrous materials. This line is offered with a 90°, 120°, and 140° included angle as well as AlTiN coating.

drill mills drill style

Helical Tip – 4 Flute

The Helically Tipped Drill / End Mill offers superior performance in chamfering, milling and light duty spotting operations. The spiral tip design allows for exceptional chip evacuation and surface finish. This combined with an OD variable helix design to reduce chatter and harmonics makes this a valuable tool in any machine shop. It is offered in 60°, 90°, and 120° included angles and comes standard with the latest generation AlTiN Nano coating that offers superior hardness and heat resistance.