Why Flute Count Matters

One of the most important considerations when choosing an end mill is determining which flute count is best for the job at hand. Both material and application play an important role in this critical part of the tool selection process. Understanding the effects of flute count on other tool properties, and how a tool will behave in different situations is an essential consideration in the tool selection process.

Machining Advisor Pro (MAP) Takes Flute Count Into Consideration When Helping You Dial In Running Parameters.

Click Here to Get Started.

Tool Geometry Basics

Generally, tools with more flutes have a larger core and smaller flute valleys than tools with fewer flutes.  More flutes with a larger core can provide both benefits and restrictions depending on the application.  Simply put, a larger core is directly proportional to tool strength; the larger the core, the stronger a tool will be.  In turn, a larger core also reduces the flute depth of a tool, restricting the amount of space for chips to exist.  This can cause issues with chip packing in applications requiring heavy material removal.  However, these considerations only lead us part way when making a decision on which tool to use, and when.

flute count core

Material Considerations

Traditionally, end mills came in either a 2 flute or 4 flute option.  The widely accepted rule of thumb was to use 2 flutes for machining aluminum and non-ferrous materials, and 4 flutes for machining steel and harder alloys.  As aluminum and non-ferrous alloys are typically much softer than steels, a tool’s strength is less of a concern, a tool can be fed faster, and larger material removal rates (MRR) is facilitated by the large flute valleys of 2 flute tools.  Ferrous materials are typically much harder, and require the strength of a larger core.  Feed rates are slower, resulting in smaller chips, and allowing for the smaller flute valleys of a larger core tool.  This also allows for more flutes to fit on the tool, which in turn increases productivity.

end mill flute count

Recently, with more advanced machines and toolpaths, higher flute count tools have become the norm in manufacturing.  Non-ferrous tooling has become largely centered on 3 flute tools, allowing greater productivity while still allowing proper chip evacuation.  Ferrous tooling has taken a step further and progressed not only to 5 and 6 flutes, but up to 7 flutes and more in some cases.  With a wider range of hardness, sometimes at the very top of the Rockwell hardness scale, many more flutes have allowed longer tool life, less tool wear, stronger tools, and less deflection.  All of this results in more specialized tools for more specific materials.  The end result is higher MRR and increased productivity.

Running Parameters

Just as material considerations will have an impact on the tool you choose, operation type and depth of cut requirements may also have a big impact on the ideal number of flutes for your application.  In roughing applications, lower flute counts may be desirable to evacuate large amounts of chips faster with larger flute valleys.  That said, there is a balance to find, as modern toolpaths such as High Efficiency Milling (HEM) can achieve extreme MRR with a very small step over, and a higher number of flutes.  In a more traditional sense, higher flute counts are great for finishing operations where very small amounts of material are being removed, and greater finish can be achieved with more flutes, not worrying as much about chip evacuation.

flute count

Flute count plays a big role in speeds and feeds calculation as well.  One common rule of thumb is “more flutes, more feed,” but this can be a very detrimental misconception.  Although true in some cases, this is not an infinitely scalable principle.  As stated previously, increasing the number of flutes on a tool limits the size that the flute valleys can be.  While adding a 5th flute to a 4 flute tool theoretically gives you 25% more material removal per revolution with an appropriately increased feed rate, feeding the tool that much faster may overload the tool.  The 25% increase in material removal is more likely closer to 10-15%, given the tool is exactly the same in all other specifications.  Higher flute count tools may require speeds and feeds to be backed off so much in some cases, that a lower flute count may be even more efficient.  Finding the right balance is key in modern milling practices.

The Multiple Uses of a Chamfer Mill

A chamfer mill, or a chamfer cutter, is one of the most common tools used by machinists daily. When creating a part, machining operations can oftentimes leave a sharp edge on a workpiece. A chamfer mill eliminates sharp edges, leaving a sloped surface, or a chamfer, instead. In doing so, the part will be stronger and more aesthetically appealing to its eventual user.

This singular tool can provide many cost-saving benefits to machinists. Aside from the namesake operation it performs on a part, a chamfer mill can be used for several machining operations including beveling, deburring, countersinking, and spotting.

Chamfer Mill for Beveling

The terms “chamfer” and “bevel” are often used interchangeably. These two features, while similar, actually have two different definitions. While a chamfer impacts a portion of the side of a workpiece – specifically the edge of a part, a bevel angles the entire side of what was a squared-off part feature. Thus, the side of a part can feature two chamfers, or only one bevel (Figure 1).

chamfer cutting vs beveling

A chamfer mill, however, can perform both operations. The two features are equivalent in both geometry, and how they are machined.  A chamfer mill will create both part features in the exact same fashion; a bevel just may use a larger portion of the cutting surface, or may require multiple passes to create a large part feature.

Chamfer Mill for Deburring

Like many other versatile tools, a chamfer mill can be used to easily and swiftly deburr a part during the CNC machining process. In doing so, efficiency is maintained as manual deburring – a time exhaustive process – isn’t necessary.

A chamfer mill’s angled cutting surface makes it a great tool for deburring workpiece edges.  Because a very small amount of the chamfer cutter’s cutting face will be used, a simple adjustment to running parameters will allow for simple deburring operations using a very light cut depth.

chamfer mill

Chamfer Mill for Spotting & Countersinking

Drilling precise, clean, and aesthetically appealing holes into a part is not a one-step process. In fact, some use up to four different tools to machine a perfect hole: spotting drill, drill, flat bottom counterbore, and countersink. However, a chamfer cutter is often used to perform two of these operations simultaneously.

By using a pointed chamfer cutter with a diameter larger than that of the hole being drilled, a machinist can spot and countersink the hole in one operation prior to its creation. Tipped-off Chamfer  Cutters are unable to perform a spotting operation because they are non-center cutting. By spotting a hole, the drill has a clear starting point. This works to alleviate walking during the drilling process, which in turn drastically reduces the chance of misaligned holes. By countersinking a hole, the screw sits flush with the part, which is often a requirement for many parts in the aerospace industry.

One consideration to keep in mind is that a carbide spot drill should always have an angle larger than that of the drill following it. However, many countersinks have angles that are smaller than most drill points.  This creates a dilemma in choosing a chamfer tool for both spotting and countersinking, as they can reduce the number of tools needed, but do not see the full benefit of a spot drill with a proper angle.

Key Takeaways

A chamfer mill, also known as a chamfer cutter, is a tool that can perform several machining operations including chamfering, beveling, deburring, spotting, and countersinking. Due to this versatility, chamfer mills are an essential part of every machinist’s arsenal.  All that’s needed to run them is these various operations is a slight change to running parameters and depth of cut.

Undercutting End Mills: Well-Rounded Tools That Offer Maximum Versatility

Undercutting end mills, also known as lollipop cutters or spherical ball end mills, are a common choice for machining undercuts. An undercut is a common part feature characterized by one part of a workpiece “hanging” over another. Undercuts are typically difficult, or even impossible, to machine with a standard tool, especially on 3-axis machines. In many cases, a specialty tool is needed to tackle this feature. Although they are frequently associated with a singular use, undercutters are actually very versatile tools that are worth keeping on hand for a variety of operations.

Undercutting

undercutting end mill machinings

Unsurprisingly, these tools are very well suited to undercutting operations. Creating an undercut on a part can be tricky and time consuming, especially when forced to rotate the workpiece. Fortunately, this can be greatly simplified with an undercutter.

Exactly what tool to use depends on the geometry of the feature and the part. These tools are available with a range of wrap angles like 220°, 270°, and 300°. Greater wrap angles are the result of a thinner neck and create a more spherical cutting end. This style offers more clearance at the cost of rigidity. Likewise, undercutting end mills with lower wrap angles sacrifice clearance for greater rigidity.

Deburring & Edgebreaking

deburring with undercutting end mills

Since undercuts have a wrap angle that is greater than 180°, they are very well-suited to deburring or edgebreaking anywhere on your workpiece, including the underside. Deburring your parts by hand can be inefficient for your shop – using an undercutting end mill instead will save you time and money. Edgebreaking operations are often a critical final step to create a part that looks and feels like a finished product and that is safe to handle.

All undercutting end mills can be used to deburr and edgebreak, which makes them a useful tool to have on hand in any shop. Some manufacturers also offer specialized deburring tools that are designed with a right and left hand flute orientation, giving them “teeth” that make them particularly useful for deburring complex shapes. Using a deburring tool in a 5-axis machine often makes it possible to deburr or edgebreak an entire workpiece in one shot.

Slotting

slotting

Most machinists might not think of undercutting end mills for slotting, but they are fully capable of this operation. An equivalent slot can be machined with a regular ball end mill, but doing so might not be feasible due to clearance issues – an undercutter has a reduced neck, unlike a standard ball end mill. Additionally, using an undercutter to slot can save time switching to an equivalent ball end mill.

Since only 180° of the cutting end can be used to slot, undercutting end mills with lower wrap angles and thicker necks are best suited to slotting. However, high helix undercutting tools may be ideal if improved finish and increased chip removal are important to the operation.

Contouring & Profiling

contouring

With their wrap angle and increased clearance, undercutting end mills are very useful for both simple and complicated contouring and profiling operations. Their versatility means that it is sometimes possible to accomplish the entire operation with a single tool, rather than several, especially when 5-axis milling.

Reduced shank tools offer the most versatility in complex contouring and profiling operations. The ability to chuck these tools at any depth means that they are capable of maximum clearance.

Choosing An Undercutting End Mill

While most undercutting end mills are conceptually similar, there are a few key differences that must be considered when picking the right tool for your job. Harvey Tool offers the following styles as stock standard tools.

undercutting end mills

Introduction to High Efficiency Milling

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear I Intro to Trochoidal Milling


High Efficiency Milling (HEM) is a strategy that is rapidly gaining popularity in the metalworking industry. Most CAM packages now offer modules to generate HEM toolpaths, each with their own proprietary name. In these packages, HEM can also be known as Dynamic Milling or High Efficiency Machining, among others. HEM can result in profound shop efficiency, extended tool life, greater performance, and cost savings. High performance end mills designed to achieve higher speeds and feeds will help machinists to reap the full benefits of this popular machining method.

High Efficiency Milling Defined

HEM is a milling technique for roughing that utilizes a lower Radial Depth of Cut (RDOC) and a higher Axial Depth of Cut (ADOC). This spreads wear evenly across the cutting edge, dissipates heat, and reduces the chance of tool failure.

This strategy differs from traditional or conventional milling, which typically calls for a higher RDOC and lower ADOC. Traditional milling causes heat concentrations in one small portion of the cutting tool, expediting the tool wear process. Further, while Traditional Milling call for more axial passes, HEM toolpaths use more passes radially.

For more information on optimizing Depth of Cut in relation to HEM, see Diving into Depth of Cut: Peripheral, Slotting & HEM Approaches.

High Efficiency Milling

Built-In CAM Applications

Machining technology has been advancing with the development of faster, more powerful machines. In order to keep up, many CAM applications have developed built-in features for HEM toolpaths, including Trochoidal Milling, a method of machining used to create a slot wider than the cutting tool’s cutting diameter.

HEM is largely based on the theory surrounding Radial Chip Thinning, or the phenomenon that occurs with varying RDOC, and relates to the chip thickness and feed per tooth. HEM adjusts parameters to maintain a constant load on the tool through the entire roughing operation, resulting in more aggressive material removal rates (MRR). In this way, HEM differs from other high performance toolpaths, which involve different methods for achieving significant MRR.

Click Here to learn More About The Efficiency-Boosting Power of High Efficiency Milling

Virtually any CNC machine can perform HEM – the key is a fast CNC controller. When converting from a regular program to HEM, about 20 lines of HEM code will be written for every line of regular code. A fast processor is needed to look ahead for the code, and keep up with the operation. In addition, advanced CAM software that intelligently manages tool load by adjusting the IPT and RDOC is also needed.

High Efficiency Milling Case Studies

The following example shows the result a machinist had when using a Helical Solutions HEV-5 tool to perform an HEM operation in 17-4PH stainless steel. While performing HEM, this ½” diameter, 5-flute end mill engaged the part just 12% radially, but 100% axially. This machinist was able to reduce tool wear and was able to complete 40 parts with a single tool, versus only 15 with a traditional roughing toolpath.

traditional roughing vs HEM comparison

The effect of HEM on a roughing application can also be seen in the case study below. While machining 6061 aluminum with Helical’s H45AL-C-3, a 1/2″, 3-flute rougher, this machinist was able to finish a part in 3 minutes, versus 11 minutes with a traditional roughing toolpath. One tool was able to make 900 parts with HEM, a boost of more than 150% over the traditional method.

traditional roughing vs HEM comparison

Importance of Tooling to HEM

Generally speaking, HEM is a matter of running the tool – not the tool itself. Virtually every tool can perform HEM, but using tooling built to withstand the rigors of HEM will result in greater success. While you can run a marathon in any type of shoes, you’d likely get the best results and performance from running shoes.

HEM is often regarded as a machining method for larger diameter tooling because of the aggressive MRR of the operation and the fragility of tooling under 1/8” in size. However, miniature tooling can be used to achieve HEM, too.

Using miniature tooling for HEM can create additional challenges that must be understood prior to beginning your operation.

Best Tools for HEM:

  • High flute count for increased MRR.
  • Large core diameter for added strength.
  • Tool coating optimized for the workpiece material for increased lubricity.
  • Variable Pitch/Variable Helix design for reduced harmonics.

Key Takeaways

HEM is a machining operation which continues to grow in popularity in shops worldwide. A milling technique for roughing that utilizes a lower RDOC and higher ADOC than traditional milling, HEM distributes wear evenly across the cutting edge of a tool, reducing heat concentrations and slowing the rate of tool wear. This is especially true in tooling best suited to promote the benefits of HEM.

Tackling Titanium: A Guide to Machining Titanium and Its Alloys

In today’s manufacturing industry, titanium and its alloys have become staples in aerospace, medical, automotive, and firearm applications. This popular metal is resistant to rust and chemicals, is recyclable, and is extremely strong for its weight. However, there are several challenges that must be considered when machining titanium and selecting the appropriate tools and parameters for the job.

Titanium Varieties

Titanium is available in many varieties, including nearly 40 ASTM grades, as well as several additional alloys. Grades 1 through 4 are considered commercially pure titanium with varying requirements on ultimate tensile strength. Grade 5 (Ti6Al4V or Ti 6-4) is the most common combination, alloyed with 6 percent aluminum and 4 percent vanadium. Although titanium and its alloys are often grouped together, there are some key differences between them that must be noted before determining the ideal machining approach.

Titanium 6AL4V

Helical Solutions’ HVTI End Mill is a great choice for high efficiency toolpaths in Titanium.

Titanium Concerns

Workholding

Although titanium may have more desirable material properties than your average steel, it also behaves more flexibly, and is often not as rigid as other metals. This requires a secure grip on titanium workpieces, and as rigid a machine setup as is possible. Other considerations include avoiding interrupted cuts, and keeping the tool in motion at all times of contact with the workpiece. Dwelling in a drilled hole or stopping a tool next to a profiled wall will cause the tool to rub – creating excess heat, work-hardening the material, and causing premature tool wear.

Heat Generation

Heat is a formidable enemy, and heat generation must be considered when selecting speeds and feeds. While commercially pure grades of titanium are softer and gummier than most of its alloys, the addition of alloying elements typically raises the hardness of titanium. This increases concerns regarding generated heat and tool wear. Maintaining a larger chipload and avoiding unnecessary rubbing aids with tool performance in the harder titanium alloys, and will minimize the amount of work hardening produced. Choosing a lower RPM, paired with a larger chipload, can provide a significant reduction in temperature when compared to higher speed options. Due to its low conduction properties, keeping temperatures to a minimum will put less stress on the tool and reduce wear. Using high-pressure coolant is also an effective method to reduce heat generation when machining titanium.

cutting tools for titanium

These camshaft covers were custom made in titanium for Mitsubishi Evos.
Photo courtesy of @RebootEng (Instagram)

Galling and Built-Up Edge

The next hurdle to consider is that titanium has a strong tendency to adhere to a cutting tool, creating built up edge. This is a tricky issue which can be reduced by using copious amounts of high pressure coolant aimed directly at the cutting surface. The goal is to remove chips as soon as possible to prevent chip re-cutting, and keep the flutes clean and clear of debris. Galling is a big concern in the commercially pure grades of titanium due to their “gummy” nature. This can be addressed using the strategies mentioned previously, such as continuing feed at all times of workpiece contact, and using plenty of high-pressure coolant.

Titanium Solutions

While the primary concerns when machining titanium and its alloys may shift, the methods for mitigating them remain somewhat constant. The main ideas are to avoid galling, heat generation, work hardening, and workpiece or tool deflection. Use a lot of coolant at high pressure, keep speeds down and feeds up, keep the tool in motion when in contact with the workpiece, and use as rigid of a setup as possible.

In addition, selecting a proper tool coating can help make your job a successful one. With the high heat being generated during titanium machining operations, having a coating that can adequately deal with the temperature is key to maintaining performance through an operation. The proper coating will also help to avoid galling and evacuate chips effectively. Coatings such as Harvey Tool’s Aluminum Titanium Nitride (AlTiN Nano) produce an oxide layer at high temperatures, and will increase lubricity of the tool.

Tooling Solutions

Helical Solutions offers the HVTI-6 line of tooling optimized for High Efficiency Milling (HEM) in Titanium and its alloys. Helical’s HVTI-6 features its Aplus coating which offers added lubricity and high temperature resistance for improved tool life and faster speeds and feeds.

As titanium and its many alloys continue to grow in use across various industries, more machinists will be tasked with cutting this difficult material. However, heat management and appropriate chip evacuation, when paired with the correct coating, will enable a successful run.

machining titanium

Most Common Methods of Tool Entry

Tool entry is pivotal to machining success, as it’s one of the most punishing operations for a cutter. Entering a part in a way that’s not ideal for the tool or operation could lead to a damaged part or exhausted shop resources. Below, we’ll explore the most common part entry methods, as well as tips for how to perform them successfully.


Pre-Drilled Hole

Pre-drilling a hole to full pocket depth (and 5-10% larger than the end mill diameter) is the safest practice of dropping your end mill into a pocket. This method ensures the least amount of end work abuse and premature tool wear.

tool entry predrill


Helical Interpolation

Helical Interpolation is a very common and safe practice of tool entry with ferrous materials. Employing corner radius end mills during this operation will decrease tool wear and lessen corner breakdown. With this method, use a programmed helix diameter of greater than 110-120% of the cutter diameter.

helical interpolation


Ramping-In

This type of operation can be very successful, but institutes many different torsional forces the cutter must withstand. A strong core is key for this method, as is room for proper chip evacuation. Using tools with a corner radius, which strengthen its cutting portion, will help.

ramping

Suggested Starting Ramp Angles:

Hard/Ferrous Materials: 1°-3°

Soft/Non-Ferrous Materials: 3°-10°

For more information on this popular tool entry method, see Ramping to Success.


Arcing

This method of tool entry is similar to ramping in both method and benefit. However, while ramping enters the part from the top, arcing does so from the side. The end mill follows a curved tool path, or arc, when milling, this gradually increasing the load on the tool as it enters the part. Additionally, the load put on the tool decreases as it exits the part, helping to avoid shock loading and tool breakage.

arching with end mill


Straight Plunge

This is a common, yet often problematic method of entering a part. A straight plunge into a part can easily lead to tool breakage. If opting for this machining method, however, certain criteria must be met for best chances of machining success. The tool must be center cutting, as end milling incorporates a flat entry point making chip evacuation extremely difficult. Drill bits are intended for straight plunging, however, and should be used for this type of operation.

tool entry


Straight Tool Entry

Straight entry into the part takes a toll on the cutter, as does a straight plunge. Until the cutter is fully engaged, the feed rate upon entry is recommended to be reduced by at least 50% during this operation.

tool entry


Roll-In Tool Entry

Rolling into the cut ensures a cutter to work its way to full engagement and naturally acquire proper chip thickness. The feed rate in this scenario should be reduced by 50%.

tool entry

How to Avoid 4 Major Types of Tool Wear

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

Introduction to High Efficiency Milling I High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I Intro to Trochoidal Milling


Defining Tool Wear

Tool wear is the breakdown and gradual failure of a cutting tool due to regular operation. Every tool will experience tool wear at some point in its life. Excessive wear will show inconsistencies and have unwanted effects on your workpiece, so it is important to avoid tool wear in order to achieve optimal end mill performance. Tool wear can also lead to failure, which in turn can lead to serious damage, rework, and scrapped parts.

tool wear
An example of a tool with no wear
tool wear
An example of a tool with excessive wear

Download the Free, 50+ Page High Efficiency Milling Guidebook Today

To prolong tool life, identifying and mitigating the various signs of tool wear is key. Both thermal and mechanical stresses cause tool wear, with heat and abrasion being the major culprits. Learning how to identify the most common types of tool wear and what causes them can help machinists remedy issues quickly and extend tool longevity.

Abrasive Wear

The wear land is a pattern of uniform abrasion on the cutting edge of the tool, caused by mechanical abrasion from the workpiece. This dulls the cutting edge of a tool, and can even alter dimensions such as the tool diameter. At higher speeds, excessive heat becomes more of an issue, causing more damage to the cutting edge, especially when an appropriate tool coating is not used.

tool wear

If the wear land becomes excessive or causes premature tool failure, reducing the cutting speed and optimizing coolant usage can help. High Efficiency Milling (HEM) toolpaths can help reduce wear by spreading the work done by the tool over its entire length of cut. This prevents localized wear and will prolong tool life by using the entire cutting edge available.


Chipping

Chipping can be easily identified by a nicked or flaked edge on the cutting tool, or by examining the surface finish of a part. A poor surface finish can often indicate that a tool has experienced some sort of chipping, which can lead to eventual catastrophic tool failure if it is not caught.

tool wear

Chipping is typically caused by excessive loads and shock-loading during operation, but it can also be caused by thermal cracking, another type of tool wear which is explored in further detail below. To counter chipping, ensure the milling operation is completely free of vibration and chatter. Taking a look at the speeds and feeds can also help. Interrupted cuts and repeated part entry can also have a negative impact on a tool. Reducing feed rates for these situations can mitigate the risk of chipping.


Thermal Cracking

Thermal cracking is often identified by cracks in the tool perpendicular to the cutting edge. Cracks form slowly, but they can lead to both chipping and premature tool failure.

end mill thermal cracking

Thermal cracking, as its name suggests, is caused by extreme temperature fluctuations during milling. Adding a proper coating to an end mill is beneficial in providing heat resistance and reduced abrasion on a tool. HEM toolpaths provide excellent protection against thermal cracking, as these toolpaths spread the heat across the cutting edge of the tool, reducing the overall temperature and preventing serious fluctuations in heat.


Fracture

Fracture is the complete loss of tool usage due to sudden breakage, often as a result of improper speeds and feeds, an incorrect coating, or an inappropriate depth of cut. Tool holder issues or loose work holding can also cause a fracture, as can inconsistencies in workpiece material properties.

end mill fracture
Photo courtesy of @cubanana___ on Instagram

Adjusting the speeds, feeds, and depth of cut and checking the setup for rigidity will help to reduce fracturing. Optimizing coolant usage can also be helpful to avoid hot spots in materials which can dull a cutting edge and cause a fracture. HEM toolpaths prevent fracture by offering a more consistent load on a tool. Shock loading is reduced, causing less stress on a tool, which lessens the likelihood of breakage and increases tool life.


It is important to monitor tools and keep them in good, working condition to avoid downtime and save money. Wear is caused by both thermal and mechanical forces, which can be mitigated by running with appropriate running parameters and HEM toolpaths to spread wear over the entire length of cut. While every tool will eventually experience some sort of tool wear, the effects can be delayed by paying close attention to speeds and feeds and depth of cut. Preemptive action should be taken to correct issues before they cause complete tool failure.  

Intro to Trochoidal Milling

The following is just one of several blog posts relevant to High Efficiency Milling. To achieve a full understanding of this popular machining method, view any of the additional HEM posts below!

Introduction to High Efficiency Milling I High Speed Machining vs. HEM I How to Combat Chip Thinning I Diving into Depth of Cut I How to Avoid 4 Major Types of Tool Wear


What Is Trochoidal Milling?

Trochoidal milling is a method of machining used to create a slot wider than the cutting tool’s cutting diameter. This is accomplished using a series of circular cuts known as a trochoidal tool path. A form of High Efficiency Milling (HEM), trochoidal milling leverages high speeds while maintaining a low radial depth of cut (RDOC) and a high axial depth of cut (ADOC).

Trochoidal milling is largely based on the theory surrounding chip thinning in machining. Conventional thinking suggests that cutting tools have an optimal chip load that determines the ideal width and size of the chips produced. The concept of combating chip thinning involves machining with a chip load that is larger than “optimal” in order to maintain a constant maximum chip thickness.

In contrast to a completely linear radial tool path in conventional machining, trochoidal milling takes advantage of a spiral tool path with a low RDOC to reduce load and wear on the tool (Figure 1).

trochoidal milling

Advantages of Trochoidal Milling

  • Decreased cutting forces
  • Reduced heat
  • Greater machining accuracy
  • Improved tool life
  • Faster cycle times
  • One tool for multiple slot sizes

Trochoidal milling can be very advantageous in certain applications. The reduced radial engagement of the cutting edge decreases the amount of heat produced in the cut while also decreasing the cutting forces and load on the spindle. The reduced radial forces allow for greater accuracy during production and make it possible to machine finer and more precise features on a part.

In addition, the lower radial depth of cut allows for a higher axial depth of cut, meaning that the entire length of the cutting edge can be utilized. This ensures that heat and cutting forces are distributed across the tool’s cutting edge, rather than concentrated on a single section. The reduced heat and wear, combined with their uniform spread on the cutting edge, resulting in significantly improved tool life over conventional slotting methods.

Given the reduced destructive forces, the cutting tool’s speeds can be increased. Since the entire length of cut is utilized, trochoidal milling can eliminate the need for multiple axial depths of cut. Increased running parameters and a reduced number of passes greatly reduce cycle time.

Since trochoidal milling uses a tool to machine a slot wider than its cutting diameter, the same tool can be used to create slots of varying sizes, rather than just one. This can free up space in your tool carousel and save time on tool change-outs, depending on the requirements of the part (Figure 2).

trochoidal milling paths

Although slotting is a roughing operation, the reduced radial depth of cut and decreased cutting forces from trochoidal milling often result in an improved finish over a conventional slotting toolpath. However, a finishing pass along the walls of the workpiece might be required to remove any cusps left from the spiral motion of the cutting tool.

Click Here to Learn More About The Efficiency-Boosting Power of High Efficiency Milling

Challenges of Trochoidal Milling

The challenges of trochoidal milling are typically found with the machinery and software. The right machine to take advantage of trochoidal milling will not only be capable of high speeds and feeds but will also be capable of a constantly changing feed rate as the tool moves along it’s spiral path. Inability to have a changing feed rate will cause chip thinning which can yield non-ideal results and potentially cause tool breakage. Special software might also be required to program tool paths and feed rates for this process. This is further complicated by factors like the ratio of the cutter diameter to the size of the groove, as well as the radial depth of cut for these different ratios. Most figures suggest the cutter diameter be 50%-70% of the final slot width, while the radial depth of cut should equal 10%-35% of cutter diameter (Table 1), but the safest option is always to consult the tool manufacturer.

trochoidal milling table

Trochoidal Milling and Micromachining

Benefits When Micromachining

Micromachining can also benefit from trochoidal milling. The decreased radial engagement and lower cutting forces produced during a trochoidal tool path put less force on the cutting tools. This is especially important for smaller diameter tools, as they are weaker and less rigid, and the reduced cutting forces decrease the chance of deflection and breakage.

Challenges When Micromachining

While trochoidal milling with miniature tooling is theoretically beneficial, there are additional challenges associated with smaller tools. Miniature cutting tools are much more susceptible to breakage due to spindle runout and vibration, material inconsistencies, uneven loading, and many other variables that arise during machining. Depending on your application, it may be worth using the tool with the greatest diameter for the extra strength. Although there are potential benefits at the miniature level, more attention must be paid to the machine setup and material to ensure the tools have the highest chance of success.

Just like HEM, as a general rule, trochoidal milling should not be considered when using tools with cutting diameters less than .031”. While possible, trochoidal milling may still be prohibitively challenging or risky at diameters below .062”, and your application and machine must be considered carefully.

Conclusion

Trochoidal milling is a High Efficiency Milling technique (high speed, high ADOC, low RDOC) characterized by a circular, or trochoidal, tool path. This milling style is proven to offer significant machining process benefits, such as increasing tool life, reducing machining times, and fewer tools required for a job. However, it is critical to have a machine and software capable of high speeds and feeds and constantly changing feed rates to avoid critical tool failure. While miniature tools can still benefit from trochoidal milling, the risk of tool breakage must be considered carefully, especially at cutter diameters below .062”. Although trochoidal milling can increase your machining efficiency in many applications, it is always a good idea to consult your tool manufacturer beforehand.

A great example of trochoidal milling in action can be seen in this video, where a 1/2″ Helical Solutions end mill with variable helix, variable pitch was used to machine a block of 316 stainless steel.

Ball Nose Milling Strategy Guide

Ball Nose Milling Without a Tilt Angle

Ball nose end mills are ideal for machining 3-dimensional contour shapes typically found in the mold and die industry, the manufacturing of turbine blades, and fulfilling general part radius requirements. To properly employ a ball nose end mill (with no tilt angle) and gain the optimal tool life and part finish, follow the 2-step process below (see Figure 1).

ball nose

Shop Harvey Tool’s Vast Selection of Ball Profile End Mills – Click Here to Get Started

Step One: Calculate Your Effective Cutting Diameter

A ball nose end mill’s Effective Cutting Diameter (Deff) differs from its actual cutting diameter when utilizing an Axial Depth of Cut (ADOC) that is less than the full radius of the ball. Calculating the effective cutting diameter can be done using the chart below that represents some common tool diameters and ADOC combinations or by using the traditional calculation (see Figure 2).

ball nose effective cutting diameter chart
ball nose cutting diameter calculation

Step Two: Calculate Your Compensated Speed

Given the new effective cutting diameter a “Compensated Speed” will need to be calculated. If you are using less than the cutter diameter, then its likely your RPM’s will need to be adjusted upward (see Figure 3).

ball nose compensated speed calculation

KEY
ADOC = Axial Depth of Cut
D = Cutting Diameter
Deff = Effective Cutting Diameter
R = Tool Radius (Dia./2)
RDOC = Radial Depth of Cut
SFM = Surface Feet per Minute
Sc = Compensated Speed


Ball Nose Milling With a Tilt Angle

If possible, it is highly recommended to use ball nose end mills on an incline (ß) to avoid a “0” SFM condition at the center of the tool, thus increasing tool life and part finish (Figure 4). For ball nose optimization (and in addition to tilting the tool), it is highly recommended to feed the tool in the direction of the incline and utilize a climb milling technique.

ball nose milling with tilt angle

To properly employ a ball nose end mill with a tool angle and gain the most optimal tool life and part finish, follow the 2-step process below.

Step One: Calculate Your Effective Cutting Diameter

The chart below that represents some common effective cutting diameters and ADOCs at a 15º tilt angle. Otherwise, the traditional calculation below may be used (see Figure 5).

ball nose cutting diameter
ball nose cutting diameter calculation

Step Two: Calculate Your Compensated Speed

Given the new effective cutting diameter a compensated speed will need to be calculated. If you are using less than the cutter diameter, then its likely your RPM’s will need to be adjusted upward (see Figure 6).

ball nose compensated speed calculation

KEY
Deff = Effective Cutting Diameter
SFM = Mfg Recommended Surface Feet per Minute
Sc = Compensated Speed

6 Uses of Double Angle Shank Cutters

A Double Angle Shank Cutter is often referred to as the “Swiss Army Knife of Machining” due to its extreme versatility. This singular tool can be used for chamfering, back chamfering, V-groove milling, deburring, and countersinking. Below, we’ll learn the nuances of each operation, and why a Double Angle Shank Cutter might is an excellent tool to have on hand in any machine shop.


Thread Milling

Both in purpose and look, a Double Angle Shank Cutter is very similar to that of a single-form thread mill. Single-form thread mills are more versatile than multi-form thread mills, as they are not locked into a fixed pitch. Double Angle Shank Cutters that have a 60° angle can create internal and external 60° Unified National (UN) and metric threads. Double Angle Shank Cutters with a 55° angle can be used to thread 55° British Standard Pipe Threads (BSPT). To determine the thread sizes that various Double Angle Shank Cutters can produce, it’s helpful to consult thread fit charts, which pair appropriate cutter diameters to the thread size needed.

thread milling


Chamfering

Depending on the requirements of your chamfering operation, and the angle of the chamfer you’re creating on your part, a Double Angle Shank Cutter might be appropriate. The angle of the top or bottom of the cutting face of the tool (called out below in as a B1 dimension), will determine the angle of your part’s chamfer. The area marked in red in Figures 2 and 3 below indicate the cutting portion for your chamfering and back chamfering (leaving a chamfer on the bottom of a part) operation.

chamfering with Double Angle Shank Cutter

For more information on the angles of Double Angle Shank Cutters, view Harvey Tool’s helpful guide: “Angles Untangled.”


Back Chamfering

Consider a through-hole that has a burr or tear-out caused from drilling the back of a workpiece. Reorienting the workpiece and relocating the hole is time-consuming, and it may be difficult to accurately finish the hole. In a case like this, back chamfering the burred hole without changing the setup is a preferred method. Put simply, the ability to accurately chamfer not only the top – but also the bottom of a part without needing to refasten the workpiece in your machine will save valuable time and money.

back chamfering

For best results when chamfering with Double Angle Shank Cutters, use a stepping over technique with diminishing passes as the radial engagement increases. This strategy helps to manage the amount of contact along the angle and can significantly avoid tool deflection.


Machining V-Grooves

A Double Angle Shank Cutter is commonly applied for machining V-groove profiles because of its cutting head, which is perpendicular to the tool centerline. This provides effective cutting action, even at a low spindle speed. A low tip speed can lead to issues with other tools, such as Chamfer Cutters, where the pointed profile is on-center of the tool.

machining v-grooves


Deburring

The task of hand-deburring parts can be tiresome for you, and cost inefficient for your shop. It can also lead to inaccuracies in parts that require precise dimensions. Double Angle Shank Cutters can be used to debur a part right in your CNC machine. By doing so, the process of finishing a part is made simple, fast, and accurate. Of course, ensuring proper clearance prior to machining the bottom of a machined hole is pivotal.

deburring with Double Angle Shank Cutter

Other useful and versatile tools to have on-hand for quick CNC deburring include deburring end mills, back deburring mills, undercutting end mills, and chamfer cutters.


Countersinking

Countersinking a part  is done so a screw, nail, or bolt is able to sit flush with the part surface. Using specialty profile tooling can help enlarge the rim of a drilled hole and bevel the sides for a screw to sit accurately. A Double Angle Shank Cutter can also perform this operation by using the bottom portion of its cutting face.

Double Angle Shank Cutter for countersinking


Because of its ability to perform six different operations, Double Angle Shank Cutters are an ideal tool to keep in your tool carousel. In a bind, these tool forms can mill threads, chamfer, back chamfer, machine v-grooves, deburr in your CNC machine, and countersink. This versatility makes it a machining favorite and can offer shops boosted productivity by eliminating the need to flip parts, deburr by hand, or carry multiple tool forms.

For more on Harvey Tool Double Angle Shank Cutters, Click Here.